6 Midas Page Documentation 330

#defne DSP_RAW 1

#defne DSP_BANK 2

#idefne DSP_UNK 0

#defne DSP_DEC 1

#defne DSP_HEX 2

#idefne DSP_ASC 3

#ideftne SWAP_D2WORD(_d2w)

#defne EVID_TRINAT

#idefne YBOS_EVID BANK(_a, b, _c, d, e)
#defne MIDAS_EVID BANK(_a,_b, ¢, d, e)
#defne I2_BKTYPE 1

#defne A1_BKTYPE 2

#defne 14_BKTYPE 3

#defne F4_BKTYPE 4

#defne D§_BKTYPE 5

#defne I1_BKTYPE 8

#defne MAX_BKTYPE I1_BKTYPE+1

6 Midas Page Documentation

6.1

MIDAS Analyzer

The Midas Analyzer application is composed of a collection of £les providing
a framework in which the user can gain access to the online data during data
acquisition or oftine data through a replay of a stored data save-set.

The Midas distribution contains 2 directories where prede£ned set of analyzer
£les and their corresponding working demo code are available. The internal
functionality of both example is similar and differ only on the histogram tool
used for the data representation. These analyzer set are specifc to 2 major data
analysis tools i.e: ROOT, HBOOK:

— examples/experiment: Analyzer tailored towards ROOT analysis
— examples/hbookexpt: Analyzer tailored towards HBOOK with PAW.

The purpose of the demo analyzer is to demonstrate the analyzer structure and to
provide the user a set of code "template" for further development. The demo will
run online or oftine following the information given further down. The analysis
goal is to:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 331

. Initialize the ODB with prede£ned (user specifc) structure (experim.h).

. Allocate memory space for histogram de£nition (booking).

. Acquire data from the frontend (or data £le).

. Process the incoming data bank event-by-event through user specifc code

(module).

. Generate computed quantitied banks (in module).
. Fill (increment) predefned histogram with data available within the user

code.

. Produce a result £le containing histogram results and computed data (if

possible) for further replay through dedicated analysis tool (PAW, ROOT).

* The analyzer is structured with the following £les:

— experim.h

* ODB experiment include £le defning the ODB structure required by
the analyzer.

— analyzer.c: main user core code.

De£nes the incoming bank structures

De£nes the analyzer modules

Initialize the ODB structure requirements

Provides Begin_of Run and End_of Run functions with run info log-
ging example.

*
*
*
*

— adccalib.c, adcsum.c, scaler.c (Root example)

* Three user analysis modules to where events from the demo frontend.c
sends data to.

— Make€£le

* Specifc makef£le for building the corresponding frontend and analyzer
code. The frontend code is build against the camacnul.c driver pro-
viding a simulated data stream.

* ROOT histogram booking code (excerpt of experiment/adcsum.c)

— Histogram under ROOT is supported from version 1.9.5. This provides a

cleaner way to organize the histogram grouping. This functionality is im-
plemented with the function open_subfolder() and close_subfolder(). Ded-
icated Macro is also now available for histogram booking.

INT adc_summing init (void)

/* book ADC sum histo */
hAdcSum = H1 BOOK("ADCSUM", "ADC sum", 500, 0, 10000);

/* book ADC averade in separate subfolder */

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 332

open_subfolder ("Average") ;
hAdcAvg = H1 BOOK ("ADCAVG", "ADC average", 500, 0, 10000);
close_subfolder() ;

return SUCCESS;

}
« HBOOK histogram booking code (excerpt of hbookexpt/adccalib.c)

INT adc _calib_init (void)

{
char name[256] ;
int i;
/* book CADC histos */
for (i = 0; 1 < N _ADC; i++) {
sprintf (name, "CADC%02d", 1i);
HBOOK1 (ADCCALIB_ID BASE + i, name, ADC_N BINS,
(float) ADC X LOW, (float) ADC_X HIGH, 0.f);

}

return SUCCESS;

}

* The build is also specifc to the type of histogram package involved and requires
the proper libraries to generate the executable. Each directory has its own Make-
£Lle:

— ROOT (examples/experiment)

* The environment SROOTSYS is expected to point to a valid ROOT
installed path.

* The analyzer build requires a Midas core analyzer object £le which
should be present in the standard midas/<os>/lib directory. In order
to have this £le (rmana.o), the ROOTSYS had to be valid at the time
of the Midas build too (See HAVE_HBOOK).

— HBOOK (examples/hbookexpt)

* The analyzer build requires a Midas core analyzer object £le which
should be present in the standatd midas/<os>/lib directory. This £le
(hmana.o) doesn’t require any speci£c library.

* The analyzer build requires also at that stage to have access to some of
the cernlib library £les (See HAVE_HBOOK).

— Analyzer Lite

* In the case private histogramming or simple analyzed data storage is
requested, ROOT and HBOOK can be disabled by unde£ning both
HAVE_ROOT and HAVE_HBOOK during the build.

* This Lite version does’t require any reference to the external his-
togramming package. Removal of specifc de£nition histogram state-
ment, function call from all the demo code (analyzer.c, adccalib.c,
adcsum.c) needs to be done for successful build.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 333

* This Lite version will have no option of saving computed data from
within the system analyzer framework, therefore this operation has to
be performed by the user in the user code (module).

The following MultiStage Concept section describes in more details the analyzer con-
cept and specifc of the operation of the demo.

6.1.1 MultiStage Concept

In order to make data analysis more Jexible, a multi-stage concept has been chosen for
the analyzer. A raw event is passed through several stages in the analyzer, where each
stage has a specifc task. The stages read part of the event, analyze it and can add the
results of the analysis back to the event. Therefore each stage in the chain can read all
results from previous stages. The £rst stages in the chain typically deal with data cal-
ibration (adccalib.c), while the last stages contain the code which produces "physical”
(adcsum.c) results like particle energies etc. The multi stage concept allows collabora-
tions of people to use standard modules for the calibration stages which ensures that all
members deal with the identical calibrated data, while the last stages can be modifed
by individuals to look at different aspects of the data. The stage system makes use of
the MIDAS bank system. Each stage can read existing banks from an event and add
more banks with calculated data. Following picture gives an example of an analyzer
consisting of three stages where the £rst two stages make an ADC and a MWPC cali-
bration, respectively. They add a "Calibrated ADC" bank and a "MWPC" bank which
are used by the third stage which calculates angles between particles:

raw ewveant fom fm-end
an an an Sta ges

AOC calibration 1
[ADC bank] TOC bank | PCO% bank [Cal. ADC bank: |
WP calibration 2

[ADC bank] TOC bank | FCOS bank | Cal. ADC bank | hitiP € bank |y

#Angle cakulations ‘ 3

[ADCbank | TOC bank | FCOS bank | Cal. ADC bank | hiidP C bank | Angle bank f

Figure 1: Three stage analyzer.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 334

Since data is contained in MIDAS banks, the system knows how to interpret the data.
By declaring new bank name in the analyzer.c as possible production data bank, a
simple switch in the ODB gives the option to enable the recording of this bank into the
result £le. The user code for each stage is contained in a "module". Each module has
a begin-of-run, end-of-run and an event routine. The BOR routine is typically used to
book histograms, the EOR routine can do peak £tting etc. The event routine is called
for each event that is received online or off-line.

6.1.1.1 Analyzer parameters Each analyzer has a dedicated directory in the ODB
under which all the parameters realitve to this analyzer can be accessed. The path name
is given from the "Analyzer name" specifed in the analyzer.c under the analyzer name.
In case of concurrent analyzer, make sure that no conict in name is present. By default
the name is "Analyzer".

/* The analyzer name (client name) as seen by other MIDAS clients */
char *analyzer name = "Analyzer";

The ODB structure under it has the following £elds

[host :expt :S] /Analyzer>ls -1

Key name Type #val Size Last Opn Mode Value
Parameters DIR

Output DIR

Book N-tuples BOOL 1 4 1m 0 RWD y
Bank switches DIR

Module switches DIR

ODB Load BOOL 1 4 1%9h O RWD n
Trigger DIR

Scaler DIR

* Parameters : Created by the analyzer, contains all references to user parameters
section.

* Output : System directory providing output control of the analyzer results.

[local:midas:S] /Analyzer>ls -1lr output

Key name Type #val Size Last Opn Mode Value
Output DIR

Filename STRING 1 256 47h 0

RWNT BOOL 1 4 47Th 0 RWD n

Histo Dump BOOL 1 4 47h O RWD n

Histo Dump Filename STRING 1 256 47h O

Clear histos BOOL 1 4 47h O RWD vy

Last Histo Filename STRING 1 256 47h 0 RWD last.root

Events to ODB BOOL 1 4 47Th 0 RWD vy

Global Memory Name STRING 1 8 47Th 0 RWD ONLN

— Filename : Replay result £le name.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

RWD run01100.root

RWD his%05d.root

6.1 MIDAS Analyzer 335

— RWNT : To be ignored for ROOT, N-Tuple Raw-wise data type.

— Histo Dump : Enable the saving of the run results (see next £eld)

— Histo Dump Filename : Online Result £le name

— Clear Histos : Boolean Qag to enable the clearing of all histograms at the
begining of each run (online or ofdine).

— Last Histo Filename : Temporary results £le for recovery procedure.

— Event to ODB : Boolean tag for debugging purpose allowing a copy of
the data to be sent to the ODB at regular time interval (1 second).

— Global Memory Name : Shared memory name for communication be-
tween Midas and HBOOK. To be ignored for ROOT as the data sharing is
done through a TCP/IP channel.

* Bank switches : Contains the list of all declared banks (BANK_LIST in
analyzer.c) to be enabled for writing to the output result £le. By default all the

banks are disabled.
[local:midas:S] /Analyzer>1ls "Bank switches" -1
Key name Type #val Size Last Opn Mode Value
ADCO DWORD 1 4 1h 0 RWD O
TDCO DWORD 1 4 1h 0 RWD O
CADC DWORD 1 4 1h 0 RWD O
ASUM DWORD 1 4 1h 0 RWD O
SCLR DWORD 1 4 1h 0 RWD O
ACUM DWORD 1 4 1h 0 RWD O

* Module switches : Contains the list of all declared module (ANA_MODULE in
analyzer.c) to be controlled (by default all modules are enabled)

[local:midas:S] /Analyzer>1ls "module switches" -1

Key name Type #val Size Last Opn Mode Value
ADC calibration BOOL 1 4 1h 0 RWD vy
ADC summing BOOL 1 4 1h 0 RWD vy
Scaler accumulation BOOL 1 4 1h 0 RWD vy

* ODB Load : Boolean switch to allow retrieval of the entire ODB structure from
the input data £le. Used only during ofctine, this option permits to replay the data
in the same exact condition as during online. Allthe ODB parameter settings will
be restored to their last value as at the end of the data acquisition of this particular
run.

» Trigger, Scaler : Subdirectories of all the declared requested event.
(ANALYZE REQUEST in analyzer.c)

* BOOK N_tuples : Boolean Qag for booking N-Tuples at the initialization of the
module. This Qag is specifc to the HBOOK analyzer.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 336

* BOOK TTree : Boolean tag for booking TTree at the initialization of the mod-
ule. This Hag is specifc to the ROOT analyzer.

6.1.1.2 Analyzer Module parameters Each analyzer module can contain a set of
parameters to either control its behavior, . These parameters are kept in the ODB under
/Analyzer/Parameters/<module name> and mapped automatically to C structures in
the analyzer modules. Changing these values in the ODB can therefore control the
analyzer. In order to keep the ODB variables and the C structure de£nitions matched,
the ODBEdit command make generates the £le experim.h which contains C structures
for all the analyzer parameters. This £le is included in all analyzer source code £les and
provides access to the parameters from within the module £le under the name <module
name>>_param.

* Module name: adc_calib_module (extern ANA_MODULE adc_calib_module
from analyzer.c)

* Module £le name: adccalib.c

» Module structure declaration in adccalib.c:

ANA MODULE adc_calib module = {

"ADC calibration", /* module name */
"Stefan Ritt", /* author */
adc_calib, /* event routine */
adc_calib_bor, /* BOR routine */
adc_calib_eor, /* EOR routine */
adc_calib_init, /* init routine */
NULL, /* exit routine */
&adccalib param, /* parameter structure */
sizeof (adccalib_param), /* structure size */
adc_calibration_param str, /* initial parameters */

}:

— ODB parameter variable in the code: <module name> param ->
adccalib_param (from adc_calib_module, the _ is dropped, module is re-
moved)

— ODB parameter path: /<Analyzer>/Parameters/ADC calibration/ (using
the module name from the structure)

— Access to the module parameter:
/* subtract pedestal */

for (i = 0; 1 < N_ADC; i++)
cadc[i] = (float) ((double) pdatali] - adccalib_param.pedestal[i] + 0.5);

— ODB module parameter declaration

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 337

[local:midas:S] Parameters>pwd
/Analyzer/Parameters
[local:midas:S] Parameterss>1ls -1r

Key name Type #Val Size Last Opn Mode Value
Parameters DIR
ADC calibration DIR
Pedestal INT 8 4 47Th 0 RWD
[o] 174
[1] 194
[2] 176
[3] 182
[4] 185
[5] 215
[6] 202
[7] 202
Software Gain FLOAT 8 4 47h 0 RWD
[o] 1
[1] 1
[2] 1
[3] 1
[4] 1
[5] 1
[6] 1
[7] 1
Histo threshold DOUBLE 1 8 47h 0 RWD 20
ADC summing DIR
ADC threshold FLOAT 1 4 47h O RWD 5
Global DIR
ADC Threshold FLOAT 1 4 47h 0 RWD 5

6.1.1.3 Analyzer Flow chart The general operation of the analyzer can be sum-
merized as follow:

* The analyzer is a Midas client at the same level as the odb or any other Midas
Utilities application.

* When the analyzer is started with the proper argument (experiment, host for re-
mote connection or -i input_£le, -o output_£le for off-line use), the initialization
phase will setup the following items:

1. Setup the internal list of defned module.

ANA MODULE *trigger module[] = {
&adc_calib_module,
&adc_summing module,
NULL

}:
2. Setup the internal list of banks.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 338

BANK LIST ana_trigger bank list[] = {

/* online bankg */
{"ADCO", TID STRUCT, sizeof (ADCO BANK), ana_ adc0 bank str}

{rTDCO", TID WORD, N_TDC, NULL}

’

3. De£ne the internal event request structure and attaching the corresponding

module and bank list.
ANALYZE REQUEST analyze request[] = {
{rTrigger", /* equipment name */
{1, /* event ID */
TRIGGER_ALL, /* trigger mask */
GET_ SOME, /* get some events */
"SYSTEM", /* event buffer */
TRUE, /* enabled */
LE L }
NULL, /* analyzer routine */
trigger module, /* module list */
ana_trigger bank list, /* bank list */
1000, /* RWNT buffer size */
TRUE, /* Use tests for this event */

}

’

4. Setup the ODB path for each de£ned module.
5. Book the defned histograms of each module.
6. Book memory for N-Tuples or TTree.

7. Initialize the internal "hotlinks" to the defned ODB analyzer module pa-
rameter path.

— Once the analyzer is in idle state (for online only), it will wakeup
on the transition "Begin-of-Run" and go sequencially through all the
modules BOR functions. which generally will ensure proper his-
togramming booking and possible clearing. It will resume its idle state
waiting for the arrival of an event matching one of the event request
structure declared during initialization (analyzer.c)

— In case of off-line analysis, once the initialization phase successfully com-
plete, it will go through the BOR and start the event-by-event acquisition.

INT analyzer_ init()
{
HNDLE hDB, hKey;
char str[80];

RUNINFO_STR (runinfo_str);
EXP_PARAM STR(exp param str);

GLOBAL_PARAM STR(global_param str);
TRIGGER_SETTINGS_STR(trigger settings_str);

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 339

/* open ODB structures */

cm_get_experiment_ database (&hDB, NULL) ;

db create_record (hDB, 0, "/Runinfo", strcomb(runinfo str));

db find key(hDB, 0, "/Runinfo", &hKey);

if (db_open_record(hDB, hKey, &runinfo, sizeof(runinfo), MODE_READ, NULL, NULL) !=
DB_SUCCESS) {

cm_msg (MERROR, "analyzer init", "Cannot open \"/Runinfo\" tree in ODB") ;

return 0;

}

1. When an event is received and matches one the the event request structure,
it is passed in sequence to all the de£ned module for that event request (see
in the ANALYZER REQUEST structure the line containing the comment
module list.

— If some of the module don’t need to be invoked by the incoming
event, it can be disabled interactively through ODB from the /ana-
lyzer/Module switches directory

[1add00:p3a:Stopped]Module switches>ls

ADC calibration Y
ADC summing Y
Scaler accumulation Y

[1add00:p3a:Stopped]Module switchess>

— if the module switch is enabled, the event will be presented in the
module at the defned event-by-event function declared in the module
structure (adccalib.c) in this case the function is adc_calib().

— The Midas event header is accessible through the pointer pheader
while the data is located by the pointer pevent

INT adc_calib(EVENT HEADER * pheader, void *pevent)

{

INT i;

WORD *pdata;
float *cadc;

/* look for ADCO bank, return if not present */
if (!bk_locate(pevent, "ADCO", &pdata))
return 1;

* Refer to the example found under examples/experiment directory for ROOT
analyzer and examples/hbookexpt directory for HBOOK analyzer.

6.1.1.4 HBOOK analyzer description (old doc) PAWC_DEFINE(8000000);

This defnes a section of 8 megabytes or 2 megawords of share memory for
HBOOK/Midas data storage. This de£nition is found in analyzer.c. In case many his-
tograms are booked in the user code, this value probably has to be increased in order
not to crash HBOOK. If the analyzer runs online, the section is kept in shared memory.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 340

In case the operating system only supports a smaller amount of shared memory, this
value has to be decreased. Next, the £le contains the analyzer name

char xanalyzer_name = "Analyzer";

under which the analyzer appears in the ODB (via the ODBEdit command scl). This
also determines the analyzer root tree name as /Analyzer. In case several analyzers
are running simultaneously (in case of distributed analysis on different machines for
example), they have to use different names like Analyzerl and Analyzer2 which then
creates two separate ODB trees /Analyzerl and /Analyzer2 which is necessary to con-
trol the analyzers individually. Following structures are then defned in analyzer.c:
runinfo, global_param, exp_param and trigger_settings. They correspond to the ODB
trees /Runinfo, /Analyzer/Parameters/Global, /Experiment/Run parameters and /Equip-
ment/Trigger/Settings, respectively. The mapping is done in the analyzer_init() routine.
Any analyzer module (via an extern statement) can use the contents of these structures.
If the experiment parameters contain an Mag to indicate the run type for example, the
analyzer can analyze calibration and data runs differently. The module declaration sec-
tion in analyzer.c de£nes two "chains" of modules, one for trigger events and one for
scaler events. The framework calls these according to their order in these lists. The
modules of type ANA_MODULE are defned in their source code £le. The enabled
nag for each module is copied to the ODB under /Analyzer/Module switches. By set-
ting this Mag zero in the ODB, modules can be disabled temporarily. Next, all banks
have to be defned. This is necessary because the framework automatically books N-
tuples for all banks at startup before any event is received. Online banks which come
from the frontend are £rst de£ned, then banks created by the analyzer:

// online banks
{ »aDCcoO", TID DWORD, N ADC, NULL },
{ »TDCO"™, TID DWORD, N_TDC, NULL },

// calculated banks

{ rmcaDc", TID FLOAT, N ADC, NULL },

{ mAsSUM", TID STRUCT, sizeof (ASUM BANK),
asum_bank str },

The £1st entry is the bank name, the second the bank type. The type has to match the
type which is created by the frontend. The type TID_STRUCT is a special bank type.
These banks have a £xed length which matches a C structure. This is useful when
an analyzer wants to access named variables inside a bank like asum_bank.sum. The
third entry is the size of the bank in bytes in case of structured banks or the maximum
number of items (not bytes!) in case of variable length banks. The last entry is the
ASCII representation of the bank in case of structured banks. This is used to create the
bank on startup under /Equipment/Trigger/Variables/<bank name>.

