DETAILED POL SYNTH PROGRAMMING GUIDE

Syd Kreitzman

rev history
Rev Nov 20/2003 original spec
Rev Dec 1 /2003 added functions idle_freq idle_iq added detailed procedure to calculate the frequency sweep values
Rev Feb 26/2004 added gate control logic into register 2C and moved old 2C functions to 2D, old 2D function to 2E (see * lines)
Rev May 10/2004 added section on how to do the complex modulation; srk
Rev July 19/2004 corrected and updated complex modulation section; srk
Rev Sept 10/2004 added functionality for iq data recycling by introducing five new Registers Ncmx, Nc1f, Nc3f, Nc5f, Ncfref into locations 30-31 Also introduced the modulation function parameters A and α to define the modulation function properties (i.e. linewidth and ending ampliture); srk
Rev Sept 30/2004 corrected for the fact that the Niq data gets clocked in at 4*Ncic*25X10^(-9) seconds (i.e. every 4*Ncic clock periods) thereby correcting calculations for pulse lengths, bandwidths etc; srk
Rev Feb 28/2005 added control of output scale factorto give amplitude control to modulated functions without having to reprogram the entire I/Q array. A new global control function "scale" has been added. The scaled value is 2^-7*scale, where scale is an eight bit value from 0 -> 255. The default value of scale is (256/sqrt(2))=181.
Day April 05/2005 Added Harmite modulation function

Rev April 25/2005 ... Added Hermite modulation function.

------ end of rev history -----

Local Control Register Level Functionality

e Register	Access
01	r/w
01	r/w
x 02	r/w
fx 03	r/w
ffx 04-05	r/w
06-07	r only
2C bits 0	,1 r/w
)1x 31 bits 0	-5 r/w 0x is not allowed
09	r/w
09	r/w
x OA	r/w
fx OB	r/w
	01 01 Ex 02 Efx 03 7ffx 04-05 06-07 0 2C bits 0 0 2C b

