Odbxx: Difference between revisions
No edit summary |
|||
Line 7: | Line 7: | ||
The simplest usage is like: | The simplest usage is like: | ||
<pre>// Grab a bit of the ODB | |||
midas::odb exp("/Experiment"); | |||
// Simple read | |||
std::cout << "The current transition timeout is " << exp["Transition timeout"] << std::endl; | |||
// Make a change. The new value is automatically sent to the ODB. | |||
// Most C++ operators are supported (++, += etc), or you can do a simple | |||
// re-assignment like `exp["Transition timeout"] = 12345;`. | |||
exp["Transition timeout"] += 100; | |||
// Read the new value | |||
std::cout << "The transition timeout is now " << exp["Transition timeout"] << std::endl; | |||
</pre> | |||
You can automatically cast to regular data types (int, double) etc if you want a copy of the value to work with: | You can automatically cast to regular data types (int, double) etc if you want a copy of the value to work with: | ||
<pre>int curr_timeout = exp["Transition timeout"];</pre> | |||
== Automatic refreshing == | == Automatic refreshing == | ||
You may temporarily disable the automatic updating to/from the ODB | You may temporarily disable the automatic updating to/from the ODB | ||
using | using <code>odb::set_auto_refresh_write(false)</code> and <code>odb::set_auto_refresh_read(false)</code>. | ||
If auto-refresh is enabled (the default), your new values are sent to | If auto-refresh is enabled (the default), your new values are sent to | ||
the ODB as soon as you touch the value in the | the ODB as soon as you touch the value in the <code>midas::odb</code> object. The ODB | ||
is queried for new values whenever you access the value. In the above | is queried for new values whenever you access the value. In the above | ||
example, the ODB is queried 4 times (during construction of | example, the ODB is queried 4 times (during construction of <code>exp</code>, and | ||
each time | each time <code>exp["Transition timeout"]</code> is mentioned), and written to 1 | ||
time (when | time (when <code>exp["Transition timeout"]</code> is assigned to). | ||
See the | See the [[#Callback functions]] section below for details on how to have a function | ||
called when a value changes. | called when a value changes. | ||
== Arrays/vectors == | == Arrays/vectors == | ||
Line 48: | Line 47: | ||
You can access/edit individual elements using []: | You can access/edit individual elements using []: | ||
<pre>odb["Example"][1] = 1.2;</pre> | |||
You can completely re-assign content using a std::vector or std::array: | You can completely re-assign content using a std::vector or std::array: | ||
<pre>std::vector<float> vec = std::vector<float>(10); | |||
odb["Example"] = vec; | |||
</pre> | |||
You can resize arrays using | You can resize arrays using <code>odb::resize()</code>. If the existing array is longer, | ||
it will be truncated; if shorter it will be extended with default values | it will be truncated; if shorter it will be extended with default values | ||
(0 or an empty string). | (0 or an empty string). | ||
<pre>odb["Example"].resize(5); // Now is 5 elements long</pre> | |||
Note that arithmetic operators are supported for arrays, and will apply | Note that arithmetic operators are supported for arrays, and will apply | ||
the operation to ALL ELEMENTS IN THE ARRAY: | the operation to ALL ELEMENTS IN THE ARRAY: | ||
<pre>// Create the vector | |||
std::vector<float> vec = std::vector<float>(2); | |||
vec[0] = 3; | |||
vec[1] = 5; | |||
// Assign in ODB | |||
odb["Example"] = vec; | |||
// Multiply ALL elements by 2 | |||
odb["Example"] *= 2; | |||
// odb["Example"] now contains {6, 10}. | |||
</pre> | |||
You can directly iterate over arrays/vectors: | You can directly iterate over arrays/vectors: | ||
<pre>// Iterating using standard begin/end. | |||
for (auto it = o["Int Array"].begin(); it != o["Int Array"].end(); it++) { | |||
int val = *it; | |||
std::cout << val << std::endl; | |||
} | |||
</pre> | |||
<pre>// Iterating using C++11 range-based for loop. | |||
for (int val : o["Int Array"]) { | |||
std::cout << val << std::endl; | |||
} | |||
</pre> | |||
== Strings == | == Strings == | ||
Strings in the ODB are returned as std::string (unlike the midas.h db_get_value() | Strings in the ODB are returned as std::string (unlike the midas.h <code>db_get_value()</code> | ||
family of functions, where strings are returned as char*). You may have vectors of strings. | family of functions, where strings are returned as char*). You may have vectors of strings. | ||
== Creating new bits of the ODB == | == Creating new bits of the ODB == | ||
You can automatically create bits of the ODB by passing a struct to the | You can automatically create bits of the ODB by passing a struct to the | ||
<code>midas::odb</code> constructor, then calling <code>odb::connect()</code>, like: | |||
<pre>// Define the ODB structure | |||
midas::odb new_bit = { | |||
{"Int32 Key", 42}, | |||
{"Bool Key", true}, | |||
{"Subdir", { | |||
{"Float key", 1.2f}, // floats must be explicitly specified | |||
}}, | |||
{"Int Array", {1, 2, 3}}, | |||
{"Double Array", {1.2, 2.3, 3.4}}, | |||
{"String Array", {"Hello1", "Hello2", "Hello3"}}, | |||
{"Large Array", std::array<int, 10>{} }, // array with explicit size | |||