The next section in analyzer.c defnes the ANALYZE REQUEST list. This de-
termines which events are received and which routines are called to analyze these
events. A request can either contain an "analyzer routine" which is called to ana-
lyze the event or a "module list" which has been defned above. In the latter case

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 341

all modules are called for each event. The requests are copied to the ODB under
/Analyzer/< equipment name>/Common. Statistics like number of analyzed events
is written under /Analyzer/<equipment name>>/Statistics. This scheme is very similar
to the frontend Common and Statistics tree under /Equipment/<equipment name>/.
The last entry of the analyzer request determines the HBOOK buffer size for online N-
tuples. The analyzer_init() and analyzer_exit() routines are called when the analyzer
starts or exits, while the ana_begin_of run() and ana_end of_run() are called at the be-
ginning and end of each run. The ana_end_of_run() routine in the example code writes
arun log £le runlog.txt which contains the current time, run number, run start time and
number of received events.

If more parameters are necessary, perform the following procedure:

1. modify/add new parameters in the current ODB.

[host :expt :S]ADC calibration>set Pedestal[9] 3

[host :expt :S]ADC calibration>set "Software Gain[9]" 3

[host :expt :S]ADC calibration>create double "Upper threshold"
[host :expt :S]ADC calibration>set "Upper threshold" 400

[host :expt :S]ADC calibrations>1ls -1r

Key name Type #val Size Last Opn Mode Value
ADC calibration DIR
Pedestal INT 10 4 2m 0 RWD
[o] 174
[1] 194
[2] 176
[3] 182
[4] 185
[5] 215
[6] 202
[7] 202
[8] 0
[9] 3
Software Gain FLOAT 10 4 2m 0 RWD
[0] 1
[1] 1
[2] 1
[3] 1
[4] 1
[5] 1
[6] 1
[7] 1
[8] 0
[9] 0
Histo threshold DOUBLE 1 8 53m O RWD 20
Upper threshold DOUBLE 1 4 3s 0 RWD 400

2. Generate experim.h

[host :expt : S]ADC calibrations>make
"experim.h" has been written to /home/midas/online

3. Update the module with the new parameters.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 342

---> adccalib.c

fill ADC histos if above threshold

for (i=0 ; i<n_adc ; i++)

if ((cadc[i] > (float) adccalib param.histo_ threshold)

&& (cadc[i] < (float) adccalib param.upper threshold))
HF1 (ADCCALIB_ID BASE+i, cadc[il, 1.f);

4. Rebuild the analyzer.

In the case global parameter is necessary for several modules, start by doing the step 1
& 2 from the enumeration above and carry on with the following procedure below:

1. Declare the parameter global in analyzer.c

// ODB structures

GLOBAL_PARAM global_param;

2. Update ODB structure and open record for that parameter (hot link).

---> analyzer.c

sprintf (str, "/%s/Parameters/Global", analyzer name) ;
db create record(hDB, 0, str, strcomb(global_ param str)) ;
db find key(hDB, 0, str, &hKey):;
if (db_open record(hDB, hKey, &global param
, sizeof(global param), MODE_READ, NULL, NULL) != DB SUCCESS) ({
cm_msg (MERROR, "analyzer init", "Cannot open \"%$s\" tree in ODB", str);
return 0;

}

3. Declare the parameter extern in the required module

---> adccalib.c

extern GLOBAL PARAM global_param;

6.1.1.5 Online usage with PAW Once the analyzer is build, run it by entering:
analyzer [-h <host name>>] [-e <exp name>]

where <host name> and <exp name>> are optional parameters to connect the analyzer
to a remote back-end computer. This attaches the analyzer to the ODB, initializes all
modules, creates the PAW shared memory and starts receiving events from the system
buffer. Then start PAW and connect to the shared memory and display its contents

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 343

PAW > global_sg onln
PAW > hist/list

1

2
1000
1001
1002
1003
1004
1005
1006
1007
2000

Trigger
Scaler
CADCO00
CADCO1
CADCO02
CADCO3
CADCO04
CADCO5
CADCO6
CADCO7
ADC sum

For each equipment, a N-tuple is created with a N-tuple ID equal to the event ID. The
CADC histograms are created from the adc_calib_bor() routine in adccalib.c. The N-
tuple contents is derived from the banks of the trigger event. Each bank has a switch
under /Analyzer/Bank switches. If the switch is on (1), the bank is contained in the
N-tuple. The switches can be modifed during runtime causing the N-tuples to be
rebooked. The N-tuples can be plotted with the standard PAW commands:

PAW > nt/print 1

PAW > nt/plot 1l.sum
PAW > nt/plot 1.sum cadc0>3000

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 344

1 oD 0=303d
[} T TR
- ra- 1 B [Hu E-]
| aHam 10 |- Humar T
a0l
i gy
500 [
i =N
ann oo |
B &0 -
g - L
r B0 |-
ma |- I
- 40 |-
o1 - L
- "m -
g k ol T L I E L
¥ 1000 Z0000 300a0q 050-:-:1 1 Q0001 SO0 02 0000 25000 30000
Suk S

Figure 2: PAW output for online N-tuples.

‘While histograms contain the full statistics of a run, N-tuples are kept in a ring-buffer.
The size of this buffer is defned in the ANALYZE REQUEST structure as the last pa-
rameter. A value of 10000 creates a buffer which contains N-tuples for 10000 events.
After 10000 events, the £rst events are overwritten. If the value is increased, it might
be that the PAWC size (PAWC_DEFINE in analyzer.c) has to be increased, too. An
advantage of keeping the last 10000 events in a buffer is that cuts can be made imme-
diately without having to wait for histograms to be £lled. On the other hand care has
to be taken in interpreting the data. If modi£cations in the hardware are made during a
run, events which rectect the modi£cations are mixed with old data. To clear the ring-
buffer for a N-tuple or a histogram during a run, the ODBEdit command [local]/>hi
analyzer <id>

where <id> is the N-tuple ID or histogram ID. An ID of zero clears all histograms but
no N-tuples. The analyzer has two more ODB switches of interest when running on-

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.1 MIDAS Analyzer 345

line. The /Analyzer/Output/Histo Dump Rag and /Analyzer/Output/Histo Dump File-
name determine if HBOOK histograms are written after a run. This £le contains all
histograms and the last ring-buffer of N-tuples. It can be read in with PAW:

PAW >hi/file 1 run0000l.rz 8190
PAW > ldir

The /Analyzer/Output/Clear histos Qag tells the analyzer to clear all histograms and
N-tuples at the beginning of a run. If turned off, histograms can be accumulated over
several runs.

6.1.1.6 Ofvine usage with PAW The analyzer can be used for off-line analysis
without recompilation. It can read from MIDAS binary £les (*.mid), analyze the data
the same way as online, and the write the result to an output £le in MIDAS binary
format, ASCII format or HBOOK RZ format. If written to a RZ £le, the output contains
all histograms and N-tuples as online, with the difference that the N-tuples contain all
events, not only the last 10000. The contents of the N-tuples can be a combination of
raw event data and calculated data. Banks can be turned on and off in the output via
the /Analyzer/Bank switches Pags. Individual modules can be activated/deactivated via
the /Analyzer/Module switches Hags.

The RZ £les can be analyzed and plotted with PAW. Following Hags are available when
the analyzer is started off-line:

* -i[£lenamel] [£lename2] ... Input £le name(s). Up to ten different £le names can
be specifed in a -i statement. File names can contain the sequence "%05d" which
is replaced with the current run number in conjunction with the -r @ag. Following
£lename extensions are recognized by the analyzer: .mid (MIDAS binary), .asc
(ASCII data), .mid.gz (MIDAS binary gnu-zipped) and .asc.gz (ASCII data gnu-
zipped). Files are un-zipped on-the-2y.

-0 [£lename] Output £le name. The £le names can contain the sequence "%05d"
which is replaced with the current run number in conjunction with the -r Jag.
Following £le formats can be generated: .mid (MIDAS binary), .asc (ASCII
data), .rz (HBOOK RZ £le), .mid.gz (MIDAS binary gnu-zipped) and .asc.gz
(ASCII data gnu-zipped). For HBOOK £les, CWNT are used by default. RWNT
can be produced by specifying the -w Bag. Files are zipped on-the-cy.

-1 [range] Range of run numbers to be analyzed like -r 120 125 to analyze runs
120 to 125 (inclusive). The -r dag must be used with a "%05d" in the input £le
name.

-n [count] Analyze only count events. Since the number of events for all event
types is considered, one might get less than count trigger events if some scaler
or other events are present in the data.

* -n [£rst] [last] Analyze only events with serial numbers between £rst and last.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.2 Data format 346

* -n [£rst] [last] [n] Analyze every n-th event from £rst to last.

* —c [£lenamel] [£lename2] ... Load confguration £le name(s) before analyzing
a run. File names may contain a "%05d" to be replaced with the run number. If
more than one £le is specifed, parameters from the £rst £le get superseded from
the second £le and so on. Parameters are stored in the ODB and can be read by
the analyzer modules. They are conserved even after the analyzer has stopped.
Therefore, only parameters which change between runs have to be loaded every
time. To set a parameter like /Analyzer/Parameters/ADC summing/offset one
would load a confguration £le which contains:

[Analyzer/Parameters/ADC summing]
Offset = FLOAT : 123

Loaded parameters can be inspected with ODBEdit after the analyzer has been
started.

-p [param=value] Set individual parameters to a specifc value. Overrides
any setting in confguration £les. Parameter names are relative to the /An-
alyzer/Parameters directory. To set the key /Analyzer/Parameters/ADC sum-
ming/offset to a specifc value, one uses -p "ADC summing/offset"=123. The
quotation marks are necessary since the key name contains a blank. To specify
a parameter which is not under the /Analyzer/Parameters tree, one uses the full
path (including the initial "/") of the parameter like -p "/Experiment/Run Param-
eters/Run mode"=1.

-w Produce row-wise N-tuples in output RZ £le. By default, column-wise N-
tuples are used.

-v Convert only input £le to output £le. Useful for format conversions. No data
analysis is performed.

* -d Debug tag when started the analyzer from a debugger. Prevents the system to
kill the analyzer when the debugger stops at a breakpoint.

6.2 Data format

Utilities - Top - Supported hardware

Midas supports two differents data format so far. A possible new candidate would be
the NeXus format, but presently no implementation has been developed.

» Midas format
* YBOS format

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.2 Data format 347

6.2.1 Midas format

Special formats are used in MIDAS for the event header, banks and when writing to
disk or tape. This appendix explains these formats in detail. Each event carries a 16-
byte header. The header is generated by the front-end with the bm_compose_event()
routine and used by the consumers to distinguish between different events. The header
is defned in the EVENT HEADER structure in midas.h. It has following structure:

Event and bank headers with data block.

Event ID |Trii:z:r Tdask.
Sersal number (1)

; EVENT_HEATER
Time Slamp =

Ewent Diata Fize (hytes)
All Bark Sir= [bybes]

e ey —

BANE_HEADER
Flags -
--—""-‘-__"“-—_
Bank Maine [Hchar] Bark Hame [4clar] N
Towe | Bubsmrihys) Type
| i I BANT Eank size (byee) L D
| Dinta |
| Data |
Bank Fame [4char] | Diatz ..o
Twe |B-u.rla|:|:-(l:l;msl Bark Mame [4char]
[Daa I Type
Eank sz Qowles)

| Diata |

Figure 3: Event and bank headers with data block.

The event ID describes the type of event. Usually 1 is used for trigger events, 2 for
scaler events, 3 for HV events etc. The trigger mask can be used to describe the sub-
type of an event. A trigger event can have different trigger sources like "physics event",
"calibration event", "clock event". These trigger sources are usually read in by the
front-end in a pattern unit. Consumers can request events with a specifc trigger mask.
The serial number starts at one and is incremented by the front-end for each event. The
time stamp is written by the front-end before an event is read out. It uses the time()
function which returns the time in seconds since 1.1.1970 00:00:00 UTC. The data size
contains the number of bytes that follow the event header. The data area of the event
can contain information in any user format, although only certain formats are supported

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.2 Data format 348

when events are copied to the ODB or written by the logger in ASCII format. Event
headers are always kept in the byte ordering of the local machine. If events are sent
over the network between computers with different byte ordering, the event header is
swapped automatically, but not the event contents.

* [Bank Format] Events in MIDAS format contain "MIDAS banks". A bank is a
substructure of an event and can contain one type of data, either a single value
or an array of values. Banks have a name of exactly four characters, which are
treated, as a bank ID. Banks in an event consist of a global bank header and an
individual bank header for each bank. Following picture shows a MIDAS event
containing banks:

The "data size total" is the size in bytes of all bank headers and bank data. Flags
are currently not used. The bank header contains four characters as identifcation,
a bank type that is one of the TID xxx values defned in midas.h, and the data
size in bytes. If the byte ordering of the contents of a complete event has to be
swapped, the routine bk_swap() can be used.

[Tape Format] Events are written to disk £les without any reformatting. For
tapes, a £xed block size is used. The block size TAPE_BUFFER_SIZE is defned
in midas.h and usually 32kB. Three special events are produced by the system. A
begin-of-run (BOR) and end-of-run (EOR) event is produced which contains an
ASCII dump of the ODB in its data area. Their IDs is 0x8000 (BOR) and 0x8001
(EOR). A message event (ID 0x8002) is created if Log messages is enabled in the
logger channel setting. The message is contained in the data area as an ASCII
string. The BOR event has the number MIDAS MAGIC (0x494d or "MI’) as
the trigger mask and the current run number as the serial number. A tape can
therefore be identifed as a MIDAS formatted tape. The routine tape_copy() in
the utility mtape.c is an example of how to read a tape in MIDAS format.

6.2.2 YBOS format

As mentioned earlier the YBOS documentation is available at the following URL ad-
dress: Ybos site Originally YBOS is a collection of FORTRAN functions which fa-
cilitate the manipulation of group of data. It also describes a mode of encoding/storing
data in a organized way. YBOS de£nes specifc ways for:

* Gathering related data (bank structure).
* Gathering banks structure (logical record).

* Gathering/Writing/Reading logical record from/to storage device such as disk or
tape. (Physical record).

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.2 Data format 349

YBOS is organized on a 4-byte alignment structure.

The YBOS library function provides all the tools for manipulation of the above men-
tioned elements in a independent Operating System like. But the implementation of
the YBOS part in Midas does not use any reference to the YBOS library code. Instead
only the strict necessary functions have be re-written in C and incorporated into the
Midas package. This has been motivated by the fact that only a sub-set of function is
essential to the operation of:

* The front-end code: for the composition of the YBOS event (bank structure,
logical record).

* The data logger: for writing data to storage device (physical record).

This Midas/YBOS implementation restricts the user to a subset of the YBOS package
only for the front-end part. It doesn’t prevent him/her to use the full YBOS library for
stand alone program accessing data £le written by Midas.

The YBOS implementation under Midas has the following restrictions:

* Single leveled bank structures only (no recursive bank allowed).

* Bank structure of the following type: ASCII, BINARY, WORD, DOUBLE
‘WORD, IEEE FLOATING.

» No mixed data type bank structure allowed.

* Logical Record format (Event Format) In the YBOS terminology a logical record
refers to a collection of YBOS bank while in the Midas front-end, it can be
referred to as an event. The logical record consists of a logical record length of
a 32bit-word size followed by a single or collection of YBOS bank. The logical
record length counts the number of double word (32bit word) composing the
record without counting itself.

YBOS uses "double word" unit for all length references.

* [Bank Format] The YBOS bank is composed of a bank header 5 double long
words followed by the data section which has to end on a 4 bytes boundary.

Ybos Event and bank headers with data block.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.2 Data format 350

Event D [Trigzer Mask
Seral number (1)
Time Slamp
Ewent Dlata Size (hytes)

Lagical Becord Length | 1nz
{1 1=4] |

EVENT _HEATER

Bank Fame [4¢har]
Eank number (=1]
Bank Tndexz (=0} HTBOS BANE HEATER
Bark Lengih in (T4}
Bark Typ=

| L |

| Daa |
Eank Flame [4ebar]
Fank number (=11
Bank Index {=0)
Bank Length in {T%4)
Bark Type

| [iaa |

Figure 4: Ybos Event and bank headers with data block.

The bank length parameter corresponds to the size of the data section in dou-
ble word count + 1. The supported bank type are defned in the ybos.h £le see
YBOS Bank Types.

* [Physical Record (Tape/Disk Format)] The YBOS physical record structure is
based on a £xed block size (8190 double words) composed of a physical record
header followed by data from logical records.

Ybos Physical record structure with data block.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.3 Supported hardware 351

LFR
Length of Physical Fecord
[enchesmw e in T% neils)
LFH » YBOS FHYSREC _HEADEE
Length of Physical Header
=43
Becord number
{xiart wrth ()

Ciffpet te 17 YROSS event
(m for 1 amarr i FH)

Lagecal Beeard Lanpth } LRL

(m %]
D P TROS Event

Datn

Eapscal Bacord Lenpth
‘i T34

Diaka

Diain I

Figure 5: Ybos Physical record structure with data block..

The Offset is computed with the following rules:

« If the logical record £ts completely in the space of the physical record, the offset
value in the physical record header will be 4.

« If the block contains £rst the left over fragment of the previous event started in
the previous block, the offset will be equal to the length of the physical record
header + the left over fragment size.

» If the logical record extent beyond a full block, the offset will be set to -1.
* The mark of the end of £le is de£ned with a logical record length set to -1.

Utilities - Top - Supported hardware

6.3 Supported hardware

Data format - Top - CAMAC and VME access function call

Drivers included in the driver’s directory of the MIDAS distribution support various
hardware modules. The driver library is continuously extended to suit the needs of

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.3 Supported hardware 352

various experiments. For the slow control system. An example is available in the dis-
tribution under examples/slowcont/frontend.c including the hv and multi class with
the nulldev device and null bus driver. Note not all the device drivers implement
the triple layer (Class,Device,Bus) but includes directly the hardware calls. For some
more explanation on the Slow control scheme, refer to Slow Control System Refer to
the nulldev.c for a proper example.

Follows the class, device, bus and divers directory content under midas/drivers.

Class, Device, Bus and Divers Driver listing

Class Device Bus Divers
generic.c nulldev.c null.c caenv4$8.c
hv.c epics_ca.c vxVME.c Irs1151.c
muliic Irsl454.c camacrpc.c, camacnul.c Irs1190.c
slowdev.c dastemp.c hytl33l.c Irs2365.c
Irs1440.c kes2026.c kes2927.c Irs2373.c
bh_psi.c jorwayi3a.c ps7ll6.c
Irs4032.c weccll.c sis3803.c
lewp230.c camaclx.c sis3700.c
mschdev.c dsp004.c vmeio.c
Irs2415.c ces$210.c
nitronic.c rs132c
caenl 70a.c tepip.c
das1600.c cc7T00pcic
ES0Le.C
ces?117.c
Irs1821.c
str340.c
bit6l7.c

Figure 6: Class, Device, Bus and Divers Driver listing

* CAMAC drivers
* VME drivers
* GPIB drivers
* Other drivers

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.3 Supported hardware 353

6.3.1 CAMAC drivers

The CAMAC drivers can be used in different confguration and may have special be-
haviors depending on the type of hardware involved. Below are summurized some
remarks about these particular hardware modules.