			,
3f-n_iq	0x-7ffx	0C-0D	r/w
3f-iq_ptr		0E-0F	r only
3f-on	1,1b	2C bits 2,3	r/w
3f-off	0,0b	2C bits 2,3	r/w
3f-gate-t	1,0b	2C bits 2,3	r/w
3f-gate-f	0,1b	2C bits 2,3	r/w
Nc3f	1x-01x	32 bits 0-5	r/w 0x is not allowed
			-,
5f-qm-on	0x	11	r/w
5f-qm-off	1x	11	r/w
5f-cic	2-ffx	12	
			r/w
5f-scale	0x-ffx	13	r/w
5f-n_iq	0x-7ffx	14-15	r/w
5f-iq_ptr		16-17	r only
5f-on	1,1b	2C bits 4,5	r/w
5f-off	0,0b	2C bits 4,5	r/w
5f-gate-t	1,0b	2C bits 4,5	r/w
5f-gate-f	0,1b	2C bits 4,5	r/w
Nc5f	1x-01x	33 bits 0-5	r/w 0x is not allowed
fref-qm-on	0x	19	r/w
fref-qm-off	1x	19	r/w
fref-cic	2-ffx	1A	r/w
fref-scale	0x-ffx	1B	r/w
fref-n ig	0x-7ffx	1C-1D	r/w
fref-iq_ptr	UX-/IIX	1E-1F	r only
	1 11-		-
fref-on	1,1b	2C bits 6,7	r/w
fref-off	0,0b	2C bits 6,7	r/w
fref-gate-t	1,0b	2C bits 6,7	r/w
fref-gate-f	0,1b	2C bits 6,7	r/w
Ncfref	1x-01x	34 bits 0-5	r/w 0x is not allowed
fref-freqx	0-ffffffff	x 20-23	r/w write order: 20 first 23 last
=		(4x10^7))x=(fref_Hz*	(107.3741824))x=(fref_Hz/finc)x
=	ef_Hz*2^32/	(4x10^7))x=(fref_Hz*	(107.3741824))x=(fref_Hz/finc)x
fref-freqx = (fr	ef_Hz*2^32/ 6Hz	(4x10^7))x=(fref_Hz*	(107.3741824))x=(fref_Hz/finc)x
<pre>fref-freqx = (fr finc = .00931322</pre>	ef_Hz*2^32/ 6Hz	(4x10^7))x=(fref_Hz*	(107.3741824))x=(fref_Hz/finc)x
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 -</pre>	ef_Hz*2^32/ 6Hz	(4x10^7))x=(fref_Hz*	(107.3741824))x=(fref_Hz/finc)x
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep</pre>	ef_Hz*2^32/ 6Hz finc	24-25	r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 -</pre>	ef_Hz*2^32/ 6Hz finc		
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr</pre>	ef_Hz*2^32/ 6Hz finc 0-3ff	24-25 26-27	r/w r only
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle</pre>	ef_Hz*2^32/ 6Hz finc 0-3ff ?fx	24-25 26-27 28 bits 1-4only	r/w r only r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq</pre>	ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x	24-25 26-27 28 bits 1-4only 28 bits 1-4 only	r/w r only r/w r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle</pre>	ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only	r/w r only r/w r/w r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq</pre>	ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x	24-25 26-27 28 bits 1-4only 28 bits 1-4 only	r/w r only r/w r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee</pre>	ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only	r/w r only r/w r/w r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq-</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s</pre>	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x),	r/w r only r/w r/w r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_</pre>	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n	r/w r only r/w r/w r/w r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep-</pre>	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee	<pre>r/w r only r/w r/w r/w r/w r/w iq) p-end_nfsweep).</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep-</pre>	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee	r/w r only r/w r/w r/w r/w
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep-</pre>	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee	<pre>r/w r only r/w r/w r/w r/w r/w iq) p-end_nfsweep).</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_s 1 (sweep- ated and wr</pre>	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee	<pre>r/w r only r/w r/w r/w r/w r/w iq) p-end_nfsweep).</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_s 1 (sweep- ated and wr</pre>	24-25 26-27 28 bits 1-4only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee itten wheneverthe va	<pre>r/w r only r/w r/w r/w r/w r/w r/w .iq) p-end_nfsweep). lues of iq-end or sweep-end are changed.</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee itten wheneverthe va	<pre>r/w r only r/w r/w r/w r/w r/w r/w .iq) p-end_nfsweep). lues of iq-end or sweep-end are changed.</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul RF_power_trip_thr</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee itten wheneverthe va	<pre>r/w r only r/w r/w r/w r/w r/w r/w r/w hig) p-end_nfsweep). lues of iq-end or sweep-end are changed. r/w</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul RF_power_trip_thr</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx 0</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee itten wheneverthe va 29 w, r	<pre>r/w r only r/w r/w r/w r/w uliq) p-end_nfsweep). lues of iq-end or sweep-end are changed. r/w is always 0</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul RF_power_trip_thr fsweep_int_strobe</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx 0</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee itten wheneverthe va 29 w, r	<pre>r/w r only r/w r/w r/w r/w r/w r/w r/w hig) p-end_nfsweep). lues of iq-end or sweep-end are changed. r/w</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul RF_power_trip_thr fsweep_int_strobe fsweep_ptr_reset</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx 0 0</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee itten wheneverthe va 29 w, r 2b w, r	<pre>r/w r only r/w r/w r/w r/w uliq) p-end_nfsweep). lues of iq-end or sweep-end are changed. r/w is always 0</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul RF_power_trip_thr fsweep_int_strobe</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx 0 0</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (swee itten wheneverthe va 29 w, r 2b w, r	<pre>r/w r only r/w r/w r/w r/w iq) p-end_nfsweep). lues of iq-end or sweep-end are changed. r/w is always 0 is always 0</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul RF_power_trip_thr fsweep_int_strobe fsweep_ptr_reset RF_power_trip_sta</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx 0 0 t 0</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_m end_idle) or 0 (swee itten wheneverthe va 29 w, r 2b w, r 2b w, r	<pre>r/w r only r/w r/w r/w r/w iiq) p-end_nfsweep). lues of iq-end or sweep-end are changed. r/w is always 0 is always 0 cle will reset, read is 1 or 0</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul RF_power_trip_thr fsweep_int_strobe fsweep_ptr_reset</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx 0 0</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_m end_idle) or 0 (swee itten wheneverthe va 29 w, r 2b w, r 2b w, r	<pre>r/w r only r/w r/w r/w r/w iiq) p-end_nfsweep). lues of iq-end or sweep-end are changed. r/w is always 0 is always 0</pre>
<pre>fref-freqx = (fr finc = .00931322 fmax = 4*10^7 - n_fsweep fsweep_ptr iq-end_idle iq-end_niq fsweep-end_idle fsweep-end_idle fsweep-end_nfswee or reg_28x = (iq- where iq-end is and sweep-end i reg_28x is calcul RF_power_trip_thr fsweep_int_strobe fsweep_ptr_reset RF_power_trip_sta</pre>	<pre>ef_Hz*2^32/ 6Hz finc 0-3ff ?fx ?0x 1?x p 0?x end*0fx)+(s 1 (iq-end_ s 1 (sweep- ated and wr 0-ffx 0 0 t 0</pre>	24-25 26-27 28 bits 1-4 only 28 bits 1-4 only 28 bit 5 only 28 bit 5 only weep-end*10x), idle) or 0 (iq-end_n end_idle) or 0 (sweet itten wheneverthe vat 29 w, r 2b 20 w, r 2d 22 w cycle reset	<pre>r/w r only r/w r/w r/w r/w iiq) p-end_nfsweep). lues of iq-end or sweep-end are changed. r/w is always 0 is always 0 cle will reset, read is 1 or 0</pre>