{"Large String", std::string(63, '\0') }, // string with explicit size | |||
}; | |||
// Then sync the structure. Any keys that don't exist will be created; any | |||
// that already exist will keep their existing values... | |||
o.connect("/Test/Settings"); | |||
// ... unless you make the `write_defaults` argument true, in which case the | |||
// existing values will be ignored, and overwritten with what you specified above. | |||
o.connect("/Test/Settings", true); | |||
</pre> | |||
If you want to add new keys to existing ODB subdirectories, you can also just use the [] operator: | If you want to add new keys to existing ODB subdirectories, you can also just use the [] operator: | ||
<pre>midas::odb existing_key("/MyExistingKey"); | |||
existing_key["MyNewSubKey"] = 1.23; | |||
</pre> | |||
You can also create new keys by providing a default value when reading a value. If the key doesn't already exist, the default value will be used. | You can also create new keys by providing a default value when reading a value. If the key doesn't already exist, the default value will be used. | ||
<pre>midas::odb existing_key("/MyExistingKey"); | |||
double val = existing_key["MyNewSubKey"](1.23); | |||
</pre> | |||
== Iterating over subkeys == | == Iterating over subkeys == | ||
Line 138: | Line 142: | ||
You can use iterate over subkeys using normal iterator functions. | You can use iterate over subkeys using normal iterator functions. | ||
<pre>// Iterating using standard begin/end. | |||
midas::odb exp("/Experiment"); | |||
for (auto it = exp.begin(); it != exp.end(); it++) { | |||
midas::odb& subkey = *it; | |||
std::cout << subkey.get_name() << " = " << subkey << std::endl; | |||
} | |||
</pre> | |||
<pre>// Iterating using C++11 range-based for loop. | |||
for (midas::odb& subkey : exp) { | |||
std::cout << subkey.get_name() << " = " << subkey << std::endl; | |||
} | |||
</pre> | |||
You can check whether a subkey exists using <code>odb::is_subkey()</code>. | |||
== Deleting bits of the ODB == | == Deleting bits of the ODB == | ||
You can use | You can use <code>odb::delete_key()</code> to remove part of the ODB: | ||
<pre>midas::odb existing_bit("/Some/ODB/Path"); | |||
existing_bit.delete_key(); | |||
</pre> | |||
== Callback functions == | == Callback functions == | ||
You may also set up callback functions that are called whenever a value | You may also set up callback functions that are called whenever a value | ||
changes, using the | changes, using the <code>odb::watch()</code> function. Note that you must call | ||
<code>cm_yield()</code> (from midas.h) periodically for this to work - deep down it | |||
is | is <code>cm_yield()</code> itself that calls your callback function. | ||
The callback functions can either be a "normal" function or a C++ lambda. | The callback functions can either be a "normal" function or a C++ lambda. | ||
In either case, it should accept one argument - a | In either case, it should accept one argument - a <code>midas::odb</code> object (passed | ||
by reference) that contains the new state. | by reference) that contains the new state. | ||
<pre>// Example with a lambda: | |||
midas::odb to_watch("/Experiment"); | |||
to_watch.watch([](midas::odb &arg) { | |||
std::cout << "Value of key \"" + arg.get_full_path() + "\" changed to " << arg << std::endl; | |||
}); | |||
</pre> | |||
<pre>// Example with a "normal" function: | |||
void my_function(midas::odb &arg) { | |||
std::cout << "Value of key \"" + arg.get_full_path() + "\" changed to " << arg << std::endl; | |||
} | |||
midas::odb to_watch("/Experiment"); | |||
to_watch.watch(my_function); | |||
</pre> | |||
== Example code == | == Example code == | ||
A full working example exploring most of the features can be found in | A full working example exploring most of the features can be found in | ||
<code>progs/odbxx_text.cxx</code>. The test executable will be compiled as | |||
<code>build/progs/odbxx_test</code> (it is not installed in the `bin` directory). |
Revision as of 09:21, 27 May 2020
A C++11 object-oriented interface to the ODB (online database) was introduced in May 2020. You can find more details about the ODB on the ODB Access and Use page, which includes links to the command-line, javascript, python, and non-object C++ interfaces.
The header for this odbxx interface is at odbxx.h and example usage in odbxx_test.cxx
Basic usage
The simplest usage is like:
// Grab a bit of the ODB midas::odb exp("/Experiment"); // Simple read std::cout << "The current transition timeout is " << exp["Transition timeout"] << std::endl; // Make a change. The new value is automatically sent to the ODB. // Most C++ operators are supported (++, += etc), or you can do a simple // re-assignment like `exp["Transition timeout"] = 12345;`. exp["Transition timeout"] += 100; // Read the new value std::cout << "The transition timeout is now " << exp["Transition timeout"] << std::endl;
You can automatically cast to regular data types (int, double) etc if you want a copy of the value to work with:
int curr_timeout = exp["Transition timeout"];
Automatic refreshing
You may temporarily disable the automatic updating to/from the ODB
using odb::set_auto_refresh_write(false)
and odb::set_auto_refresh_read(false)
.