 CAMAC controllers

— [hyt1331.c] This interface uses an ISA board to connect to the crate con-
troller. This card implement a "fast" readout cycle by re-triggering the
CAMAC read at the end of the previous one. This feature is unfortunately
not reliable when fast processor is used. Wrong returned data can be ex-
pected when CPU clocks is above 250MHz. Attempt on "slowing down"
the IO through sofiware has not guaranteed perfect result. Contact has been
taken with HYTEC in order to see if possible £x can be applied to the in-
terface. First revision of the PC-card PAL has been tested but did not show
improvement. CVS version of the hyt1331.c until 1.2 contains "fast read-
out cycle" and should not be trusted. CVS 1.3 driver revision contains a
patch to this problem. In the mean time you can apply your own patch (see
Frequently Asked Questions) and also Hytec)

— [hyt1331.c Version >=1.8.3] This version has been modifed for 5331 PCI
card support running under the dio task.

— [khyt1331.c Version >= 1.8.3] A full Linux driver is available for the
5331 PCI card interfacing to the hyt1331. The kernel driver has been writ-
ten for the Linux kernel 2.4.2, which comes with RedHat 7.1. It could
be ported back to the 2.2.x kernel because no special feature of 2.4.x are
used, although many data structures and function parameters have changed
between 2.2 and 2.4, which makes the porting a bit painful. The driver
supports only one 5331 card with up to four CAMAC crates.

— [kes292x.c] The 2926 is an 8 bit ISA board, while the 2927 is a 16bit ISA
board. An equivalent PCI interface (2915) exists but is not yet supported
by Midas (See KCS). No support for Windowx yet.

Both cards can be used also through a proper Linux driver camacix.c.
This requires to £rst load a module camac-kes292x.0. This software
is available but not part of the Midas distribution yet. Please contact
midas@triumf . ca for further information.

— [wece32.c] The CAMAC crate controller CC32 interface to a PCI card...
you will need the proper Linux module... Currently under test. Windows-
NT and W95 drivers available but not implemented under Midas. (see
cc32)

— [dsp004.c] The dsp004 is an 8 bit ISA board PC interface which connect
to the PC6002 CAMAC crate controller. This module is not being man-
ufactured anymore, but somehow several labs still have that controller in
use.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.3 Supported hardware 354

— [ces8210.c] The CAMAC crate controller CBD8210 interface is a VME
module to give access up to 7 CAMAC crate. In conjunction with the
mvmestd.h and mestd.h, this driver can be used on any Midas/VME inter-
face.

— [jorway73a.c] The CAMAC crate controller Jorway73a is accessed
through SCSI commands. This driver implement the mcstd.h calls.

* CAMAC drivers

— [camacnul.c] Handy fake CAMAC driver for code development.

— [camacrpc.c] Remote Procedure Call CAMAC driver used for accessing
the CAMAC server part of the standard Midas frontend code. This driver
is used for example in the mcnaf task, mhttpd task utilities.

6.3.2 VME drivers

The VME modules drivers can be interfaced to any type of PCI/VME controller. This
is done by dedicated Midas VME Standard calls from the mvmestd.h £les.

* PCI/VME interface
— [sis1100.c] PCI/VME with optical £ber link. Driver is under development
(March 2002). (see SIS).

— [bt617.c] Routines for accessing VME over SBS Bit3 Model 617 interface
under Windows NT using the NT device driver Model 983 and under Linux
using the vmehb device driver. The VME calls are implemented for the
"mvmestd" Midas VME Standard. (see Bit3).

— [wevmemm.c] PCI/VME Wiener board supported. (see Wiener PCI).

— [vxXVME.c] mvmestd implementation for VxWorks Operating System.
Does require cross compiler for the VxWorks target hardware processor
and proper WindRiver license.

* VME modules

— [Irs1190.c] LeCroy Dual-port memory ECL 32bits.
— [Irs1151.c] LeCroy 16 ECL 32bits scalers.

— [Irs2365.c] LeCroy Logic matrix.

— [1rs2373.c] LeCroy Memory Lookup unit.

— [sis3700.c] SIS FERA Fifo 32 bits.

— [sis3801.c] SIS MultiChannel Scalers 32 channels.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.4 CAMAC and VME access function call 355

— [sis3803.c] SIS Standard 32 Scalers 32 bits.

— [ps7106.c] Phillips Scientifc Discriminator.

— [ces8210.c] CES CAMAC crate controller.

— [vmeio.c] Triumf VMEIO General purpose 1/O 24bits.

6.3.3 GPIB drivers

There is no specifc GPIB driver part of the Midas package. But GPIB is used at Triumf
under WindowsNT for several Slow Control frontends. The basic GPIB DLL library
is provided by National Instrument. Please contact midas@triumf .ca for
further information.

For GPIB Linux support please refer to The Linux Lab Project

6.3.4 Other drivers

* [Serial driver] rs232.c communication routines.
* [Network driver] tcpip.c/h TCP/IP socket communication routines.

* [SCSI driver] Support for the jorway73a SCSI/CAMAC controller under Linux
has been done by Greg Hackman (see CAMAC drivers).

Data format - Top - CAMAC and VME access function call

64 CAMAC and VME access function call

Supported hardware - Top - Midas build options and operation considerations

Midas de£nes its own set of CAMAC and VME calls in order to unify the different
hardware modules that it supports. This interface method permits to be totally hardware
as well as OS independent. The same user code developed on a system can be used as
a template for another application on a different operating system.

‘While the £le mcstd.h (Midas Camac Standard) provides the interface for the CAMAC
access, the £le mvmestd.h (Midas VME Standard) is for the VME access.

An extra CAMAC interface built on the top of mestd provides the ESONE standard
CAMAC calls (esone.c).

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.4 CAMAC and VME access function call 356

6.4.1 Midas CAMAC standard functions

Please refer to the £le below for function description. mcstd.h

6.4.2 ESONE CAMAC standard functions

Not all the functionality of ESONE standard have been fully tested
Please refer to the £le for function description.

€sone.c

6.4.3 Midas VME standard functions

This interface is under revision for providing basic VME access through a independent
software interface. Please refer to the £le below for specifc function explanation.

mvmestd.h

6.4.4 Computer Busy Logic

A "computer busy logic" has to be implemented for a front-end to work properly. The
reason for this is that some ADC modules can be re-triggered. If they receive more
than one gate pulse before being read out, they accumulate the input charge that leads
to wrong results. Therefore only one gate pulse should be sent to the ADC’s, additional
pulses must be blocked before the event is read out by the front-end. This operation is
usually performed by a latch module, which is set by the trigger signal and reset by the
computer after it has read out the event:

The output of this latch is shaped (limited in its pulse with to match the ADC gate
width) and distributed to the ADC’s. This scheme has two problems. The computer
generates the reset signal, usually by two CAMAC output functions to a CAMAC IO
unit. Therefore the duration of the pulse is a couple of ms. There is a non-negligible
probability that during the reset pulse there is another hardware trigger. If this happens
and both inputs of the latch are active, its function is unde£ned. Usually it generates
several output pulses that lead to wrong ADC values. The second problem lies in the
fact that the latch can be just reset when a trigger input is active. This can happen since
trigger signals usually have a width of a few tens of nanoseconds. In this case the latch
output signal does not carry the timing of the trigger signal, but the timing of the reset
signal. The wrong timing of the output can lead to false ADC and TDC signals. To
overcome this problem, a more elaborate scheme is necessary. One possible solution is

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.4 CAMAC and VME access function call 357

the use of a latch module with edge-sensitive input and veto input. At PSI, the module
"D. TRIGGER / DT102" can be used. The veto input is also connected to the computer:

Latched trigger layout.
Hardware frigg er Latch ADC gate
L S et Out
Feset

Event readaout finished
(wia computer O madule)

Figure 7: Latched trigger layout.

To reset this latch, following bit sequence is applied to the computer output (signals are
displayed active low):

Improved Latched trigger layout.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.5 Midas build options and operation considerations 358

Latch

Hardware troger ADC gate
L lnput Cut ———\
Weto
Reset

L
To cormputer output

Figure 8: Improved Latched trigger layout.

The active veto signal during the reset pulse avoids that the latch can receive a "set"
and a "reset" simultaneously. The edge sensitive input ensures that the latch can only
trigger on a leading edge of a trigger signal, not on the removing of the veto signal. This
ensures that the timing of the trigger is always carried at the ADC/TDC gate signal.

Veto Timing.

“eto

Feset

Figure 9: Veto Timing.

Supported hardware - Top - Midas build options and operation considerations

6.5 Midas build options and operation considerations

CAMAC and VME access function call - Top - Midas Code and Libraries

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.5 Midas build options and operation considerations 359

The section covers the Building Options for customization of the DAQ system as well
as the different Environment variables options for its operation.

6.5.1

Building Options

By default Midas is build with a minimum of pre-compiler ags. But the Make-
£le contains options for the user to apply customization by enabling internal
options already available in the package.

— YBOS_VERSION 3 3 , EVID TWIST , INCLUDE FIPLIB |,
INCLUDE_ZLIB , SPECIFIC_OS_PRG

Other Kags are avaiable at the application level:

— HAVE_CAMAC , HAVE ROOT , HAVE_HBOOK , HAVE_MYSQL ,
USE_EVENT CHANNEL , DM_DUAL_THREAD , USE_INT

By default the midas applications are built for use with dynamic library libmi-
das.so. If static build is required the whole package can be built using the option
static.

> make static

The basic Midas package builds without external package library reference. But
it does try to build an extra core analyzer application to be used in conjunc-
tion with ROOT if $ROOTSYS is found. This is required ONLY if the exam-
ples/experiment make£le is used for generating a complete Midas/ROOT ana-
lyzer application.

In case of HBOOK/PAW analyzer application, the build should be done from
examples/hbookexpt directory and the environment variable CERNLIB PACK
should be pointing to a valid cernpacklib.a library.

For development it could be useful to built individual application in static. This
can be done using the USERFLAGS option such as:

> rm linux/bin/mstat; make USERFLAGS=-static linux/bin/mstat
The current OS support is done through £x Hag established in the general Make-
£le. Currently the OS supported are:

- OS_OSF1 , OS_ULTRIX , OS_FREEBSD , OS_LINUX , OS_-
SOLARIS.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.5 Midas build options and operation considerations 360

* For OS_IRIX please contact Pierre. The OS_VMS is not included in the Make-
£le as it requires a particular make£le and since several years now the VMS
support has been dropped.

OSFLAGS = -DOS_LINUX ...

* Other OS supported are:

— OS_WINNT : See £le make£le.nt.
— OS_VXWORKS : See £le make£fle.ppc_tri.

6.5.2 USERFLAGS
This Hag can be used at the command prompt for individual application built.

make USERFLAGS=-static linux/bin/mstat

6.5.3 MIDAS_PREF_FLAGS
This rag is for internal global Make£le preference. Included in the OSFLAGS.

MIDAS PREF FLAGS = -DYBOS VERSION 3_3 -DEVID TWIST

6.5.4 HAVE_CAMAC

This Bag enable the CAMAC RPC service within the frontend code. The application
mcnaftask and the web CNAF page are by default not CAMAC enabled (HAVE _-
CAMAC unde£ned).

6.5.5 HAVE_ROOT

This mag is used for the midas analyzer task in the case ROOT environment is re-
quired. An example of the make£le resides in examples/experiment/Make£le. This
dag is enabled by the presence of a valid ROOTSYS environment variable. In the case

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.5 Midas build options and operation considerations 361

ROOTSYS is not found the analyzer is build without ROOT support. In this later
case, the application rmidas task will be missing. refer to MIDAS Analyzer for further
details.

6.5.6 HAVE HBOOK

This rag is used for examples/hbookexpt/Makefle for building the midas
analyzer task against HBOOK and PAW. The path to the cernlib is requested and ex-
pected to be found under /cern/pro/lib (see make£le). This can always be overwritten
during the make£le using the following command:

make CERNLIB PACK=<your paths>/libpacklib.a

6.5.7 HAVE_MYSQL
This rag is used for the mlogger task to building the application with mySQL support.

The build requires to have access to the mysql include £les as well as the mysql library.
Refers to for further information on that option.

* For operation of the analyzer without HBOOK or ROOT, refer to
MIDAS Analyzer for further details.

6.5.8 SPECIFIC_OS_PRG

This mag is for internal Makefle preference. Used in particular for addi-
tional applications build based on the OS selection. In the example below
mspeaker, mlxspeaker tasks and dio task are built only under OS_LINUX.

SPECIFIC OS PRG = $(BIN_DIR)/mlxspeaker task $(BIN DIR)/dio task

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.5 Midas build options and operation considerations 362

6.5.9 INCLUDE_FTPLIB

FTP support "INCLUDE FTPLIB" Application such as the mlogger task,
lazylogger task can use the ftp channel for data transfer.

6.5.10 INCLUDE_ZLIB

The applications lazylogger task, mdump task can be built with zlib.a in order to gain
direct access to the data within a £le with extension mid.gz or ybs.gz. By default this
option is disabled except for the system analyzer core code mana.c.

make USERFLAGS=-DINCLUDE_ZLIB linux/lib/ybos.o
make USERFLAGS=-static linux/bin/mdump

6.5.11 YBOS_VERSION 3 3

The default built for ybos support is version 4.0. If lower version is required include
YBOS_VERSION_3_3 during compilation of the ybos.c

make USERFLAGS=-DYBOS_VERSION 3 3 linux/lib/ybos.o

6.5.12 DM_DUAL_THREAD
Valid only under VxWorks. This Hag enable the dual thread task when running the

frontend code under VxWorks. The main function calls are the dm_xxxx in midas.c
(Contact Pierre for more information).

6.5.13 USE_EVENT_CHANNEL

To be used in conjunction with the DM_ DUAL_THREAD.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.5 Midas build options and operation considerations 363

6.5.14 USE_INT

In mfe.c. Enable the use of interrupt mechanism. This option is so far only valid under
‘VxWorks Operating system. (Contact Stefan or Pierre for further information).

6.5.15 Environment variables

Midas uses a several environment variables to facilitate the different application startup.

6.5.15.1 MIDASSYS From version 1.9.4 this environmental variable is required. It
should point to the main path of the installed Midas package. The application odbedit
will generate a warning message in the case this variable is not de£ned.

6.5.15.2 MIDAS_EXPTAB This variable specify the location of the exptab £le
containing the prede£ned midas experiment. The default location is for OS_UNIX:
letc, /. For OS_WINNT: \system32, \system.

6.5.15.3 MIDAS_SERVER HOST This variable prede£nes the names of the host
on which the Midas experiment shared memories are residing. It is needed when con-
nection to a remote experiment is requested. This variable is valid for Unix as well as
‘Windows OS.

6.5.15.4 MIDAS_EXPT NAME This variable prede£nes the name of the exper-
iment to connect by default. It prevents the requested application to ask for the ex-
periment name when multiple experiments are available on the host or to add the -e
<expt_name> argument to the application command. This variable is valid for Unix
as well as Windows OS.

6.5.15.5 MIDAS DIR This variable predefnes the LOCAL directory path where
the shared memories for the experiment are located. It supersede the host_name and
the expt name as well as the MIDAS_SERVER _HOST and MIDAS_EXPT NAME
as a given directory path can only refer to a single experiment.

6.5.15.6 MCHART_DIR This variable is ... for later... This variable is valid only
under Linux as the -D is not supported under WindowsXX

CAMAC and VME access function call - Top - Midas Code and Libraries

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.6 Midas Code and Libraries 364

6.6 Midas Code and Libraries

Midas build options and operation considerations - Top - Frequently Asked Questions
This section covers several aspect of the Midas system.

+ State Codes & Transition Codes
» Midas Data Types
— Midas bank examples
* YBOS Bank Types
— YBOS bank examples
* Midas Code and Libraries

6.6.1 State Codes & Transition Codes

o State Codes : These number will be apparent in the ODB under the
ODB /RunInfo Tree.
— STATE_STOPPED
— STATE_PAUSED
— STATE_RUNNING
* Transition Codes These number will be apparent in the ODB under the
ODB /RunInfo Tree.
— TR_START
TR_STOP
TR_PAUSE
TR_RESUME

6.6.2 Midas Data Types

Midas defned its own data type for OS compatibility. It is suggested to use them in
order to insure a proper compilation when moving code from one OS to another. Qoat
and double retain OS de£nition.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.6 Midas Code and Libraries 365

* BYTE unsigned char

* WORD unsigned short int (16bits word)

* DWORD unsigned 32bits word

* INT signed 32bits word

* BOOL OS dependent.
‘When defning a data type either in the frontend code for bank defnition or in user
code to defne ODB variables, Midas requires the use of its own data type declaration.
The list below shows the main Type IDentifcation to be used (refers to Midas De£ne
for complete listing):

* TID_BYTE unsigned byte 0 255

* TID_SBYTE signed BYTE -128 127

* TID_CHAR single character 0 255

» TID_WORD two BYTE 0 65535

» TID_SHORT signed WORD -32768 32767

» TID_DWORD four bytes 0 2x*32-1

* TID_INT signed DWORD -2%x%31 2%%31-1

* TID_BOOL four bytes bool 0 1

* TID_FLOAT four bytes Qoat format

« TID_DOUBLE eight bytes “oat format

6.6.3 Midas bank examples

There are several examples under the Midas source code that you can check. Please
have a look at

* Frontend code midas/examples/experiment/frontend.c etc...

* Backend code midas/examples/experiment/analyzer.c etc...

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.6 Midas Code and Libraries 366

6.6.4 YBOS Bank Types

YBOS defnes several type but all types should be 4 bytes aligned. Distinction of
signed and unsigned is not done. When mixing MIDAS and YBOS in the frontend for
RO_ODB see The Equipment structure make sure the bank types are compatible (see
also YBOS De£ne)

I1_BKTYPE Bank of Bytes

I2_BKTYPE Bank of 2 bytes data

I4_BKTYPE Bank of 4 bytes data

F4_BKTYPE Bank of Qoat data

D8_BKTYPE Bank of double data

A1_BKTYPE Bank of ASCII char

6.6.5 YBOS bank examples

Basic examples using YBOS banks are available in the midas tree under exam-
ples/ybosexpt.

* Frontend code Example 1, 2 shows the bank creation with some CAMAC ac-
quisition.
———————— example 1 -------- Simple 16 bits bank construction
void read cft (DWORD *pevent)
{

DWORD *pbkdat, slot;

ybk_create ((DWORD *)pevent, "TDCP", I2 BKTYPE, &pbkdat);
for (slot=FIRST CFT;slot<=LAST CFT;slot++)

cami (3, slot, 1,6, (WORD *)pbkdat) ;
((WORD *)pbkdat) ++;
camlé6i_rqg(3,slot,0,4, (WORD **)g&gpbkdat,16);

ybk_close((DWORD *)pevent, I2_ BKTYPE, pbkdat);
return;

———————— example 2 -------- Simple 32bit bank construction
DWORD *pbkdat ;

ybk_create ((DWORD *)pevent, "TICS", I4 BKTYPE, &pbkdat);

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.6 Midas Code and Libraries 367

camo(2,22,0,17,ZERO) ;

cam24i_r(2,22,0,0, (DWORD **) g&pbkdat,10);
cam24i_r(2,22,0,0, (DWORD **) g&pbkdat,10);
cam24i_r(2,22,0,0, (DWORD **) g&pbkdat,10);

cam24i r(2,22,0,0, (DWORD **) g&pbkdat,9);
ybk_close((DWORD *)pevent, I4_ BKTYPE, pbkdat);
return 0;

)

)

)
cam24i_r(2,22,0,0, (DWORD **) g&pbkdat,10);

)

I

Example 3 shows a creation of an EVID bank containg a duplicate of the midas header.
As the Midas header is stripped out of the event when data are logger, it is necessary to
compose such event to retain event information for off-line analysis. Uses of prede£ned
macros (see Midas Code and Libraries) are available in order to extract from a pre-
composed Midas event the internal header £elds i.e. Event ID, Trigger mask, Serial
number, Time stamp. In this EVID bank we added the current run number which is
retrieve by the frontend at the begin of a run.