Global Control Functions

qm-on > 1f-qm-on,3f-qm-on,5f-qm-on,frfef-qm-on

qm-off > 1f-qm-off,3f-qm-off,5f-qm-off,frfef-qm-off n_iq 0x-7ffx > 1f-n_iq,3f-n_iq,5f-n_iq,frfef-n_iq all set to same value, default value is 2048 = 8FFxiq_ptr displays all 1r,3f,5f,fref-iq_ptr cic_ir 2-ffx > 1f-cic, 3f-cic, 5f-cic, fref-cic all set to same value idle_freq (specify and load the value of idle_freq into 8FFC-F) idle_iq (specify and load the i and q modulation default values into 1/3/5/7FFC-F) Nc 1x-01x > Nc1f, Nc3f, Nc5f, Ncfref all set to same value Nc scale 0x-ffx (i.e. 8bit 0-255), change 1f-scale, 3f-scale, 5-scale, fref-scale to same scale value

Freq Sweep Loading

fsweep 0-ffffffffx	8000-8FFC	r/w n_fsweep locations to to loaded
	8FFD-8FFF	r/w + the idle frequence

It is probably best to divide the freq steps into multiples of finc, so determine the closest start freq, the closest value of the requested freq step in units of finc (call this delta_fincx) and the number of dealta_fincs required to get to withing 1/2 finc of the requested ending frequency. Then you can program the first location with the closest initial start frequency, and a delta_fincx to that value successively for each 32bit frequency word. This means that the actual start, stop, and step frequencies are computed as well as the number (i.e. n_fsweep) steps to get there. These number will be slightly different than what the user requested ... but the frequency increments will be absolutely constant. The calculation of the frequency is the same as that indicated for fref_freq. See detailed instructions below.

IQ data 0000-1FFF 2000-3FFF 4000-5FFF 6000-7FFF

All sets of registers are loaded with same set of data. The 1/3/5/7FFE - 1/3/5/7FFF locations are always loaded with the idle I/Q data pair.

Deatailed notes to for frequency sweep programing:

}

}

}

i) Determine the actual_start_frequency, it will be the closest frequency to the requested start_freq

ii) Determine the actual_frequency_step, it will the frequency closest to the requested freq_step

iii) Determfine the actual_number_freq_steps to get to the first frequency beyond the requested stop_freq

iv) Compute the actual_stop_frequency

actual_start_frequencyx = (int(start_frequency/finc))x
actual_start_frequency_hz =(int(start_frequency/finc))*finc

actual_frequency_stepx = (int(freq_step)/finc))x
actual_frequency_step_hz = (int(frq_step)/finc))*finc

actual_number_freq_steps = int((stop _freq - start_freq)/actual_frequency_step_hz) actual_stop_freq_hz = actual_start_freq_hz + actual_number_freq_steps*actual_freq_step

a) into location 8000 put the actual_start_frequencyx according to table 4 on page 6 of the manual (t4p6)

b) into location 8000x+(4*n)x put actual_start_frequencyx +nx*actual_frequency_stepx according to t4p6, for all n's 1 to actual_number_freq_steps

 b) may be accoplished in two ways. You can use the fact that the n=1'th frequency data in location 8000x+ (4*(n+1))x is the data in location 8000x+(4*n)x + actual_frequency_stepx

I suggest that a table of the all the actual_frequency_n be calculated, both in hz and in binary (i.e. hex) which then can be read into the memory according to order specified in t4p6. This give one a chance to look at the table for debugging purposes. Donald thinks that data should just be programmed in on the fly.

End of Frequency Sweep Programing Description.