If auto-refresh is enabled (the default), your new values are sent to
the ODB as soon as you touch the value in the midas::odb
object. The ODB
is queried for new values whenever you access the value. In the above
example, the ODB is queried 4 times (during construction of exp
, and
each time exp["Transition timeout"]
is mentioned), and written to 1
time (when exp["Transition timeout"]
is assigned to).
See the #Callback functions section below for details on how to have a function called when a value changes.
Arrays/vectors
ODB arrays are represented by std vectors.
You can access/edit individual elements using []:
odb["Example"][1] = 1.2;
You can completely re-assign content using a std::vector or std::array:
std::vector<float> vec = std::vector<float>(10); odb["Example"] = vec;
You can resize arrays using odb::resize()
. If the existing array is longer,
it will be truncated; if shorter it will be extended with default values
(0 or an empty string).
odb["Example"].resize(5); // Now is 5 elements long
Note that arithmetic operators are supported for arrays, and will apply the operation to ALL ELEMENTS IN THE ARRAY:
// Create the vector std::vector<float> vec = std::vector<float>(2); vec[0] = 3; vec[1] = 5; // Assign in ODB odb["Example"] = vec; // Multiply ALL elements by 2 odb["Example"] *= 2; // odb["Example"] now contains {6, 10}.
You can directly iterate over arrays/vectors:
// Iterating using standard begin/end. for (auto it = o["Int Array"].begin(); it != o["Int Array"].end(); it++) { int val = *it; std::cout << val << std::endl; }
// Iterating using C++11 range-based for loop. for (int val : o["Int Array"]) { std::cout << val << std::endl; }
Strings
Strings in the ODB are returned as std::string (unlike the midas.h db_get_value()
family of functions, where strings are returned as char*). You may have vectors of strings.
Creating new bits of the ODB
You can automatically create bits of the ODB by passing a struct to the
midas::odb
constructor, then calling odb::connect()
, like:
// Define the ODB structure midas::odb new_bit = { {"Int32 Key", 42}, {"Bool Key", true}, {"Subdir", { {"Float key", 1.2f}, // floats must be explicitly specified }}, {"Int Array", {1, 2, 3}}, {"Double Array", {1.2, 2.3, 3.4}}, {"String Array", {"Hello1", "Hello2", "Hello3"}}, {"Large Array", std::array<int, 10>{} }, // array with explicit size {"Large String", std::string(63, '\0') }, // string with explicit size }; // Then sync the structure. Any keys that don't exist will be created; any // that already exist will keep their existing values... o.connect("/Test/Settings"); // ... unless you make the `write_defaults` argument true, in which case the // existing values will be ignored, and overwritten with what you specified above. o.connect("/Test/Settings", true);
If you want to add new keys to existing ODB subdirectories, you can also just use the [] operator:
midas::odb existing_key("/MyExistingKey"); existing_key["MyNewSubKey"] = 1.23;
You can also create new keys by providing a default value when reading a value. If the key doesn't already exist, the default value will be used.
midas::odb existing_key("/MyExistingKey"); double val = existing_key["MyNewSubKey"](1.23);
Iterating over subkeys
You can use iterate over subkeys using normal iterator functions.
// Iterating using standard begin/end. midas::odb exp("/Experiment"); for (auto it = exp.begin(); it != exp.end(); it++) { midas::odb& subkey = *it; std::cout << subkey.get_name() << " = " << subkey << std::endl; }
// Iterating using C++11 range-based for loop. for (midas::odb& subkey : exp) { std::cout << subkey.get_name() << " = " << subkey << std::endl; }
You can check whether a subkey exists using odb::is_subkey()
.
Deleting bits of the ODB
You can use odb::delete_key()
to remove part of the ODB:
midas::odb existing_bit("/Some/ODB/Path"); existing_bit.delete_key();
Callback functions
You may also set up callback functions that are called whenever a value
changes, using the odb::watch()
function. Note that you must call
cm_yield()
(from midas.h) periodically for this to work - deep down it
is cm_yield()
itself that calls your callback function.
The callback functions can either be a "normal" function or a C++ lambda.
In either case, it should accept one argument - a midas::odb
object (passed
by reference) that contains the new state.
// Example with a lambda: midas::odb to_watch("/Experiment"); to_watch.watch([](midas::odb &arg) { std::cout << "Value of key \"" + arg.get_full_path() + "\" changed to " << arg << std::endl; });
// Example with a "normal" function: void my_function(midas::odb &arg) { std::cout << "Value of key \"" + arg.get_full_path() + "\" changed to " << arg << std::endl; } midas::odb to_watch("/Experiment"); to_watch.watch(my_function);
Example code
A full working example exploring most of the features can be found in
progs/odbxx_text.cxx
. The test executable will be compiled as
build/progs/odbxx_test
(it is not installed in the `bin` directory).