———————— example 3 -------- Full equipment readout function

INT read cum_scaler event (char *pevent, INT off)
{

INT i;

DWORD *pbkdat, *pbktop, *podbvar;

ybk_init ((DWORD *) pevent) ;

// collect user hardware SCALER data

ybk_create ((DWORD *)pevent, "EVID", I4_ BKTYPE, (DWORD *) (&pbkdat)) ;

* (pbkdat)++ = gbl_tgt_ counter++; // event counter
* ((WORD *)pbkdat) = EVENT_ID(pevent) ; ((WORD *)pbkdat)++;

* ((WORD *)pbkdat) = TRIGGER MASK(pevent); ((WORD *)pbkdat)++;

* (pbkdat) ++ = SERIAL NUMBER (pevent) ;

* (pbkdat) ++ = TIME_STAMP (pevent) ;

* (pbkdat) ++ = gbl_run_number; // run number
ybk_close((DWORD *)pevent, pbkdat);

// BEGIN OF CUMULATIVE SCALER EVENT
ybk_create ((DWORD *)pevent, "CUSC", I4_ BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; i<NSCALERS ; i++){

*pbkdat++ = scaler[i].cuvall[0];

*pbkdat++ = scaler[i].cuvall1l];

}

ybk_close (DWORD *)pevent, I4_ BKTYPE, pbkdat):;
// END OF CUMULATIVE SCALER EVENT

// event in bytes for Midas
return (ybk_size ((DWORD *)pevent)) ;

* Backend code If the data logging is done through YBOS format (see
ODB /Logger Tree Format) the events on the storage media will have been

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.6 Midas Code and Libraries 368

stripped from the MIDAS header used for transfering the event from the fron-
tend to the backend. This means the logger data format is a "TRUE" YBOS
format. Uses of standard YBOS library is then possible.

--- Example of YBOS bank extraction ----

void process_event (HNDLE hBuf, HNDLE request_id, EVENT HEADER *pheader, void *pevent)
{

INT status;

DWORD *plrl, *pybk, *pdata, bklen, bktyp:;

char banklist[YB STRING BANKLIST MAX] ;

// pointer to data section
plrl = (DWORD *) pevent;

// Swap event
yb_any event_swap (FORMAT YBOS,plrl);

// bank name given through argument list
if ((status = ybk find (plrl, sbank name, &bklen, &bktyp, (void *)&pybk)) == YB_SUCCESS)
{
// given bank found in list
status = ybk list (plrl, banklist);
printf ("#banks:%i Bank list:-%s-\n",status,banklist);
printf("Bank:%s - Length (I*4):%i - Type:%i - pBk:0x%p\n", sbank name, bklen, bktyp, pybk):

// check id EVID found in event for id and msk selection
if ((status = ybk find (plrl, "EVID", &bklen, &bktyp, (void *)&pybk)) == YB_ SUCCESS)
{

pdata = (DWORD *) ((YBOS_BANK HEADER *)pybk + 1);

}

// iterate through the event
pybk = NULL;
while ((bklen = ybk iterate(plrl, &pybk, (void *)&pdata))
&& (pybk != NULL))
printf ("bank length in 4 bytes unit: %d\n",bklen) ;

}

else

{
status = ybk list (plrl, banklist);
printf ("Bank -%s- not found (%i) in ",sbank name, status);
printf ("#banks:%i Bank list:-%s-\n",status,banklist);

}

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.6 Midas Code and Libraries 369

6.6.6 Midas Code and Libraries

The Midas libraries are composed of 5 main source code and their corresponding
header £les.
1. The midas.h & midas.c : Midas abstract layer.
The msystem.h & system.c : Midas function implementation.
The mrpc.h & mrpc.c : Midas RPC functions.

LI

The odb.c : Online Database functions.

5. The ybos.h & ybos.c : YBOS specifc functions.
‘Within these £les, all the functions have been categorized depending on their scope.

* al_xxx(...) : Alarm system calls

* bk _xxx(...) : Midas bank manipulation calls
* bm_xxx(...) : Buffer management calls

e cm_xxx(...) : Common system calls

* db_xxx(...) : Database managment calls

* el_xxx(...) : Electronic Log book calls

* hs xxx(...) : History manipulation calls

* ss_xxx(...) : System calls

* ybk_xxx(...) : YBOS bank manipulation

6.6.7 MIDAS Macros

Several group of MACROs are available for simplifying user job on setting or getting
Midas information. They are also listed in the Midas Code and Libraries. All of them
are defned in the Midas Macros, System Macros, YBOS Macros header £les.

» Message Macros. These Macros compact the 3 £rst arguments of the cm_msg()
call. It replaces the type of message, the routine name and the line number in the
C-code. See example in cm_msg().

— MERROR : For error (MT_ERROR, FILE_, LINE_)

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.6 Midas Code and Libraries 370

— MINFO : For info (MT_INFO, FILE_, LINE_)
— MDEBUG : For debug (MT DEBUG, FILE , LINE_)

— MUSER : Produced by interactive user (MT USER, FILE , LINE -
2

— MLOG : Info message which is only logged MT_LOG, _ FILE , -
LINE)

— MTALK : Info message for speech system (MT TALK, FILE , -
LINE)

— MCALL : Info message for telephone call MT _CALL, _ FILE , _ -
LINE)

* DAQ Event/LAM Macros. To be used in the frontend/analyzer code.

— CAMAC LAM manipulation. These Macros are used in the frontend
code to interact with the LAM register. Usualy the CAMAC Crate Con-
troler has the feature to register one bit per slot and be able to present this
register to the user. It may even have the option to mask off this register
to allow to seta "general" LAM register containing either "1" (At least one
LAM from the masked LAM is set) or "0" (no LAM set from the maksed
LAM register). The poll event() uses this feature and return a variable
which contains a bit-wise value of the current LAM register in the Crate
Controller.

- LAM_SOURCE

— LAM_STATION

— LAM_SOURCE_CRATE
— LAM_SOURCE_STATION

* BYTE swap manipulation. These Macros can be used in the backend analyzer
when little-endian/big-endian are mixed in the event.

— WORD_SWAP
— DWORD_SWAP
— QWORD_SWAP

* MIDAS Event Header manipulation. Every event travelling through the Midas
system has a "Event Header" containing the minimum information required to
identify its content. The size of the header has been kept as small as possible
in order to minimize its impact on the data rate as well as on the data storage
requirment. The following macros permit to read or override the content of the
event header as long as the argument of the macro refers to the top of the Midas
event (pevent). This argument is available in the frontend code in any of the user
readout function (pevent). It is also available in the user analyzer code which
retrieve the event and provide directly access to the event header (pheader) and
to the user part of the event (pevent). Sub-function using pevent would then be
able to get back the the header through the use of the macros.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.6 Midas Code and Libraries 371

TRIGGER_MASK
EVENT_ID

— SERIAL NUMBER
TIME_STAMP

* from examples/experiment/adccalib.c
INT adc_calib(EVENT HEADER *pheader, void *pevent)

{
INT i, n_adc;
WORD *pdata;
float *cadc;

// look for ADCO bank, return if not present
n_adc = bk _locate(pevent, "ADCO", &pdata);
if (n_adc == || n_ade > N_ADC)

return 1;

// create calibrated ADC bank
bk_create(pevent, "CADC", TID FLOAT, &cadc);

}

* from examples/experiment/frontend.c
INT read trigger event (char *pevent, INT off)

{
WORD *pdata, a;
INT g, timeout;

// init bank structure
bk_init (pevent) ;

}
— Frontend C-code fragment from running experiment:

INT read_ge_event (char *pevent, INT offset)

{

static WORD *pdata;
INT i, x, q;
WORD temp;

// Change the time stamp in millisecond for the Super event
TIME_STAMP (pevent) = ss millitime();

bk_init (pevent) ;
bk_create(pevent, "GERM", TID WORD, &pdata);

}

— Frontend C-code fragment from running experiment

lam = * ((DWORD *)pevent) ;

if (lam & LAM_STATION (JW_N))

{

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.7 Frequently Asked Questions 372

// compose event header
TRIGGER_MASK (pevent) = JW_MASK;
EVENT_ID (pevent) = JW_ID;
SERIAL_NUMBER (pevent)= eg->serial_number++;
// read MCS event
size = read mcs_event (pevent) ;
// Correct serial in case event is empty
if (size == 0)
SERIAL_NUMBER (pevent) = eq->serial_number--;

6.6.7.1 YBOSlibrary Exportable ybos functions through inclusion of ybos.h
Midas build options and operation considerations - Top - Frequently Asked Questions

6.7 Frequently Asked Questions

Midas Code and Libraries - Top - Data format

Feel free to ask questions to one of us (Stefan Ritt ,
Pierre-Andre Amaudruz) or visit the Midas Forum

1. Why the CAMAC frontend generate a core dump (linux)?

* If you’re not using a Linux driver for the CAMAC access, you need to
start the CAMAC frontend application through the task launcher £rst. See
dio task or mcnaf task. This task laucher will grant you access permission
to the IO port mapped to your CAMAC interface.

2. Where does Midas log £le resides?

* As soon as any midas application is started, a £le midas.log is produce. The
location of this £le depends on the setup of the experiment.

(a) if exptab is present and contains the experiment name with the correspond-
ing directory, this is where the £le midas.log will reside.

(b) if the midas logger mlogger task is running the midas.log will be in the
directory pointed by the "Data Dir" key under the /logger key in the ODB
tree.

(c) Otherwise the £le midas.log will be created in the current directory in
which the Midas application is started.

3. How do I protected my experiment from being controlled by aliases?

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.7 Frequently Asked Questions 373

* Every experiment may have a dedicated password for accessing the exper-
iment from the web browser. This is setup through the ODBedit program
with the command webpass. This will create a Security tree under /Ex-
periment with a new key Web Password with the encrypted word. By
default Midas allows Full Read Access to all the Midas Web pages. Only
when modifcation of a Midas £eld the web password will be requested.
The password is stared as a cookie in the target web client for 24 hours See
ODB /Experiment Tree.

* Other options of protection are described in ODB /Experiment Tree which
gives to dedicated hosts access to ODB or dedicated programs.

4. Can I compose my own experimental web page?

* Only under 1.8.3 though. You can create your own html code using your
favorite HMTL editor. By including custom Midas Tags, you will have
access to any £eld in the ODB of your experiment as well as the standard
button for start/stop and page switch. See mhttpd task , Custom page.

5. How do I prevent user to modify ODB values while the run is in progress?

* By creating the particular /Experiment/Lock when running/ ODB tree,
you can include symbolic links to any odb £eld which needs to be set to
Read Only £eld while the run state is on. See ODB /Experiment Tree.

6. Is there a way to invoke my own scripts from the web?

* Yes, by creating the ODB tree /Script every entry in that tree will be avail-
able on the Web status page with the name of the key. Each key entry is
then composed with a list of ODB £eld (or links) starting with the exe-
cutable command followed by as many arguments as you wish to be passed
to the script. See ODB /Script Tree.

7. I’ve seen the ODB prompt displaying the run state, how do you do that?
* Modify the /System/prompt £eld. The "S" is the trick.

Fri> odb -e bnmrl -h isdagOl
[host :expt : Stopped] /cd /System/
[host :expt : Stopped] /System>ls

Clients

Client Notify 0

Prompt [3h:%e:%S] %D
Tmp

[host :expt : Stopped] /System
[host :expt : Stopped] /Systemset prompt [%$h:%e:%S]%p>
[host :expt : Stopped] /System>ls

Clients

Client Notify 0

Prompt [3h:%e:%S] %p>
Tmp

[host :expt : Stopped] /System>set Prompt [%h:%e:%s]%p>
[host :expt :S] /System>set Prompt [3h:%e:%S]%p>
[host :expt : Stopped] /System>

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.7 Frequently Asked Questions 374

8. I’ve setup the alarm on one parameter in ODB but I can’t make it trigger?

* The alarm scheme works only under ONLINE. See ODB /RunInfo Tree
for Online Mode. This Jag may have been turned off due to analysis replay
using this ODB. Set this key back to 1 to get the alarm to work again.

9. How do I extend an array in ODB?

* When listing the array from ODB with the -1 switch, you get a column indi-
cating the index of the listed array. You can extend the array by setting the
array value at the new index. The intermediate indices will be £11 with the
default value depending on the type of the array. This can easly corrected
by using the wildcard to access all or a range of indices.

[local:midas:S]/>mkdir tmp
[local:midas:S]/>cd tmp
[local:midas:S] /tmp>create int number
[local:midas:S] /tmp>create string foo
String length [32]:
[local:midas:S]/tmp>ls -1

Key name Type #val Size Last Opn Mode Value
number INT 1 4 >99d 0 RWD O
foo STRING 1 32 1s 0 RWD

[local:midas:S] /tmp>set number[4] 5
[local:midas:S]/tmp>set fool3]
[local:midas:S]/tmp>ls -1

Key name Type #val Size Last Opn Mode Value
number INT 5 4 128 0 RWD

[o] 0

[1] 0

[2] 0

[3] 0

[4] 5
foo STRING 4 32 2s 0 RWD

[local:midas:S] /tmp>set number[1l..3] 9
[local:midas:S] /tmp>set foo[2] "A default string”
[local:midas:S]/tmp>ls -1

Key name Type #val Size Last Opn Mode Value
number INT 5 4 26s 0 RWD

[o] 0

[1] 9

[2] 9

[3] 9

[4] 5
foo STRING 4 32 3s 0 RWD

[0]

[1]

[2] A default string

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components 375

1. HowdolI...

Midas Code and Libraries - Top - Data format

6.8 Components

Introduction - Top - Quick Start

Midas system is based on a modular scheme that allows scalability and @exibility. Each

component operation is handled by a sub-set of functions. but all the components are
grouped in a single library (libmidas.a, libmidas.so(UNIX), midas.dlI(NT)).

The overall C-code is about 80’000 lines long and makes up over 450 functions (version
1.9.0). But from a user point of view only a subset of these routines are needed for most
operations.

Each Midas component is briexty described below but throughout the documentation
more detailed information will be given regarding each of their capabilities. All these
components are available from the "off-the-shelf" package. Basic components such
as the Buffer Manager, Online Database, Message System, Run Control are by default
operationals. The other needs to be enabled by the user simply by either starting an
application or by activation of the component through the Online Database. A general
picture of the Midas system is displayed below. The following link is a similar image
with more information Midas Structure.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components

376

MIT2AS : Maximum Integrated Drara Acqudsition System
huttpe/ ‘mmidas. psi.ch
httpe ‘midas trivmf oa

Stefan Rit miras ipstch
Pierre-Andr Amandne mids@tmmfes

2 =

"‘-.______ﬂ_.- ol

g

=

Suppored 05!
AEDOR, WindewsNT,
Linex, Solarie, (65511
ViWarks

Mhidas applicarions
wdbedst : conirel
oy event damp
manr g diply
i bivsary tosl
menal: CAMAL ivel

EIApE Thpe tual
melig: Ebbmroals kg

Loz ugger: Luxy loggor

mchart: ohams semer
airipehare: chart dplay

mlua peaker: apeech vt btines
anlezer; nser malvoer
webipar PAW v eb/mides

Figure 10: Components

ERITET
BT midad pope erver
mhiipis midas web server

Supparted hapdrare:

LA

-Blinwtica 20477 (B4}

“Hyree 1331 (154

DSR4 154)

ACCAT Wismer (FCH|

CEDE210 (VW arks}

FUE:

SH5 BT6LY (BT
WEVMEMM (PCT)

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components 377

The main elements of the Midas package are listed below with a short description of it
fonctionality.

* Buffer Manager Data How and messages passing mechanism.

Message System Specifc Midas messages How.

* Online Database Central information area.

Frontend Acquisition code.

* Midas Server Remote access server (RPC server).

* Data Logger Data storage.

* Analyzer Data analyzer.

* Run Control Data “ow control.

* Slow Controel system Device monitoring and control.
* History system Event history storage and retrival.

* Alarm System Overall system and user alarm.

* Electronic Logbook Online User Logbook.

6.8.1 Buffer Manager

The "buffer manager" consists of a set of library functions for event collection and
distribution. A buffer is a shared memory region in RAM, which can be accessed
by several processes, called "clients". Processes sending events to a buffer are called
"producers", processes reading events are called "consumers".

A buffer is organized as a FIFO (First-In-First-Out) memory. Consumers can specify
which type of events they want to receive from a buffer. For this purpose each event
contains a MIDAS header with an event ID and other pertinent information.

Buffers can be accessed locally or remotely via the MIDAS server. The data through-
put for a local confguration composed of one producer and two consumers is about
10MB/sec on a 200 MHz Pentium PC running Windows NT. In the case of remote
access, the network may be the essential speed limitation element.

A common problem in DAQ systems is the possible crash of a client, like a user ana-
lyzer. This can cause the whole system to hang up and may require a restart of the DAQ
inducing a lost of time and eventually precious data. In order to address this problem,
a special watchdog scheme has been implemented. Each client attached to the buffer
manager signals its presence periodically by storing a time stamp in the share memory.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components 378

Every other client connected to the same buffer manager can then check if the other
parties are still alive. If not, proper action is taken consisting in removing the dead
client hooks from the system leaving the system in a working condition.

6.8.2 Message System

Any client can produce status or error messages with a single call using the MIDAS
library. These messages are then forwarded to any other clients who maybe susceptible
to receive these messages as well as to a central log £le system. The message system
is based on the buffer manager scheme. A dedicated buffer is used to receive and
distribute messages. Predefned message type contained in the Midas library covers
most of the message requirement.

6.8.3 Online Database

In a distributed DAQ environment confguration data is usually stored in several £les on
different computers. MIDAS uses a different approach. All relevant data for a partic-
ular experiment are stored in a central database called "Online Database" (ODB). This
database contains run parameters, logging channel information, condition parameters
for front-ends and analyzers and slow control values as well as status and performance
data.

The main advantage of this concept is that all programs participating in an experiment
have full access to these data without having to contact different computers. The pos-
sible disadvantage could be the extra load put on the particular host serving the ODB.

The ODB is located completely in shared memory of the back-end computer. The
access function to an element of the ODB has been optimized for speed. Measurement
shows that up to 50,000 accesses per second local connection and around 500 accesses
per second remotely over the MIDAS server can be obtained.

The ODB is hierarchically structured, similar to a £le system, with directories and
sub-directories. The data is stored in pairs of a key/data, similar to the Windows NT
registry. Keys can be dynamically created and deleted. The data associated to a key
can be of several type such as: byte, words, double words, Hoat, strings, etc. or arrays
of any of those. A key can also be a directory or a symbolic link (like on Unix).

The Midas library provides a complete set of functions to manage and operate on these
keys. Furthermore any ODB client can register a Hot Link between a local C-structure
and a element of the ODB. Whenever a client (program) changes a value in this sub-
tree, the C-structure automatically receives an update of the changed data. Addition-
ally, a client can register a callback function which will be executed as soon as the
hot-link’s update has been received. For more information see ODB Structure.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components 379

6.8.4 Midas Server

For remote access to a MIDAS experiment a remote procedure call (RPC) server is
available. It uses an optimized MIDAS RPC scheme for improved access speed. The
server can be started manually or via inetd (UNIX) or as a service under Windows NT.
For each incoming connection it creates a new sub-process which serves this connec-
tion over a TCP link. The Midas server not only serves client connection to a given
experiment, but takes the experiment name, as parameter meaning that only one Midas
server is necessary to manage several experiments on the same node.

6.8.5 Frontend

The frontend program refers to a task running on a particular computer which has ac-
cess to hardware equipment. Several frontend can be attached simultaneously to a given
experiment. Each fiontend can be composed of multiple Equipment. Equipment is a
single or a collection of sub-task(s) meant to collect and regroup logically or physically
data under a single and uniquely identifed event.