IQ modulation programing:

Perscription for modulation: Csech (complex sech or In-sech) and Hermite

- 0) Select the modulation function and input the parameters A & a. Csech: {A, a}={0.1, 5} Hermite: {A, a}={0.39714, 2.2}
- Input the requested dnu (in Hz) and define dw=dnu*2*pi (dnu is the requested bandwidth (in Hz) that the modulation function will irradiate given a proper level of RF power)

2)Define	dw_max = 2x10^(7) a / (A * 512	* 2),	dw_min= 2x10^(7) a / (A * 2048 * 63*32)
	d_nu_max = dw_max/(2*pi)	,	d_nu_min = dw_min/(2*pi) ,
Csech:	976.563*10^3 rad/sec	,	0.24420*10^3 rad/sec
	155.424*10^3 Hz	,	0.03855*10^3 Hz
Hermite:	108.195*10^3 rad/sec	,	0.026844*10^3 rad/sec
	17.220*10^3 Hz	,	0.004272*10^3 Hz

- 3) Check that d_nu_min <= d_nu <= d_nu_max, else return an error stating that the requested d_nu in not with the available limits ... say what these limits are.</p>
- 4) Compute the preliminary total number of iq points Ntiqtemp

Ntiqtemp = { a * 2x10⁷ / (A * dw) }; { ... } = nearest smaller integer, Csech: Ntiqtemp = {10⁹/dw} Hermite: Ntiqtemp = {1.18*10⁸/dw} and confirm that 1024<= Ntiqtemp < 129024*Ncmx=4128768.

5) Assign Nc and Ncic according to the following table:

Ntiqtemp	NC	Ncic
1024 - 2047	1	2
2048 - 4095	1	2
4096 - 8191	1	4
8192 - 16383	1	8
16384 - 32767	1	16
32768 - 65535	1	32
65536 - 129023	1	63
129024 - 258047	2	63
258048 - 516095	4	63
516096 - 1032191	8	63
1032192 - 2064383	16	63
2064384 - 4128767	32	63

Confirm that Nc <= Ncmx.

6) Compute Niq and Ntiq

Niq=[Ntiqtemp/(Nc*Ncic)], [...] = nearest larger integer ; Ntiq = Niq*Nc*Ncic For consistency check, 512<= Niq <= 2048, and Ntiq < 129024*Ncmx;

if they are not then the explanation/calculation below/above is inconsistent and needs to be corrected/debugged.

Program Niq as the argument of the n_iq function.
 Program Nc and Ncic as the arguments of the Nc and icc ir functions respectively.

8) Calculate tp:

 $tp = (10^{-7})^*Ntiq sec.$

The RFon time programmed into the ppg should be = (or >) tp.

```
9) Compute for n=1 to Niq:

l(n) = <511*Re[func({A*dw*tp}*{n/Niq - 1/2})]>, <...> means closest integer

Q(n) = <511*Im[func({A*dw*tp}*{n/Niq - 1/2})]>
Csech: func(x) = sech(x)^(1+i*5)

a[n] = sech({dw*tp/10}*{n/Niq - 1/2})

phi[n] = 5*ln(a(n))

l[n] = <511*a(n)*cos(phi(n))>

Q[n] = <511*a(n)*sin(phi(n))>
Hermite: func(x) = (1-.957 * x^2) * exp(-x^2)

a[n] = (A*dw*tp*(n/Niq - 1/2)))^2

l[n] = <511*(1-.957*a[n]) * exp(-a[n])>

Q[n] = 0
10) Check that I[<Niq/2>] is either 510 or 511.

Store the l(n),Q(n) data set in decimal and 2's compliment
11) Use the 2's compliment data pairs of (l(n),Q(n))
```

for n=1 -> Niq for the n_iq function. The same {I,Q} data goes in all the channels.

End of iq modulation prescription.

Explanation of iq modulation prescription:

(Indented text describes the specific case for In-sech case.)

i) Chose a functional shape. It can always be expressed as $f(dw^A^{(t-tp/2)})$, for $0 \le t \le tp$, defining the pulse width tp, the band width dw and a scaling factor A. It is assumed that f(0)=1, f(t>0)<1, and $f(dw^A^{tp/2})<<1$. The reason for the last constraint is so that the RF power turns off properly within the defined pulse shape, otherwise power harmonics at other (non-desirable) frequencies will be introduced into the system at the end of the rf-gate.