This program is composed of a general framework, which is experiment independent,
and a set of template routines for the user to be £Iled. This program will:
* Registers the given Equipment(s) list to the Midas system.

* Provides the mean of collecting the data from the hardware source defned in
each equipment.

* Gathers these data in a known format (Fixed, Midas, Ybos) for each equipment.
* Sends these data to the buffer manager.

* Collects periodically statistic of the acquisition task and send it to the Online
Database.

The frontend framework takes care of sending events to the buffer manager and option-
ally a copy to the ODB. A "Data cache " in the frontend and on the server side reduces
the amount of network operations pushing the transfer speed closer to the physical limit
of the network confguration.

The data collection in the frontend framework can be triggered by several mechanisms.
Currently the frontend supports four different kind of event trigger:

* Periodic events: Scheduled event based on a £xed time interval. They can be
used to read information such as scaler values, temperatures etc.

* Polled events: Hardware trigger information read continuously which in turns if
the signal is asserted it will trigger the equipment readout.

— LAM events: Generated only when pre-de£ned LAM is asserted:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components 380

o Interrupt events: Generated by particular hardware device supporting interrupt
mode.

* Slow Control events: Special class of events that are used in the slow control
system.

Each of these types of trigger can be enabled/activated for a particular experiment state,
Transition State or a combination of any of them. Examples such as "read scaler event
only when running" or "read periodic event if state is not paused and on all transitions"
are possible.

Dedicated header and library £les for hardware access to CAMAC, VME, Fast-
bus, GPIB and RS232 are part of Midas distribution set. For more information see
Frontend code.

6.8.6 Data Logger

The data logger is a client usually running on the backend computer (can be running re-
motely but performance may suffer) receiving events from the buffer manager and sav-
ing them onto disk, tape or via FTP to a remote computer. It supports several parallels
logging channels with individual event selection criteria. Data can currently be written
in £ve different formats: MIDAS binary, YBOS binary, ASCII, ROOT and DUMP (see
Midas format, YBOS format).

Basic functionality of the logger includes:

* Run Control based on:

— event limit
— recorded byte limit
— logging device full.
 Logging selection of particular event based on Event Identifer.

* Auto restart feature allowing logging of several runs of a given size without user
intervention.

* Recording of ODB values to a so called History system

* Recording of the ODB to all or individual logging channel at the beginning and
end of run state as well as to a separate disk £le in a ASCII format. For more
information see ODB /Logger Tree.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components 381

6.8.7 Analyzer

As in the front-end section, the analyzer provided by Midas is a framework on which
the user can develop his/her own application. This framework can be build for private
analysis (no external analyzer hooks) or specifc analysis packaged such as HBOOK,
ROOT from the CERN (none of those libraries are included in the MIDAS distribu-
tion). The analyzer takes care of receiving events (a few lines of code are necessary to
receive events from the buffer manager), initializes the HBOOK or ROOT system and
automatically books N-tuples/TTree for all events. Interface to user routines for event
analysis are provided.

The analyzer is structured into "stages", where each stage analyzes a subset of the event
data. Low level stages can perform ADC and TDC calibration, high level stages can
calculate "physics" results. The same analyzer executable can be used to run online
(receive events from the buffer manager) and off-line (read events from £le). When
running online, generated N-tuples/T'Tree are stored in a ring-buffer in shared memory.
They can by analyzed with PAW without stopping the run. For ROOT please refer to
the documentation ...

‘When running off-line, the analyzer can read MIDAS binary £les, analyze the events,
add calculated data for each event and produce a HBOOK RZ output £le which can
be read in by PAW later. The analyzer framework also supports analyzer parameters.
It automatically maps C-structures used in the analyzer to ODB records via Hot Link.
To control the analyzer, only the values in the ODB have to be changed which get
automatically propagated to the analyzer parameters. If analysis software has been
already developed, Midas provides the functionality necessary to interface the analyzer
code to the Midas data channel. Support for languages such as C, FORTRAN, PASCAL
is available.

6.8.8 Run Control

As mentioned earlier, the Online Database (ODB) contains all the pertinent informa-
tion regarding an experiment. For that reason a run control program requires only to
access the ODB. A basic program supplied in the package called ODBEdit provides a
simple and safe mean for interacting with ODB. Through that program essentially all
the mexibility of the ODB is available to the user’s £ngertips.

Three "Run State defnes the state of Midas Stopped, Paused, Running. In order to
change from one state to another, Midas provides four basic "Transition" function 7 -
Start, Tr_pause, Tr_resume, Tr_Stop. During these transition periods, any Midas client
register to receive notifcation of such message will be able to perform its task within
the overall run control of the experiment.

In Order to provide more Pexibility to the transition sequence of all the midas clients
connected to a given experiment, each transition function has a tramsition sequence
number attached to it. This transition sequence is used to establish within a given
transition the order of the invocation of the Midas clients (from the lower seq.# to the

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components 382

largest).
Transitions
Funning
Fesume Fause
Start Faused Stop
stopped

Figure 11: Transitions

6.8.9 Slow Control

The Slow control system is a special front-end equipment or program dedicated to the
control of hardware module based on user parameters. It takes advantage of the Online
Database and its Hot Link capability. Demand and measured values from slow control
system equipment like high voltage power supplies or beam line magnets are stored
directly in the ODB.

To control a device it is then enough to modify the demand values in the database. The
modifed value gets automatically propagated to the slow control system, which in turn
uses specifc device driver to control the particular hardware. Measured values from
the hardware are periodically send back to the ODB to redect the current status of the
sub-system.

The Slow control system is organized in "Classes Driver ". Each Class driver refers to
a particular set of functionality of that class i.e. High-Voltage, Temperature, General
1/O, Magnet etc. The implementation of the device specifc is done in a second stage
"Device Driver" while the actual hardware implementation is done in a third layer

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.8 Components 383

"Bus Driver". The current MIDAS distribution already has some device driver for gen-
eral I/O and commercial High Voltage power supply system (see Supported hardware).
The necessary code composing the hardware device driver is kept simple by only re-
quiring a "set channel value" and "read channel value". For the High Voltage class
driver, a graphical user interface under Windows or Qt is already available. It can set,
load and print high voltages for any devices of that class. For more information see
Slow Control.

6.8.10 History system

The MIDAS history system is a recording function embedded in the mlogger task.
Parallel to its main data logging function of defned channels, the Midas logger can
store slow control data and/or periodic events on disk £le. Each history entry consists
of the time stamp at which the event has occurred and the value[s] of the parameter to
be recorded.

The activation of a recording is not controlled by the history function but by the actual
equipment (see Frontend code). This permits a higher Qexibility of the history system
such as dynamic modi£cation of the event structure without restarting the Midas logger.
At any given time, data-over-time relation can be queried from the disk £le through a
Midas utility mhist task or displayed through the mhttpd task.

The history data extraction from the disk £le is done using low level £le function giv-
ing similar result as a standard database mechanism but with faster access time. For
instance, a query of a value, which was written once every minute over a period of
one week, is performed in a few seconds. For more information see History system,
ODB /History Tree.

6.8.11 Alarm System

The Midas alarm mechanism is a built-in feature of the Midas server. It acts upon the
description of the required alarm set de£ned in the Online Database (ODB). Currently
the internal alarms supports the following mechanism:

* ODB value over £xed threshold At regular time interval, a pre-defned ODB
value will be compared to a £xed value.

* Midas client control During Run state transition, pre-de£ned Midas client name
will be checked if currently present.

* General C-code alarm setting Alarm C function permitting to issue user defned
alarm.

The action triggered by the alarm is left to the user through the mean of running a
detached script. But basic aalrm report is available such as:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.9 Event Builder Functions 384

* Logging the alarm message to the experiment log £le.
* Sending a "Electronic Log message" (see Electronic Logbook).

 Interrupt data acquisition. For more information see Alarm System,
ODB /Alarms Tree.

6.8.12 Electronic Logbook

The Electronic logbook is a feature which provide to the experimenter an alternative
way of logging his/her own information related to the current experiment. This elec-
tronic logbook may supplement or complement the standard paper logbook and in the
mean time allow "web publishing" of this information. Indeed the electronic logbook
information is accessible from any web browser as long as the mhttpd task is run-
ning in the background of the system. For more information see Electronic Logbook,
mhttpd task.

Introduction - Top - Quick Start

6.9 Event Builder Functions

Midas supports event building operation through a dedicated mevb task application.
Similar to the Midas Frontend application, the mevb task application requires the def-
inition of an equipment structure which describes its mode of operation. The set of
parameter for this equipment is limited to:

* Equipment name (appears in the Equipment list).

 Equipment type (should be 0).

* Destination buffer name (SYSTEM if destination event goes to logger).

* Event ID and Trigger mask for the build event (destination event ID).

* Data format (should match the source data format).
Based on the given buffer name provided at the startup time through the -b buffer -
name argument, the mevb task will scan all the equipments and handle the building of

an event based on the identical buffer name found in the equipment list if the frontend
equipment type includes the EQ_EB tag .

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.9 Event Builder Functions 385

6.9.1 Principle of the Event Builder and related frontend fragment

Possibly in case of multiple frontend, the same "fragment" code may run in the different
hardware frontend. In order to prevent to build nFragment different frontend task, the -i
index provided at the start of the frontend will replicate the same application image with
the necessary dynamic modi£cation required for the proper Event Building operation.
The "-i index" argument will provide the index to be appended to the minimal set of
parameter to distinguish the different frontends. These parameters are:

* frontend_mame : Name of the frontend application.
* equipment name : Name of the equipment (from the Equipment structure).
« event buffer: Name of the destination buffer (from the Equipment structure).

Frontend code:
/* The frontend name (client name) as seen by other MIDAS clients */
char *frontend name = "ebfe";

EQUIPMENT equipment[] = {

{rTrigger", /* equipment name */

1, TRIGGER_ALL, /* event ID, trigger mask */

"BUF", /* event buffer */

EQ POLLED | EQ EB, /* equipment type + EQ EB flag <<<<<< */
LAM SOURCE (0, OxFFFFFF), /* event source crate 0, all stations */
"MIDAS", /* format */

Once the frontend is started with -i 1 , the Midas client name, equipment name and
buffer name will be modifed.

> ebfe -1 1 -D

odbedit

[local:midas:S] /Equipment>1ls

Trigger0l

[local:midas:8] Trigger0l>1ls -1r

Key name Type #val Size Last Opn Mode Value

Trigger0l DIR

Common DIR

Event ID WORD 1 2 18h O RWD 1
Trigger mask WORD 1 2 1s8h 0 RWD 65535
Buffer STRING 1 32 18h 0 RWD BUFO01
Type INT 1 4 18h 0 RWD 66
Source INT 1 4 18h 0 RWD 16777215
Format STRING 1 8 18h 0 RWD MIDAS
Enabled BOOL 1 4 18h O RWD vy
Read on INT 1 4 18h 0 RWD 257
Period INT 1 4 18h O RWD 500
Event limit DOUBLE 1 8 18h 0 RWD O
Num subevents DWORD 1 4 18h 0 RWD O
Log history INT 1 4 1s8h 0 RWD O

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.9 Event Builder Functions 386

Frontend host STRING 1 32 18h 0 RWD hostname
Frontend name STRING 1 32 18h 0 RWD ebfell
Frontend file name STRING 1 256 18h 0 RWD .../eventbuilder/ebfe.c

Independently of the event ID, each fragment frontend will send its data to the com-
posed event buffer (BUFxx). The event builder task will make up a list of all the
equipment belonging to the same event buffer name (BUFxx). If multiple equipments
exists in the same frontend, the equipment type (EQ_EB) and the event buffer name
will distinguish them.

The Event Builder dowchart below shows a general picture of the event process cycle of
the task. The Event Builder runs in polling mode over all the source buffers collected
at the begin of run procedure. Once a fragment has been received from all enabled
source ("../Settings/Fragment Required y"), an internal event serial number check is
performed prior passing all the fragment to the user code. Content of each fragment
can be done within the user code for further consistency check.

Event Builder Flowchart.

Midas Event Bulder |

FE1 ; =ma
- e = < FER

el

Midas Syated cals

Figure 12: Event Builder Flowchart.

6.9.2 Event builder Tree

The Event builder tree will be created under the Equipment list and will appear as a
standard equipment. The sub tree /Common will contains the specifc setting of the

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.9 Event Builder Functions 387

equipment while the /Variables will remain empty. /Settings will have particular pa-
rameter for the Event Builder itself. The User Field is an ASCII string passed from
the ODB to the eb_begin_of run() which can be used for steering the event builder.

[local:midas:S]EB>1s -1r

Key name Type #val Size Last Opn Mode Value
EB DIR
Common DIR
Event ID WORD 1 2 5m 0 RWD 1
Trigger mask WORD 1 2 5m 0 RWD O
Buffer STRING 1 32 5m 0 RWD SYSTEM
Type INT 1 4 5m 0 RWD O
Source INT 1 4 5m 0 RWD O
Format STRING 1 8 5m 0 RWD MIDAS
Enabled BOOL 1 4 5m 0 RWD vy
Read on INT 1 4 5m 0 RWD O
Period INT 1 4 5m 0 RWD O
Event limit DOUBLE 1 8 5m 0 RWD O
Num subevents DWORD 1 4 5m 0 RWD O
Log history INT 1 4 5m 0 RWD O
Frontend host STRING 1 32 5m 0 RWD hostname
Frontend name STRING 1 32 5m 0 RWD Ebuilder
Frontend file name STRING 1 256 5m 0 RWD c:\...\ebuser.c
Variables DIR
Statistics DIR
Events sent DOUBLE 1 8 3s 0 RWDE 944
Events per sec. DOUBLE 1 8 3s 0 RWDE 0
kBytes per sec. DOUBLE 1 8 3s 0 RWDE 0
Settings DIR
Number of Fragment INT 1 4 9s 0 RWD 2
User build BOOL 1 4 9s 0 RWD n
User Field STRING 1 64 9s 0 RWD 100
Fragment Required BOOL 2 4 9s 0 RWD
[0] y
[1] y

6.9.3 EB Operation

Using the "eb>" as the cwd for the example, the test procedure is the following: cwd :
midas/examples/eventbuilder -> refered as eb>

* Build the mevb task:

eb> setenv MIDASSYS /home/midas/midas-1.9.5

eb> make

cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -c ebuser.c

cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -o mevb mevb.c \
ebuser.o /usr/local/lib/libmidas.a -1m -1z -lutil -lnsl

cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname \

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 388

-¢ ../../drivers/bus/camacnul.c
cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -o ebfe \
ebfe.c camacnul.o /usr/local/lib/mfe.o /usr/local/lib/libmidas.a \
-1lm -1z -lutil -1lnsl
eb>

Start the following 4 applications in 4 differents windows connecting to a de-
£ned experiment. — If no experiment defned yet, set the environment variable
MIDAS_DIR to your current directory before spawning the windows.

xterml: eb> ebfe -i 1
xterm2: eb> ebfe -i 2
xterm3: eb> mevb -b BUF
xterm4: eb> odbedit

[local:Default:8]/>1s
System
Programs
Experiment
Logger
Runinfo
Alarms
Equipment
[local:Default:8]/>scl
N[local:midas:S]EB>scl

Name Host

ebfell hostname
ebfe02 hostname
ODBEdit hostname
Ebuilder hostname

[local:Default:8]1/>
[local:Default:8]/>start now
Starting run #2

The xterm3 (mevb) should display something equivalent to the following, as the
print statements are coming from the ebuser code.

The same procedure can be repeated with the fel and fe2 started on remote
nodes.

6.10 Internal features

Quick Start - Top - Utilities

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 389

This section refers to the Midas built-in capabilities. The following sections describe
in more details the essential aspect of each feature starting from the frontend to the
Electronic Logbook.

* Run Transition Sequence : Transition Sequence
* Frontend code

— The Equipment structure : Frontend acquisition characteristics

* MIDAS event construction : Midas event description
* YBOS event construction : YBOS event description
* FIXED event construction :FIXED event description

— Deferred Transition : Transition postpawning operation
— Super Event : Short event compaction operation

— Event Builder Functions : Event Builder operation

ODB Structure : Online Database Trees

* Hot Link : Notifcation mechanism

* Alarm System : Alarm scheme

* Slow Control System : Specifc Slow Control mechanism
* Electronic Logbook : Essential utility

* Log £le : Message, error, report

6.10.1 Run Transition Sequence

The run transition sequence has been modifed since Midas version 1.9.5. The new
scheme utilize transition sequence level which provides the user a full control of the
sequencing of any Midas client.

Midas de£nes 3 states of Data acquistion: STOPPED, PAUSED, RUNNING

These 3 states require 4 transitions : TR_START, TR_PAUSE , TR_RESUME, TR_-
STOP

Any Midas client can request notifcation for run transition. This noti£cation is done by
registering to the system for a given transition (cm_register_transition()) by specifying
the transition type and the sequencing number (1 to 1000). Multiple registration to a
given transition can be requested. This latest option permits for example to invoke two
callback functions prior and after a given transition such as the start of the logger.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 390

my application.c
// Callback
INT before_logger (INT run_number, char *error)

{

printf("Initialize ... before the logger gets the Start Transition");

return CM_SUCCESS;

}

// Callback
INT after logger (INT run_number, char *error)
{

printf("Log initial info to file... after logger gets the Start Transition");

return CM_SUCCESS;

}

INT main()

{

cm_register transition(TR_START, before logger, 100);
cm_register transition(TR_START, after logger, 300);

By Default the following sequence numbers are used:

« Frontend : TR_START: 500, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
500

* Analyzer : TR_START: 500, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
500

* Logger : TR _START: 200, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
800

« EventBuilder : TR_START: 300, TR_PAUSE: 500, TR_RESUME: 500,TR _-
STOP: 700

The sequence number appears into the ODBedit under /System/Clients/

[local:midas:S]Clients>1ls -1lr

Key name Type #val Size Last Opn Mode Value
Clients DIR
1832 DIR === mmm———e- Frontend 1
Name STRING 1 32 2lh O R ebfell
Host STRING 1 256 21h O R pierre2
Hardware type INT 1 4 2lh 0 R 42
Server Port INT 1 4 2lh 0 R 2582
Transition START INT 1 4 21h O R 500
Transition STOP INT 1 4 21h O R 500
Transition PAUSE INT 1 4 21h O R 500
Transition RESUME INT 1 4 21h O R 500

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 391

RPC DIR
17000 BOOL 1 4 21h 0 R Y
3872 DIR === mmm———e- Frontend 2
Name STRING 1 32 21h 0 R ebfe02
Host STRING 1 256 21h O R pierre2
Hardware type INT 1 4 2lh 0 R 42
Server Port INT 1 4 2lh 0 R 2585
Transition START INT 1 4 21h O R 500
Transition STOP INT 1 4 21h O R 500
Transition PAUSE INT 1 4 21h O R 500
Transition RESUME INT 1 4 21h O R 500
RPC DIR
17000 BOOL 1 4 2lh O R
2220 DIR <--—mmmmmm - ODBedit doesn’t need transition
Name STRING 1 32 42s O R ODBEdit
Host STRING 1 256 428 O R pierre2
Hardware type INT 1 4 428 O R 42
Server Port INT 1 4 42s 0 R 3429
568 DIR <--—mmmmmm - Event Builder
Name STRING 1 32 268 0 R Ebuilder
Host STRING 1 256 268 0 R pierre2
Hardware type INT 1 4 26s 0 R 42
Server Port INT 1 4 26s 0 R 3432
Transition START INT 1 4 268 0 R 300
Transition STOP INT 1 4 268 0 R 700
2848 DIR e Logger
Name STRING 1 32 58 0 R Logger
Host STRING 1 256 58 0 R pierre2
Hardware type INT 1 4 58 0 R 42
Server Port INT 1 4 58 0 R 3436
Transition START INT 1 4 58 0 R 200
Transition STOP INT 1 4 58 0 R 800
Transition PAUSE INT 1 4 58 0 R 500
Transition RESUME INT 1 4 58 0 R 500
RPC DIR
14000 BOOL 1 4 58 0 R Y

The /System/Clients/ ... tree redects the system at a given time. If a permanent change
of a client sequence number is required, the system call cm_set_transition sequence()
can be used.

6.10.2 Frontend code

Under MIDAS, experiment hardware is structured into "equipment" which refers to a
collection of hardware devices such as: a set of high voltage supplies, one or more
crates of digitizing electronics like ADCs and TDCs or a set of scaler. On a software
point of view, we keep that same equipment term to refer to the mean of collecting
the data related to this "hardware equipment". The data from this equipment is then
gathered into an "event" and send to the back-end computer for logging and/or analysis.

The frontend program (image) consists of a system framework contained in mfe.c (hid-

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 392

den to the user) and a user part contained in frontend.c . The hardware access is only
apparent in the user code.

Several libraries and drivers exist for various bus systems like CAMAC, VME or
RS232. They are located in the drivers directory of the MIDAS distribution. Some
libraries consist only of a header £le, others of a C £le plus a header £le. The £le
names usually refer to the manufacturer abbreviation followed by the model number of
the device. The libraries are continuously expanding to widen Midas support.

ESONE standard routines for CAMAC are supplied and permit to re-use the frontend
code between different platform as well as different CAMAC hardware interface with-
out the need of modi£cation of the code.

The user frontend code consists of several sections described in order below. Example
of frontend code can be found under the ../examples/experiment directory:

* [Global declaration] Up to the User global section the declarations are system
wide and should not be remove.

— frontend name This value can be modifed to redect the purpose of the
code.

— frontend call_loop() Enables the function frontend_loop() to be run after
every equipment loop.

— display period de£ned in millisecond the time interval between refresh of
a frontend status display. The value of zero disable the display. If the
frontend is started in the background with the display enabled, the stdout
should be redirected to the null device to prevent process to hang.

— max event size specify the maximum size of the expected event in byte.

— event_buffer size specify the maximum size of the buffer in byte to be
allocated by the system. After these system parameters, the user may add
his or her own declarations.

// The frontend name (client name) as seen by other MIDAS clients
char *frontend name = "Sample Frontend";

// The frontend file name, don’t change it
char *frontend file name = _ FILE_ ;

// frontend loop is called periodically if this variable is TRUE
BOOL frontend call loop = FALSE;

//a frontend status page is displayed with this frequency in ms
INT display period = 3000;

//maximum event size produced by this frontend
INT max_event_size = 10000;

//buffer size to hold events
INT event buffer size = 10*10000;

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 393

// Global user section
// number of channels
#define N_ADC 8
#define N_TDC 8
#define N_SCLR 8

CAMAC crate and slots
#define CRATE 0
#define SLOT C212 23
#define SLOT ADC 1
#define SLOT TDC 2
#define SLOT SCLR 3

* [Prototype functions] The £rst group of prototype(7) declare the pre-defned
system functions should be present. The second group de£nes the user functions
associated to the declared equipments. All the £elds are described in detailed in
the following section.

INT
INT
INT
INT
INT
INT
INT

INT
INT

frontend init();

frontend exit();

begin of run(INT run_ number, char *error);
end of run(INT run_number, char *error);
pause_run(INT run_ number, char *error);
resume run (INT run_number, char *error);
frontend loop() ;

read trigger event (char *pevent, INT off);
read scaler_ event (char *pevent, INT off);

— [Remark] Each equipment has the option to force it-self to run at individ-
ual transition time see ro_mode . At transition time the system functions
begin_of run(), end of run(), pause run(), resume_run() runs prior the
equipment functions. This gives the system the chance to take basic action
on the transition request (Enable/disable LAM) before the equipment runs.
The sequence of operation is the following:

*

*

*

frontend_init() : Runs once after system initialization, before equip-
ment registration.

begin_of run() : Runs after systerm statistics reset, before any other
Equipments at each Begining of Run request.

pause_run(): Runs before any other Equipments at each Run Pause
request.

resume_run(): Runs before any other Equipments at each Run Resume
request.

end_of run(): Runs before any other Equipments at each End of Run
request.

frontend_exit(): Runs once before Slow Control Equipment exit.

* [Bank de€nition] Since the introduction of ROOT , the frontend requires to
have the defnition of the banks in the case you desire to store the raw data

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features

394

in ROOT format. This procedure is equivalent to the bank declaration in the
analyzer. In the case the format declared is MIDAS, the example below shows
the a structured bank and a standard variable length bank declaration for the
trigger bank list. The trigger_bank_list[] is declared in the equipment structure

(see Eq_example).

ADCO_BANK STR(adcO_bank_str) ;
BANK LIST trigger bank list[] = {

{"aADCO", TID STRUCT, sizeof (ADCO_BANK), adcO bank str},

{"TDCO", TID WORD, N _TDC, NULL},
{ nn } ,
}:

BANK LIST scaler bank list[] = {
{"sCLR", TID DWORD, N_ADC, NULL},
{ nn } ,

7

* [Equipment defnition] See The Equipment structure for further explanation.

#undef USE_INT
EQUIPMENT equipment[] = {

{ "Triggerr",

1, 0,

"SYSTEM",
#ifdef USE_INT

EQ INTERRUPT,
#else

EQ POLLED,
#endif

LAM SOURCE (CRATE, LAM STATION (SLOT C212)),

"MIDAS",
TRUE,

RO _RUNNING |
RO_ODB,

500,

0,

0,

0,

nn nn nn
’ ’ ’

read trigger event,
NULL, NULL,
trigger bank list,

// equipment name
// event ID, trigger mask
// event buffer

// equipment type
// equipment type

// event source crate 0

// format

// enabled

// read only when running

// and update ODB

// poll for 500ms

// stop run after this event limit
// number of sub events

// don’'t log history

// readout routine

// bank list

* [frontend init()] This function run once only at the application startup. Allows
hardware checking, loading/setting of global variables, hot-link settings to the

ODB etc... In case of CAMAC the standard call can be:

cam_init();

// Init CAMAC access

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 395

cam_crate clear (CRATE) ; // Clear Crate
cam_crate zinit (CRATE) ; // Z crate
cam_inhibit_set (CRATE) ; // Set I crate

return SUCCESS;

* [begin_of run()] This function is called for every run start transition. Allows to
update user parameter, load/setup/clear hardware. At the exit of this function
the acquisition should be armed and ready to test the LAM. In case of CAMAC
frontend, the LAM has to be declared to the Crate Controller. The function
cam_lam_enable(CRATE, SLOT_IO) is then necessary in order to enable the
proper LAM source station. The LAM source station has to alos be enabled
(F26).

The argument run_number provides the current run number being started. The
argument error can be used for returning a message to the system. This string
will be logged into the {b midas.log £le.

// clear units

camc (CRATE, SLOT C212, 0, 9);
camc (CRATE, SLOT 2249A, 0, 9);
camc (CRATE, SLOT SC2, 0, 9);
camc (CRATE, SLOT SC3, 0, 9);

camc (CRATE, SLOT_C212, 0, 26); // Enable LAM generation
cam_inhibit_clear (CRATE) ; // Remove I
cam_lam_enable (CRATE, SLOT C212); // Declare Station to CC as LAM source

// set and clear OR1320 pattern bits

camo (CRATE, SLOT OR1320, 0, 18, 0x0330);

camo (CRATE, SLOT OR1320, 0, 21, 0x0663); // Open run gate, reset latch
return SUCCESS;

[poll_event()] If the equipment defnition is EQ_POLLED as an acquisition
type, the poll_event() will be call as often as possible over the corresponding
poll time (ex:500ms see The Equipment structure) given by each polling equip-
ment. The code below shows a typical CAMAC LAM polling loop. The source
corresponds to a bitwise LAM station susceptible to generate LAM for that par-
ticular equipement. If the LAM is ORed for several station and is independent
of the equipment, the LAM test can be simplifed (see example below)

// Trigger event routines -----------——---“------——____
INT poll_event (INT source, INT count, BOOL test)
// Polling routine for events. Returns TRUE if event
// is available. If test equals TRUE, don’t return. The test
// flag is used to time the polling.

{
int i;
DWORD lam;

for (i=0 ; i<count ; i++)

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 396

cam_lam_read (LAM_SOURCE_CRATE (source), &lam);
if (lam & LAM SOURCE STATION (source)) // Any of the equipment LAM
[/ *** or ***

if (lam) // Any LAM (independent of the equipment)
if (l!test)
return lam;

return 0;

— [Remark] When multiple LAM source is specifed for a given equipment
like:

LAM SOURCE (JW_C, LAM STATION (GE_N)
| LAM STATION (JW _N)),

The polling function will pass to the readout function the actual LAM pat-
tern read during the last polling. This pattern is a bitwise LAM station.
The content of the pevent will be overwritten. This option allows you to
determine which of the station has been the real source of the LAM.

INT read_trigger event (char *pevent, INT off)

{

DWORD lam;
lam = * ((DWORD *)pevent) ;

// check LAM versus MCS station
// The clear is performed at the end of the readout function
if (lam & LAM STATION (JW _N))

{

* [read_trigger event()] Event readout function defned in the equip-
ment list. Refer to further section for event composition ex-
planation FIXED event construction , MIDAS event construction
YBOS event construction .

>

// Event readout ---------- - -
INT read_trigger event (char *pevent, INT off)

{

WORD *pdata, a;

// init bank structure
bk_init (pevent) ;

// create ADC bank
bk_create(pevent, "ADCO", TID WORD, &pdata);

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 397

* [pause_run() / resume_run()] These two functions are called respectively upon
"Pause" and "Resume" command. Any code relevant to the upcoming run
state can be include. Possible commands when CAMAC is involved can be
cam_inhibit_set(CRATE) and cam_inhibit_clear(CRATE). The argument run_-
number provides the current run number being paused/resumed. The argument
error can be used for returning a message to the system. This string will be
logged into the midas.log £le.

* [end_of run()] For every "stop run" transition this function is called and provides
opportunity to disable the hardware. In case of CAMAC frontend the LAM
should be disable.

The argument run_number provides the current run number being ended. The
argument error can be used for returning a message to the system. This string
will be logged into the midas.log £le.

// set and clear OR1320 pattern bits or close run gate.
camo (CRATE, SLOT_OR1320, 0, 18, 0x0CC3);
camo (CRATE, SLOT_OR1320, 0, 21, 0x0990);

camc (CRATE, SLOT C212, 0, 26); // Enable LAM generation
cam_lam_disable (CRATE, SLOT C212); // disable LAM in crate controller
cam_inhibit_set (CRATE) ; // set crate inhibit

* [frontend exit()] This function runs when the frontend is requested to terminate.
Can be used for local statistic collection etc.

6.10.2.1 The Equipment structure To write a frontend program, the user section
(frontend.c) has to have an equipment list organized as a structure defnition. Here
is the structure listing for a trigger and scaler equipment from the sample experiment
example frontend.c.

#undef USE_INT
EQUIPMENT equipment[] = {

{ "Trigger", // equipment name

1, 0, // event ID, trigger mask
"SYSTEM", // event buffer

#ifdef USE_INT
EQ INTERRUPT, // equipment type #else
EQ POLLED, // equipment type

#endif
LAM SOURCE (0, OXFFFFFF),// event source crate 0, all stations
"MIDAS", // format
TRUE, // enabled
RO _RUNNING | // read only when running
RO _ODB, // and update ODB

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 398

500, // poll for 500ms

0, // stop run after this event limit
0, // number of sub events

0, // don’t log history

LE L nn’}

read_trigger event, // readout routine

NULL, NULL,

trigger bank list, // bank list

}

* ["trigger","scaler"]: Each equipment has to have a unique equipment name de-
£ned under a given node. The name will be the reference name of the equipment
generating the event.

* [1, 0]: Each equipment has to be associated to an unique event ID and to a trigger
mask. Both the event ID and the trigger mask will be part of the event header of
that particular equipment. The trigger mask can be modifed dynamically by the
readout routine to defne a sub-event type on an event-by-event basis. This can
be used to mix "physics events" (from a physics trigger) and "calibration events"
(from a clock for example) in one run and identify them later. Both parameters
are declared as 16bit value. If the Trigger mask is used in a single bit-wise mode,
only up to 16 masks are possible.

["SYSTEM"] After composition of an "equipment", the Midas frontend mfe.c
takes over the sending of this event to the "system buffer" on the back-end com-
puter. Dedicated buffer can be specifed on those lines allowing a secondary stage
on the back-end (Event builder to collect and assemble these events coming from
different buffers in order to compose a larger event. In this case the event coming
from the frontend are called fragment). In this example both events are placed in
the same buffer called "SYSTEM" (default).

— [Remark] If this £eld is left empty ("") the readout function associated to
that equipment will still be performed, but the actual event won’t be sent
to the buffer. The positive side-effect of that confguration is to allow that
particular equipment to be mirrored in the ODB if the RO_ODB is turned
on.

[EQ_xxx] The £eld specify the type of equipment. It can be composed of several
bitwise dags. The following EQ POLLED, EQ INTERRUPT and EQ_SLOW
mags cannot be Ored togheter. The possible options are:

— [EQ_POLLEDY] In this mode, the name of the routine performing the trig-
ger check function is defaulted to poll _event(). As polling consists on
checking a variable for a true condition, if the loop would be infnite, the
frontend would not be able respond to any network commands. Therefore

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 399

the loop count is determined when the frontend starts so that it returns after
a given time-out when no event is available. This time-out is usually in
the order of 500 milliseconds. This @ag is mainly used for data acquisition
based on a "LAM".

EQUIPMENT equipment[] = {

{ "Triggerr", // equipment name
500, // poll for 500ms

— [EQ_INTERRUPT] For this mode, Midas requires complete confguration
and control of the interrupt source. This is provided by an interrupt confg-
uration routine interrupt_con£gure() that has to be coded by the user in the
user section of the frontend code. A pointer to this routine is passed to the
system instead of the polling routine. The interrupt confguration routine
has the following declaration:

INT interrupt_configure (INT cmd, INT source [], PTYPE adr)

{

switch(cmd)

{

case CMD_INTERRUPT ENABLE:
cam_interrupt_enable() ;
break;

case CMD_INTERRUPT DISABLE:
cam_interrupt_disable() ;
break;

case CMD_INTERRUPT ATTACH:
cam_interrupt_attach((void (*) ())adr):;
break;

case CMD_INTERRUPT DETACH:
cam_interrupt_detach() ;
break;

return CM_SUCCESS;

— [EQ_PERIODIC] In this mode the function associated to this equipment is
called periodically. No hardware requirements is necessary to trigger the
readout function. The "poll" £eld in the equipment declaration is in this
case used for periodicity.

— [EQ_SLOW] Declare the equipment as a Slow Control equipment. This
will enable the call to the idle function part of the class driver.

— [EQ_MANUAL_TRIG] This “ag enables the equipment to be triggered by
remote procedure call (RPC). If present, the web interface will provide a
button for that action.

— [EQ_FRAGMENTED] This “ag enables large event (beyond Midas con-
£guration limit) to be handled by the system. This Hag requires to have
a valid max_event_size frag variable defned in the user frontend code
(frontend.c). The max_event size variable is used as fragment size in this
case. This option is meant to be used experiment where the event rate is not

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 400

an issue but the size of the data needs to be extremely large. In any selected
case, when the equipment will be required to run, a declared function will
be call doing the actual user required operation. Under the four commands
listed above, the user has to implement the adequate hardware operation
performing the requested action. In drivers examples can be found on
such a interrupt code. See source code such as hyt1331.c, ces8210.c.

* CMD_INTERRUPT_ENABLE: to enable an interrupt
* CMD_INTERRUPT DISABLE: to disable an interrupt
* CMD_INTERRUPT_INSTALL: to install an interrupt callback rou-
tine at address adr.
* CMD_INTERRUPT_DEINSTALL: to de-install an interrupt.
— [EQ_EB] This mag identify the equipment as a fragment event and should

be ored with the EQ_POLLED in order to be identifyed by the Event -
Builder.

* [LAM_SOURCE(0,0xFFFFFF)] This parameter is a bit-wise representation of
the 24 CAMAC slots which may raise the LAM. It def£nes which CAMAC slot
is allowed to trigger the call to the readout routine. (See read_trigger_event()).

* ["MIDAS"] This line specifes the data format used for generating the event.
The following options are possible: MIDAS, YBOS and FIXED. The format has
to agree with the way the event is composed in the user read-out routine. It tells
the system how to interpret an event when it is copied to the ODB or displayed
in a user-readable form.

MIDAS and YBOS or FIXED and YBOS data format can be mixed at the
frontend level, but the data logger (mlogger) is not able to handle this format
diversity on a event-by-event basis. In practice a given experiment should keep
the data format identical throughout the equipment de£nition.

* [TRUE] "enable" switch for the equipment. Only when enable (TRUE) the re-
lated equipment is active.

* [RO_RUNNING] Specify when the read-out of an event should be occurring
(transition state) or be enabled (state). Following options are possible:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Internal features 401
RO_RUNNING Read on state "running"
RO_STOPPED Read on state "stopped"
RO_PAUSED Read on state "paused"

RO_BOR Read after begin-of-run

RO_EOR Read before end-of-run

RO_PAUSE Read when run gets paused

RO_RESUME Read when run gets resumed

RO_TRANSITIONS Read on all transitions

RO_ALWAYS Read independently of the states and
force a read for all transitions.

RO_ODB Equipment event mirrored into ODB
under variables

These Jags can be combined with the logical OR operator. Trigger events in the above
example are read out only when running while scaler events is read out when running
and additionally on all transitions. A special @ag RO_ODB tells the system to copy the
event to the /Equipment/<equipment name>>/Variables ODB tree once every ten sec-
onds for diagnostic. Later on, the event content can then be displayed with ODBEdit.

[500] Time interval for Periodic equipment (EQ_PERIODIC) or time out value
in case of EQ_POLLING (unit in millisecond).

[0 (stop after...)] Specify the number of events to be taken prior forcing an End-
Of-Run transition. The value 0 disables this option.

[0 (Super Event)] Enable the Super event capability. Specify the maximum
number of events in the Super event.

[0 (History system)] Enable the MIDAS history system for that equipment. The
value (positive in seconds) indicates the time interval for generating the event to
be available for history logging by the mlogger task if running.

["","",""] Reserved £eld for system. Should be present and remain empty.

[read_trigger event()] User read-out routine declaration (could be any name).
Every time the frontend is initialized, it copies the equipment settings to the ODB
under /Equipment/<equipment name>/Common. A hot-link to that ODB tree is
created allowing some of the settings to be changed during run-time. Modifca-
tion of "Enabled" tag, RO_xxx Hags, "period" and "event limit" from the ODB is
immediately rectected into the frontend which will act upon them. This function
has to be present in the frontend code and will be called for every trigger under
one of the two conditions:

— [In polling mode] The poll_event has detected a trigger request while
polling on a trigger source.

— [In interrupt mode] An interrupt source pre-de£ned through the interrupt -
confguration has occurred.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 402

— [Remark 1] The £rst argument of the readout function provide the pointer
to the newly constructed event and point to the £rst valid location for stor-
ing the data.