For the In-sech mod function the complex modulation function is w1(t) = w1_max* (sech(b*t)^(1+i*u) , i^2=-1 or w1(t) = w1_max*(sech(b*t))*exp^(i*phi(b*t)) & phi(b*t) = u*In(sech(b*t)) The irradiated line width is dw=2*u*b (i.e. between +- u*b) and a value of u=5 is a good value which delivers a fairly nice selective rectangular frequency selection slice. Therefore the pulse shape is f=sech(dw*.1*(t-tp/2))^(1+iu), for 0<=t<=tp. i.e. A=.1

Let Niq be the number of digitized iq pairs. The maximum Niq is 2048, and we impose a minimum Niq of 512 to get decent modulation shape resolution/faithfulness. Each Niq pair is read (and interpolated) into the dsp in 4*25*Ncic*Nc nanoseconds. Thus the entire modulation pulse width is tp=10^ (-7)*Niq*Ncic*Nc. Where Nc is the number of times (cycles) each iq pair is repeated as it is fed from the iq memory into the dsp modulation digitizers. The total number of 100ns points is Ntiq= Niq*Ncic*Nc and the form of the function in iq memory is iq(n) = <511*f(dw*A*(n - Niq/2))>, The constant 511 reflects a 10 bit bipolar amplitude programmable in binary 2's compliment format.

For the In-sech function the data in iq memory looks like iq(n) = <511{sech((dw*tp/10)*(n/Niq - .5))}^{1+i5}, = <511{sech((dw*Ncic*Nc*Niq*10^(-7)/10)*(n/Niq - .5))}^{1+i5}

To chose Ncic, Nc, and Niq first requires relating the band width/shape of the modulation function to the pulse length. Then an approximate Ntiqtemp is determined so that at n=Niq (t=tp) the function is small.

From the value of Ntiqtemp, Ncic and Nc can be determined from a table (in the previous section) and then the value of Niq (and therefore Ntiq and tp) can be determined.

ii) Ntiqtempt calculation: First define a parameter α as follows:

- a) For functions that attenuate to zero in time define α so that the value of $f(\alpha) \le 0.015$.
- b) For functions that do not attenuate to zero define α as Ndnu*A*pi where Ndnu is the number of inverse bandwidths you require in the pulse. Ndnu will usually be of the order of unity in these cases.

Then Ntiqtemp is defined so that dw*A*Ntiqtemp*10^(-7)/2= α . i.e. Ntiqtemp ={ $\alpha * 2 *10^{(7)} / (A * dw)$ } = {10^9/dw}, { ... } = nearest smaller integer,

(For the In-sech function we use α =5, i.e. sech(5) \approx .013, which is fine.)

iii) Pick Ncic and Nc from the table. This table was produced to chose the best combination of Ncic*Nc*Niq that will deliver a faithful modulation pulse. As a guideline we tried to keep Niq reasonably high to yield good resolution in the modulation line shape. However, if dw is sufficiently high, then one requires smaller Ncic*Nc*Niq to do the job. Using the guideline that the minimum acceptable Niq is 512 then the product of Niq*Nc*Niq can be categorized as in the table to cover the entire dynamic range

Ntiqtemp	Nc	Ncic
1024 - 2047	1	2
2048 - 4095	1	2
4096 - 8191	1	4
8192 - 16383	1	8
16384 - 32767	1	16
32768 - 65535	1	32
65536 - 129023	1	63
129024 - 258047	2	63
258048 - 516095	4	63
516096 - 1032191	8	63
1032192 - 2064383	16	63
2064384 - 4128767	32	63

iv) Calculate the Niq = [Ntiqtemp/(Nc*Ncic)] that is required. [...] = next largest integer.

v) Also one must ensure the frequency band requested is within the physical limits available. These limits depend on the modulation function chosen and the requirement of the smallness of f at tp/2. Min Ntiq=Ntiqmn=2*512, Max Ntiq=Ntiqmx=63*2048*Ncmx. Ncmx is currently 32. The relationship between Ntiq and dw is dw*A*Ntiq*5*10^(-8)= α , therefore

dw_max = $2^{10^{(7)}} \alpha / (A * 512 * 2)$ (in radians/sec), dw_min=dw_max / (128 Ncmx)

dw must be constrained to be within this range.

for the In-sech, A=.1 and α = 5 giving dw_max=10^9/(512*2)rad/sec = 976.56Krad/sec = 155.42KHz/sec dw_min =10^9/(2048*63*Ncmx)rad/sec = 7.7505/NcmxKrad/sec = 1.2335/Ncmx KHz/sec

The order of the programming will not follow the order of the explanation ..., but should follow the order of

the example implementation for the In-sec function in the previous section.

End of iq modulation description.