— [Remark 2] The content of the memory location pointed by pevent prior
its uses in the readout function contains the LAM source bitwise register.
This feature can be exploited in order to identify which slot has triggered
the readout when multiple LAM has been assigned to the same readout
function. Example:

. in the equipment declaration

LAM SOURCE(JW_C, LAM STATION(GE N) | LAM STATION(JW N)), // event source

nn nn nn
’ ’ ’

event_dispatcher, // readout routine

INT event_dispatcher (char *pevent)

{

DWORD lam, dword;
INT gize=0;
EQUIPMENT *eq;

// the *pevent contains the LAM pattern returned from poll_event
// The value can be used to dispatch to the proper LAM function

// 111l ONLY one of the LAM is processed in the loop !!!!
lam = * ((DWORD *)pevent) ;

// check LAM versus MCS station
if (lam & LAM STATION (JW_N))

{

// read MCS event
size = read mcs_event (pevent) ;

else if (lam & LAM_STATION(GE_N))

{

// read GE event
size = read ge_ event (pevent) ;

return size;

— [Remark 3] In the above example, the Midas Event Header will contains
the same Event ID as well as the Trigger mask for both LAM. The event se-
rial number will be incremented by one for every call to event_dispatcher()
as long as the returned size is non-zero.

— [Remark 4] The return value should represent the number of bytes col-
lected in this function. If the returned value is set to zero, The event will be
dismissed and the serial number to that event will be decremented by one.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 403

6.10.2.2 FIXED event construction The FIXED format is the simplest event for-
mat. The event length is £xed and maps to a C structure that is £lled by the readout
routine. Since the standard MIDAS analyzer cannot work with this format, it is only
recommended for experiment, which use its own analyzer and want to avoid the over-
head of a bank structure. For £xed events, the structure has to be de£ned twice: Once
for the compiler in form of a C structure and once for the ODB in form of an ASCII
representation. The ASCII string is supplied to the system as the "init string” in the
equipment list.

Following statements would defne a £xed event with two ADC and TDC values:

typedef struct {

int adcoO;

int adcil;

int tdco;

int tdcil;

TRIGGER_EVENT;
char *trigger event str[] = {
"adcO = INT : O",
"adcl = INT : O",
"tdcO = INT : O",
"tdcl = INT : O",

ASUM_BANK;

The trigger_event_str has to be de£ned before the equipment list and a reference to it
has to be placed in the equipment list like:

{
read_trigger event, // readout routine
poll_trigger event, // polling routine

trigger event_str, // init string

’

The readout routine could then look like this, where the <...> statements have to be
£1led with the appropriate code accessing the hardware:

INT read trigger event (char *pevent)
TRIGGER EVENT *ptrg;

ptrg = (TRIGGER_EVENT *) pevent;

ptrg->adc0 = <...>;
ptrg->adcl = <...>;
ptrg->tdc0 = <...>;
ptrg->tdcl = <...>;

return sizeof (TRIGGER_EVENT) ;

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 404

6.10.3 MIDAS event construction

The MIDAS event format is a variable length event format. It uses "banks" as subsets of
an event. A bank is composed of a bank header followed by the data. The bank header
itself is made of 4 £elds i.e: bank name (4 char max), bank type, bank length. Usually a
bank contains an array of values that logically belong together. For example, an experi-
ment can generate an ADC bank, a TDC bank and a bank with trigger information. The
length of a bank can vary from one event to another due to zero suppression from the
hardware. Beside the variable data length support of the bank structure, onother main
advantage is the possibility for the analyzer to add more (calculated) banks during the
analysis process to the event in process. After the £rst analysis stage, the event can
contain additionally to the raw ADC bank a bank with calibrated ADC values called
CADC bank for example. In this CADC bank the raw ADC values could be offset or
gain corrected.

MIDAS banks are created in the frontend readout code with calls to the MIDAS library.
Following routines exist:

* bk_init() , bk_init32() Initializes a bank structure in an event.

* bk_create() Creates a bank with a given name (exactly four characters)

* bk_close() Closes a bank previously opened with bk_create().

* bk_locate() Locate a bank within anevent by its name.

* bk_iterate() Return bank and data pointers to each bank in the event.

* bk_list() Construct a string of all the bank name in the event.

* bk_size() Returns the size in bytes of all banks including the bank headers in an
event. The following code composes a event containing two ADC and two TDC
values, the <...> statements have to be £lled with specifc code accessing the
hardware:

INT read trigger event (char *pevent)
INT *pdata;
bk_init (pevent) ;
bk_create(pevent, "ADCO", TID_ INT, &pdata):
*pdata++ = <ADCO>
*pdata++ = <ADC1l>
bk_close (pevent, pdata);
bk_create(pevent, "TDCO", TID_ INT, &pdata):
*pdata++ = <TDCO>
*pdata++ = <TDC1l>
bk_close (pevent, pdata);

return bk size (pevent) ;

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 405

Upon normal completion, the readout routine returns the event size in bytes. If the
event is not valid, the routine can return zero. In this case no event is sent to the back-
end. This can be used to implement a software event £lter (sometimes called "third
level trigger").

INT read trigger event (char *pevent)

{

WORD *pdata, a;

// init bank structure
bk_init (pevent) ;

// create ADC bank
bk_create(pevent, "ADCO", TID WORD, &pdata);

// read ADC bank

for (a=0 ; a<8 ; a++)
cami(l, 1, a, 0, pdata++);

bk_close (pevent, pdata);

// create TDC bank
bk_create(pevent, "TDCO", TID WORD, &pdata):;

// read TDC bank

for (a=0 ; a<8 ; a++)
cami(l, 2, a, 0, pdata++);

bk_close (pevent, pdata);

return bk_size (pevent) ;

6.10.4 YBOS event construction

The YBOS event format is also a bank format used in other DAQ systems. The advan-
tage of using this format is the fact that recorded data can be analyzed with pre-existing
analyzers understanding YBOS format. The disadvantage is that it has a slightly larger
overhead than the MIDAS format and it supports fewer different bank types. An intro-
duction to YBOS can be found under:

YBOS

The scheme of bank creation is exactly the same as for MIDAS events, only the routines
are named differently. The YBOS format is double word oriented i.e. all incrementa-
tion are done in 4 bytes steps. Following routines exist:

* ybk_init() Initializes a bank structure in an event.

* ybk_create() Creates a bank with a given name (exactly four characters)

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 406

* ybk_close() Closes a bank previously opened with ybk_create().

* ybk_size() Returns the size in bytes of all banks including the bank headers in
an event.

The following code creates an ADCO bank in YBOS format:

INT read trigger event (char *pevent)

{

DWORD 1i;
DWORD *pbkdat ;

ybk_init ((DWORD *) pevent) ;

// collect user hardware data
ybk_create((DWORD *)pevent, "ADCO", I4_ BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; i<8 ; i++)
*pbkdat++ = i & OXFFF;
ybk_close((DWORD *)pevent, pbkdat);

ybk_create ((DWORD *)pevent, "TDCO", I2_BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; i<8 ; i++)

* ((WORD *)pbkdat)++ = (WORD) (0x10+i) & OXFFF;
ybk_close((DWORD *) pevent, pbkdat);

ybk_create ((DWORD *)pevent, "SIMU", I2_BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; i<9 ; i++)

* ((WORD *)pbkdat)++ = (WORD) (0x20+i) & OXFFF;
ybk_close((DWORD *) pevent, I2 BKTYPE, pbkdat);

return (ybk_size((DWORD *)pevent)) ;

6.10.5 Deferred Transition

This option permits the user to postpone any transition issued by any requester until
some condition are satisfed. As examples:

* It may not be advised to pause or stop a run until let say some hardware has
turned off a particular valve.

* The start of the acquisition system is postpone until the beam rate has been stable
for a given period of time.

» While active, a particular acquisition system should not be interrupted until the
"cycle" is complete.

In these examples, any application having access to the state of the hardware can regis-
ter to be a "transition Deferred" client. It will then catch any transition request and post-
pone the trigger of such transition until condition is satis£ed. The Deferred_Transition
requires 3 steps for setup:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 407

* Register the deferred transition.

//-- Frontend Init

INT frontend init()

{
INT status, index, size;
BOOL found=FALSE;

// register for deferred transition
cm_register deferred transition(TR_STOP, wait_end cycle);
cm_register deferred transition(TR_PAUSE, wait_end cycle) ;

* Provide callback function to serve the deferred transition

//-- Deferred transition callback
BOOL wait_end cycle(int transition, BOOL first)
{
if (first)
{
transition_PS requested = TRUE;
return FALSE;

if (end of mcs_cycle)

{
transition_PS requested = FALSE;
end of mcs_cycle = FALSE;
return TRUE;

else
return FALSE;

* Implement the condition code

In this case at the end of the readout function...

INT read mcs_event (char *pevent, INT offset)

{

if (transition_PS_requested)
{
// Prevent to get new MCS by skipping re arm cycle and GE by GE_DISABLE LAM
cam_lam disable(JW_C,JW_N);
cam_lam disable(GE_C,GE_N) ;
cam_lam clear(JW_C,JW_N);
cam_lam clear(GE C,GE N);
camc (GE_C,GE_N, 0,GE_DISABLE) ;
end of mcs_cycle = TRUE;

re arm cycle() ;
return bk size (pevent) ;

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 408

In the example above the frontend code register for PAUSE and STOP. The sec-
ond argument of the cm_register wait_end_cycle is the declaration of the call-
back function. The callback function will be called as soon as the transition
is requested and will provide the Boolean ag £1st to be TRUE. By setting the
transition_PS_requested , the user will have the acknowledgment of the tran-
sition request. By returning FALSE from the callback you will prevent the
transition to occur. As soon as the user condition is satis€ed (end of mcs_-
cycle = TRUE), the return code in the callback will be set to TRUE and the
requested transition will be issued. The Deferred transition shows up in the
ODB under /runinfo/Requested transition and will contain the transition code
(see State Codes & Transition Codes). When the system is in deferred state,
an ODBedit override command can be issued to force the transition to happen.
eg: odbedit> stop now, odbedit> start now . This overide will do the transition
function regarless of the state of the hardware involved.

6.10.6 Super Event

The Super Event is a option implemented in the frontend code in order to reduce the
amount of data to be transfered to the backend by removing the bank header for each
event constructed. In other words, when an equipment readout in either MIDAS or
YBOS format (bank format) is complete, the event is composed of the bank header
followed by the data section. The overhead in bytes of the bank structure is 16 bytes
for bk_init(), 20 bytes for bk_init32() and ybk_init(). If the data section size is close
to the number above, the data transfer as well as the data storage has an non-negligible
overhead. To address this problem, the equipment can be setup to generate a so called
Super Event which is an event composed of the initial standard bank header for the
£1st event of the super event and up to number of sub event maximum successive
data section before the closing of the bank.

To demonstrate the use of it, let see the following example:

* Defne equipment to be able to generate {Super Event

{ "cer, // equipment name
2, 0x0002, // event ID, trigger mask
"SYSTEM", // event buffer

#ifdef USE_INT
EQ INTERRUPT, // equipment type

#else
EQ POLLED, // equipment type

#endif
LAM SOURCE (GE _C, LAM STATION(GE_N)), // event source
"MIDAS", // format
TRUE, // enabled
RO_RUNNING, // read only when running
200, // poll for 200ms

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 409

0, // stop run after this event limit

1000, // ----- > number of sub event <----- enable Super event
o, // don’'t log history

n "’ n "’ n "’

read_ge_event, // readout routine

’

* Setup the readout function for Super Event collection.

//-- Event readout
// Global and fixed -- Expect NWORDS 1l6bits data readout per sub-event
#define NWORDS 3

INT read_ge_event (char *pevent, INT offset)

{

static WORD *pdata;

// Super event structure
if (offset == 0)
{
// FIRST event of the Super event
bk_init (pevent) ;
bk_create(pevent, "GERM", TID WORD, &pdata);

else if (offset == -1)

{
// close the Super event if offset is -1
bk_close (pevent, pdata);

// End of Super Event
return bk_size (pevent) ;

// read GE sub event (ADC)

camlé6i(GE_C, GE_N, 0, GE_READ, pdata++);
camlé6i(GE_C, GE_N, 1, GE_READ, pdata++);
camlé6i(GE_C, GE_N, 2, GE_READ, pdata++);

// clear hardware
re_arm_ge() ;

if (offset == 0)
{
// Compute the proper event length on the FIRST event in the Super Event
// NWORDS correspond to the !! NWORDS WORD above !!
// sizeof (BANK HEADER) + sizeof (BANK) will make the 16 bytes header
// sizeof (WORD) is defined by the TID WORD in bk create()

return NWORDS * sizeof (WORD) + sizeof (BANK_HEADER) + sizeof (BANK) ;
else
// Return the data section size only

// sizeof (WORD) is defined by the TID WORD in bk create()

return NWORDS * sizeof (WORD) ;

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features 410

The encoded decryption of the data section is left to the user. If the number of
words per sub-event is £xed (NWORD), the sub-event extraction is simple. In the
case of variable sub-event length, it is necessary to tag the £rst or the last word
of each sub-event. The content of the sub-event is essentially the responsibility
of the user.

— [Remark 1] The backend analyzer will have to be informed by the user on
the content structure of the data section of the event as no particular tagging
is applied to the Super Event by the Midas transfer mechanism.

— [Remark 2] If the Super Event is composed in a remote equipment run-
ning a different Endian mode than the backend processor, it would be nec-
essary to insure the data type consistency throughout the Super Event in
order to guaranty the proper byte swapping of the data content.

— [Remark 3] The event rate in the equipment statistic will indicates the rate
of sub-events.

6.10.7 Slow Control System

Instead of talking directly to each other, frontend and control programs exchange in-
formation through the ODB. Each slow control equipment gets a corresponding ODB
tree under /Equipment. This tree contains variables needed to control the equipment as
well as variables measured by the equipment. In case of a high voltage equipment this
is a Demand array with contains voltages to be set, a Measured array which contains
read back voltages and a Current array which contains the current drawn from each
channel. To change the voltage of a channel, a control program writes to the Demand
array the desired value. This array is connected to the high voltage frontend via a ODB
hot-link. Each time it gets modifed, the frontend receives a notifcation and sets the
new value. In the other direction the frontend continuously reads the voltage and cur-
rent values from all channels and updates the according ODB arrays if there has been
a signifcant change. This design has a possible inconvenience due to fact that ODB is
the key element of that control. Any failure or corruption of the database can results
in wrong driver control. Therefore it is not recommended to use this system to control
systems that need redundancy for safety purposes. On the other hand this system has
several advantages:

* The control program does not need any knowledge of the frontend, it only talks
to the ODB.

* The control variables only exist at one place that gnarantees consistency between
all clients.

* Basic control can be done through ODBEdit without the need of a special control
program.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Internal features 411

* A special control program can be tested without having a frontend running.

* In case of n frontend and m control programs, only n+m network connections
are needed instead of n¥m connection for point-to-point connections. Since all
slow control values are contained in the ODB, they get automatically dumped
to the logging channels. The slow control frontend use the same framework
as the normal frontend and behave similar in many respects. They also create
periodic events that contain the slow control variables and are logged together
with trigger and scaler events. The only difference is that a routine is called
periodically from the framework that has the task to read channels and to update
the ODB. To access slow control hardware, a two-layer driver concept is used.
The upper layer is a "class driver", which establishes the connection to the ODB
variables and contains high level functionality like channel limits, ramping etc.
It uses a "device driver" to access the channels. These drivers implement only
very simple commands like "set channel" and "read channel". The device drivers
themselves can use bus drivers like RS232 or GPIB to control the actual device.

Class driver, Device and Bus driver in the slow control system

Class Dby " Ems Dirivey
REI32
f Rarag - { cmm
| o links| /Deammc, 74 TERIE |
- | ME
L] '\.‘ B .

St Chasd

A I
_.#'—'t\ Hardware 7
[|
Selung Wl
Dwool Valus
rasmead ¥ahees

HMidas eonne chen
.
i
l

Figure 13: Class driver, Device and Bus driver in the slow control system

The separation into class and device drivers has the advantage that it is very easy to
add new devices, because only the simple device driver needs to be written. All higher

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Internal features 412

functionality is inherited from the class driver. he device driver can implement richer
functionality, depending on the hardware. For some high voltage devices there is a
current read-back for example. This is usually recected by additional variables in the
ODB, i.e. a Current array. Frontend equipment uses exactly one class driver, but a class
driver can use more than one device driver. This makes it possible to control several
high voltage devices for example with one frontend in one equipment. The number
of channels for each device driver is defned in the slow control frontend. Several
equipment with different class drivers can be de£ned in a single frontend.

Key name Type #val Size Last Opn Mode Value
Epics DIR
Settings DIR
Channels DIR
Epics INT 1 4 25h 0 RWD 3
Devices DIR
Epics DIR
Channel name STRING 10 32 25h 0 RWD
[0] GPS:VAR1
[1] GPS:VAR2
[2] GPS:VAR3
Names STRING 10 32 17h 1 RWD
[0] Current
[1] Voltage
[2] Watchdog
Update Threshold MeasureFLOAT 10 4 17h 0 RWD
[o] 2
[1] 2
[2] 2
Common DIR
Event ID WORD 1 2 17h O RWD 3
Trigger mask WORD 1 2 17h O RWD O
Buffer STRING 1 32 17h 0 RWD SYSTEM
Type INT 1 4 17h O RWD 4
Source INT 1 4 17h O RWD O
Format STRING 1 8 17h 0 RWD FIXED
Enabled BOOL 1 4 17h O RWD y
Read on INT 1 4 17h O RWD 121
Period INT 1 4 17h O RWD 60000
Event limit DOUBLE 1 8 17h 0 RWD O
Num subevents DWORD 1 4 17h 0 RWD O
Log history INT 1 4 17h 0 RWD 1
Frontend host STRING 1 32 17h 0 RWD hostname
Frontend name STRING 1 32 17h 0 RWD Epics
Frontend file name STRING 1 256 17h 0 RWD feepic.c
Variables DIR
Demand FLOAT 10 4 Os 1 RWD
[o] 1.56
[1] 120
[2] 87
Measured FLOAT 10 4 2s 0 RWD
[o] 1.56
[1] 120
[2] 87
Statistics DIR

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.10 Imternal features

413

6.10.8 Electronic Logbook

Events sent
Events per sec.
kBytes per sec.

DOUBLE 1 8 17h 0
DOUBLE 1 8 17h 0
DOUBLE 1 8 17h 0

RWDE 26
RWDE 0
RWDE 0

The Electronic logbook is an alternative way of recording experiment information.
This is implemented through the Midas web server mhttpd task (see Elog page). The
de£nition of the options can be found in the ODB data base under ODB /Elog Tree.

6.10.9 Log¢£le

Midas provides a general log £le midas.log for recording system and user messages
across the different components of the data acquisition clients. The location of this £le
is dependent on the mode of installation of the system.

1. [without ODB /Logger Tree] In this case the location is defned by either the
MIDAS_DIR environment (see Environment variables) or the de£nition of the
experiment in the exptab £le (see Experiment_De£nition). In both case the log
£le will be in the experiment specifc directory.

2. [with /Logger Tree] The midas.log will be sitting into the de£ned directory spec-
ifed by Data Dir .

midas.log £le will contains system and user messages generated by any application
connected to the given experiment.

The MIDAS Macros de£nition provides a list of possible type of messages.

Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

10:
10:
10:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:

48:
48:
:04

55

24:
24:
27:
27:
27:
27:
27:
27:
27:
27:
:47
:35
:40

33
42
42

40
40

03
03
02
03
03
03
13
14
14
14

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

[CHAOS] Run 8362 started
[Logger] Run #8362 started
[Lazy Tape] cni-043[10] (cp:383.68s)

/dev/nst0/run08360.ybs 849.896MB file N

[MStatus] Program MStatus on host umelba started
[MStatus] Program MStatus on host umelba stopped
[Logger] stopping run after having received 1200000 events

[CHAOS] Run 8362 stopped
[SUSIYBOS] saving info in run log
[Logger] Run #8362 stopped
[Logger] starting new run

[CHAOS] Run 8363 started

[CHAOS] odb_access_file -I- /Equipment/kos_trigger/Dump not found

[Logger] Run #8363 started

[Lazy Tape] cni-043[11] (cp:391.8s)
[CHAOS] Run 8363 stopped

[SUSIYBOS] saving info in run log

/dev/nst0/run08361.ybs 850.209MB file N

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.11 Introduction 414

Fri Mar 24 11:42:41 2000 [ODBEdit] Run #8363 stopped
Fri Mar 24 12:19:57 2000 [MChart] client [umelba.Triumf.CA]MChart failed watchdog test after 10 sec
Fri Mar 24 12:19:57 2000 [MChart] Program MChart on host koslx0 stopped

Quick Start - Top - Utilities

6.11 Introduction

New Documented Features - Top - Components
... A few words...

Acquiring, collecting and analyzing data is the essence of mankind to satisfy his urge
for understanding natural phenomena by comparing "real" events to his own symbolic
representation. These fundamental steps paved human evolution and in the world of
science they have been the keys to major steps forward in our understanding of nature.
Until the last couple of decade’s -when "Silicium" was still underground, the PPP pro-
tocol (Paper, Pencil and Patience) was the basic tool for this "unique" task. With the
development of the "Central Processing Unit", data acquisition using computers wired
to dedicated hardware instrumentation became available. This has allowed scientists to
sit back and turn their minds towards £nding solutions to problems such as "How do I
analyze all these data?" Since the last decade or so when "connectivity" appeared to be
apowerful word, the data acquisition system had to adapt itself to that new vocabulary.

Based on this sudden new technology, several successful systems using de-
centralization of information have been developed. But the task is not simple! If the
hardware is available, implementing a true distributed intelligence environment for a
particular application requires that each node have full knowledge of the capability of
all the other nodes. Complexity rises quickly and generalization of such systems is
tough. Recently more pragmatic approaches emerged from all this, suggesting that
central database information on a system may be more adequate, especially since pro-
cessing and networking speed are not a "real" concern these days. MIDAS and its
predecessor HIX may be counted part of the precursor packages in the £eld.

The old question: "How do we analyze all these data?" still remains and may have been
the driving force behind this evolution :-).

6.11.1 What is Midas?

The Maximum Integrated Data Acquisition System (MIDAS) is a general-purpose sys-
tem for event based data acquisition in small and medium scale physics experiments.
It has been developed at the Paul Scherrer Institute (Switzerland) and at TRIUMF
(Canada) between 1993 and 2000 (Release of Version 1.8.0). Presently ongoing devel-
opment are more focused on the interfacing capability of the Midas package to external
applications such as ROOT for data analysis (see MIDAS Analyzer).

Midas is based on a modular networking capability and a central database system.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 415

MIDAS consists of a C library and several applications. They run on many different
operating systems such as UNIX like, Windows NT, VxWorks, VMS and MS-DOS.
‘While the system is already in use in several laboratories, the development continues
with addition of new features and tools. Current development involves RTLinux for
either dedicated frontend or composite frontend and backend system.

For the newest status, check the MIDAS home page: Switzerland , Canada

6.11.2 What can MIDAS do for you?

MIDAS has been designed for small and medium experiments. It can be used in dis-
tributed environments where one or more frontends are connected to the backend via
Ethernet. The frontend might be an embedded system like a VME CPU running Vx-
‘Works or a PC running Windows NT or Linux. Data rates around 1MB/sec through
standard Ethernet and 6. 1MB/sec over Fast Ethernet can be achieved.

For small experiments and test setups the front-end program can run on the back-end
computer thus eliminating the need of network transfer, presuming that the back-end
computer has direct access to the hardware. Device drivers for common PC-CAMAC
interfaces have been written for Windows NT and Linux. Drivers for PC-VME inter-
faces are commercially available for Windows NT.

For data analysis, users can write a complete analyzer or use the standard MIDAS ana-
lyzer which uses HBOOK routines for histogramming and PAW for histogram display.

The MIDAS package contains also a slow control system which can be used to control
high voltage supplies, temperature control units etc. The slow control system is fully
integrated in the main data acquisition and act as a front-end with particular built-in
control mechanism. Slow control values can be written together with event data to

tape.
New Documented Features - Top - Components

6.12 mhttpd task

Utilities - Top - Data format

mhttpd is the Midas Web Server. It provides Midas DAQ control through the web
using any web browser.

This daemon application has to run in order to allow the user to access from a Web
browser any Midas experiment running on a given host. Full monitoring and "Almost"
full control of a particular experiment can be achieved through this Midas Web server.
The color coding is green for present/enabled, red for missing/disabled, yellow for
inactive. It is important to note the refresh of the page is not "event driven" but is
controlled by a timer (see Con£g- button). This mean the information at any given
time may redect the experiment state of up to n second in the paste, where n is the
timer setting of the refresh parameter. Its basic functionality are:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12

mhttpd task 416

Run control (start/stop).

Frontend up-to-date status and statistics display.
Logger up-to-date status and statistics display.
Lazylogger up-to-date status and statistics display.
Current connected client listing.

Slow control data display.

Basic access to ODB.

Graphical history data display.

Electronic LogBook recording/retrival messages
Alarm monitoring/control

... and more ...

Each section is further described below:

Start page - Run control page

ODB page - Online Database manipulation (equivalent to ODBedit)
Equipment page (Frontend info)

CNAF page (CAMAC access page)

Message page (Message Log)

Elog page (Electronic Log)

Program page (Program control)

History page (History display)

Alarm page (Alarm control)

Custom page (User de£ned Web page)

mhttpd requires as argument the TCP/IP port number in order to listen to the web
based request.

Arguments

— [-h]: help
— [-p port] : port number, no default, should be 8081 for Example .
— [-D]: start program as a daemon

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12

mhttpd task 417

Usage

>mhttpd -p 8081 -D
Description Once the connection to a given experiment is established, the main

Midas status page is displayed with the current ODB information related to this
experiment. The page is sub-divised in several sections:

-[Experiment/Date] Current Experiment, current date.

-[Action/Pages buttons] Run control button, Page switch button. At any web page level
within the Midas Web page the main status page can be invoked with the <status>
button.

[Start... button] Depending on the run state, a single or the two £rst buttons will
be showing the possible action (Start/Pause/Resume/Stop) (see Start page).

[ODB button] Online DataBase access. Depending on the security, R/W access
can be granted to operated on any ODB £eld (see ODB page).

[CNAF button] If one of the equipment is a CAMAC frontend, it is possible to
issue CAMAC command through this button. In this case the frontend is acting
as a RPC CAMAC server for the request (see CNAF page).

[Messages button] Shows the n last entries of the Midas system message log. The
last entry is always present in the status page (see below) (see Message page).

[Elog button] Electronic Log book. Permit to record permanently (£le) com-
ments/messages composed by the user (see Elog page).

[Alarms button] Display current Alarm setting for the entire experiment. The
activation of an alarm has to be done through ODB under the /Alarms tree (See
Alarm System)

[Program button] Display current program (midas application) status. Each pro-
gram has a specifc information record associated to it. This record is tagged as
a hyperlink in the listing (see Program page).

[History button] Display History graphs of pre-de£ned variables. The history
setting has to be done through ODB under the /History (see History system ,
History page).

[Confg button] Allows to change the page refresh rate.
[Help button] Help and link to the main Midas web pages.

[User button(s)] If the user de£ne a new tree in ODB named Script than any sub-
tree name will appear as a button of that name. Each sub-tree (/Script/<button
name>>/) should contain at least one string key being the script command to be
executed. Further keys will be passed as

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 418

— Arguments to the script. Midas Symbolic link are permitted.

— Example : The Example below defnes a script names doit with 2 Ar-
guments (run# device) which will be invoked when the button <doit> is
pressed.

odbedit

mkdir Script

cd Script

mkdir doit

cd doit

create string cmd

1n "/runinfo/run number" run

create string dest
set dest /dev/hda

[Version >= 1.8.3 Alias Hyperlink] This line will be present on the status page only
if the ODB tree /Alias. The distinction for spawning a secondary frame with the link
request is done by default. For forcing the link in the current frame, add the terminal
charater "&" at the end of the link name.

* Example : The Example will create a shortcut to the defned location in the
ODB.

odbedit

1s

create key Alias

cd Alias

1n /Equipment/Trigger/Common "Trig Setting"
1n /Analyzer/Output "Analyzer"

create key "Alias new window" <-- Version < 1.8.3
cd "Alias new window"
1n /equipment/Scalers/Variables "Scalers Var"

or
cd Alias
1n /Equipment/Trigger/Common "Trig Setting&" <-- Version >= 1.8.3

* [General info] Current run number, state, General Enable dag for Alarm, Auto
restart dag Condition of mlogger.

* [Equipment listing] Equipment name (see Equipment page), host on which its
running, Statistics for that current run, analyzed percentage by the "analyzer"
(The numbers are valid only if the name of the analyser is "Analyzer").

* [Logger listing] Logger list. Multiple logger channel can be active (sin-
gle application). The hyperlink "0" will bring you to the odb tree /Log-
ger/channels/0/Settings. This section is present only when the Midas application
mlogger task is running.

* [Lazylogger listing] Lazylogger list. Multiple lazy application can be active.
This section is present only when the Midas application lazylogger task is run-
ning.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 419

* [Last system message] Display a single line containing the last system message
received at the time of the last display refresh.

* [Current client listing] List of the current active Midas application with the host-
name on which their running.

Midas Web server

T p | MIDAS expesiment e Wl Des 19 14:62.06 2000
weonTogr | et | 008 | cier | Mesages | Eon | atrve | Proorsms | st | o | He |
Ui baeasi} ﬂl il

Trigger hutimndc _y, [Tngger Scaler pent

AlsdBor newwindew o, (g seliils dod JeilG

wmert | | Bn#is [N DR s daitled
|

Start: Wed Hew 22 1000537 2000 Etops Wed How 22 1000148 2000
[Egquipment FE Npde Eveats Eventrate]'s] | Datarate|kB's] | Asalyzed
Bdpmewiire | [Trizeer (DGR 7111 a.0 0o L]
| o o | o0 o0 -
Channel Artive Events TR written G el
Lagge: Chocasl J 0 run 0063 1mid Diinkled I Lo ong
I 1 eunlE6 3 1nid Crisiied 0 {00 IR
Lary Label Progress | File Nase # Files Tasal
Lazriagger Diske 01 0% L] 0%
— { Tape 01 0% 0 10%
Lesgpiem message " | Wan Dies 18 14:40-06 2000 [mbttpd] Frogrars mittpd o= hast migmes0d started
limilting [[fefash [modmes 4] Logges [midme] Lary Dhsk [midmesiid]
Lazy_Taps [mdmes(4] mhipd [nodmes 4]

Figure 14: Midas Web server

6.12.1 Start page

Once the Start button is pressed, you will be prompt for experiment specifc parameters
before starting the run. The minimum set of parameter is the run number, it will be
incremented by one relative to the last value from the status page. In the case you have
defned the ODB tree /Experiment/Edit on Start all the parameters sitting in this
directory will be displayed for possible modifcation. The Ok button will proceed to
the start of the run. The Cancel will abort the start procedure and return you to the
status page.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 420

Start run request page. In this case the user has multiple run parameters def£ned under
"/Experiment/Edit on Start"

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 421

Comment ITeStF —150 mwv th
"Write Diata |y
Ezxp type |3 mod test
Operators |SCW RP
Sc 1 HV (volts) [2300
Se 2 HV (volts) |1800
A S type |Ar 25 Igo 75
71 HV (volts) [-2000
V1 HV (volts) |-zo00
U2 HV (volts) [-2000
V2 HV (volts) |-1750
73 HV (volts) [-z000
V3 HV (volts) [-2000
Prearnp (mh) |42 oo
Start | Cancel

Figure 15: Start run request page.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task

422

The title of each £eld is taken from the ODB key name it self. In the case this label
has a poor meaning and extra explanation is required, you can do so by creating a new
ODB tree under experiment Parameter Comments/ . Then by creating a string entry
named as the one in Edit on Start- you can place the extra information relative to that

key (html tags accepted).

This "parameter comment" option is available and visible ONLY under the midas web
page, the odbedit start command will not display this extra information.

[local:midas:S] /Experiment>ls -1r

Key name Type #val
Experiment DIR
Name STRING 1
Edit on Start DIR
Write data BOOL 1
enable BOOL 1
nchannels INT 1
dwelling time (ns) INT 1
Parameter Comments DIR
Write Data STRING 1
enable STRING 1
nchannels STRING 1
dwelling time (ns) STRING 1

[local:midas:S8]Edit on Starts>ls -1

Key name Type #val
Write Data LINK 1
enable LINK 1
number of channels LINK 1
dwelling time (ns) LINK 1

Size

Size

Last Opn Mode

17s

16m
16m
16m
16m

44m
7m
14m
8m

Last

o O oo

o O oo

RWD

RWD
RWD
RWD
RWD

RWD
RWD
RWD
RWD

Opn Mode

RWD
RWD
RWD
RWD

cooN

Enable logging

Scaler for expt Bl only
<i>maximum 1024</i>
Check hardware now

/logger/Write data
/sis/enable
/8is/nchannels
/sis/dwelling time (ns)

Start run request page. Extra comment on the run condition is displayed below each

entry.

IIDAS sxcpesmaent
" mridkae=
Etart new min

Foam numbar =

Fri Dt 13 10:33:15 2001

Wieks Data

Enuaksle Jogaing, I

chible
Scaer for anpt B ooly
mitokser of channels

[es

O
maarreon f05d |

halig bt () i
Chack hardunrs now

Figure 16: Start run request page.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 423

6.12.2 ODB page

The ODB page shows the ODB root tree at £1st. Clicking on the hyperlink will walk
you to the requested ODB £eld. The Example below show the sequence for chang-
ing the variable "PA" under the /equipment/PA/Settings/Channels ODB directory. A
possible shortcut

If the ODB is Write protected, a £rst window will request the web password.

ODB page access.

A1 s ! Clrmrls ¢ kR
[[Vabee
St Careat | |2 - g .~

_

Figure 17: ODB page access.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task

424

6.12.3 Equipment page

The equipment names are linked to their respective /Variables sub-tree. This permit
to access as a shortcut the current values of the equipment. In the case the equipment
is a slow control equipment, the parameters list may be hyperlinked for parameter
modifcation. This option is possible only if the parameter names have a particular

name syntax (see History system).

Slow control page.

'MIDAS experiment "e614" | ‘Mon Dee 18 14:21:54 2000
| o8 | Status| | Heb)|
Eguipment: PA
Groups: All Cratel Cratel
Names [D VTp [M_VTp [D_Thres [M_ThresA M ThresB D TP [M TP [Temp Voltage+ Voltage-
s10 o] 0 o) 0 n n |51 | 0018 | -0006
s11 | 1850 | 1852 | 1011 | -1002 -998 n | n [313] 508l | -5103
stz | Ires | 1793 | 1017 | -1om2 -899 i | n [338 | 5092 | -5ii2
sz | 1775 | 1774 | 1028 | -lopl -1000 n n [3385 | 5067 | 50938
sL4 | 1852 | 1852 | 1pd7 | -1003 -999 n | n [348 | 5076 | -5104
S5 | 1800 | 1800 | 1014 | -1004 ~1000 n | n [385 | sos5 | -5108
Sle | 1786 | i7es | 1oii | -1oo1 | -10o00 o | n [404 [5086 | -5098
SL7 | 1728 | 1798 | 1011 | -1004 -1000 n n |373 | 5083 | -5097
sLe | 1785 | 1795 Dig -1002 —1002 n | n [82 | 5078 | -s0%2
Sie | isol | isoi | 10l | -1001 “1eez [m [w251] s89 || -5104
slio | 17e7 | 1798 | 1o2s | -1ooi -1000 n | n |347 | 5065 | 5104
sL11 | 17es | 1796 | 101 -1000 -1002 n | n [313 | 5057 | -5102
sz [1wer | O 1013 0 0 T 0 | -0D22 | -DODS
SL13 | 17es | 1798 | 101 ~1002 ~1000 n | o [343 | 5087 | 5102
sii4 [1793 | 1793 | 106 [-1000 -1000 o | = [34 | 500 | 5095
SL15 | 1799 | 1800 | 1015 | -1000 -1001 [n n |[282 | 5068 | -5092
sl1s | 1782 | 1783 007 -1oo2 -1001 n | n [377 | 5088 | -5089
sLi7 | 1798 | 1798 | o1l | -1001 -999 n | n [333] 5104 | -5094
siis | 1796 | 1796 | 1017 | -1001 —1002 n | n [308 | 5078 | 5103
s112 | 1798 | 1797 | 100 | -1000 -1001 n | n [347 | s07 | -5106
sl20 | 1803 | 1803 | 1014 | -loo2 -1000 | n | n |[376 | 5086 | —511
szl | 1799 | 1799 | 1010 -1000 -1002 n | n [387 | 508 511
sl2z | 1805 | 1805 | 1015 -1000 -1001 o | n [331] 5086 | 5114
§123 [1793 | 1793 | 1018 | -1000 -1001 | n n [312 | 5085 | -50%
sLz24 | 1789 | 17ss | 1018 | -1oo0p | -1002 n | n [381] 5047 | -5105

Figure 18: Slow control page.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 425

6.12.4 CNAF page
If one of the active equipment is a CAMAC based data collector, it will be possible

to remotely access CAMAC through this web based CAMAC page. The status of the
connection is displayed in the top right hand side corner of the window.

CAMAC command pages.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 426

Figure 19: CAMAC command pages.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 427

6.12.5 Message page

This page display by block of 100 lines the content of the Midas System log £le starting
with the most recent messages. The Midas log £le resides in the directory de£ned by
the experiment.

Message page.

| MIDAS experiment "hnmr2" ’ Tue Dec 19 12:02:54 2000
| ODEI_| Status I Canfig | Helpl
i Iiare100 I

Tue Dec 19 11:52:35 2000 [Mdarc] run saved in file fhomebnmr/online/bnmr2/dlog/040638 msr w39
{Tue Dec 18 11:53:06 2000 [Mdarc] run saved in file fhome/bnmr/online/bnmr2/dlog/040638 msr_v40
|Tue Dec 19 11:53:37 2000 [Mdarc] run saved mn file fhomeibnmefontine/bnmr2{dlog/0406328 msr_wd1
|Tue Dec 19 11:54:08 2000 [Mdarc] run saved in file fhomebnmelontine/bnmr2idleg 040638 msr_v42
Tue Dec 19 11:54:3% 2000 [Mdarc] run saved in file fhomebnmr/online brmr2/dlog 040638 msr_w43
Tue Dec 19 11:55:10 2000 [IMdarc] run saved m file fhomelbnmefontine/bnme 2/ dlog/0406328 mer_ wd4d
Tue Dec 19 11:5541 2000 [MMdarc] run saved i file homelbnmefonine/bnrmr2idlog 0406328 msr_ w45
Tue Drec 19 11:56:12 2000 [Mdarc] run saved in file fhomebnme/online/bnmr2/dlog 040638 msr_ w46
Tue Dec 19 11:56:43 2000 [Mdarc] run saved in file fhomebnme/online/bnmr2/dlog/040638 msr_wd7
Tue Dec 19 11:57:14 2000 [Mdarc] run saved in file home/bnmrfonhine/bnmr2/dlog/ 040638 mar w48
Tue Dec 19 11:57:45 2000 Mdarc] run saved m file fhomeibnmrfonhine/bnme 2/ dloe/040628 mer w49

Figure 20: Message page.

6.12.6 Elog page

The Electronic Log page show the most recent Log message recorded in the system.
The top buttons allows you to either Create/Edit/Reply/Query/Show a message.

From version 1.9.0, this page contains extra parameters for time selection and Email
forwarding. Please refer to the ODB structure for further information.

main Elog page.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task

428

MITAE Elasiwsic Laghenk: I Eapeimmt'chacs’”
oo 2| Aaty| ooy | Linowdy | ssiewes | Fvam] s
el =|1'rlﬂI_H_thzzfméarmtrm'em;mw_mm.fm{'-a:l

Sy dae Ban Tooew 19 06 430 3000 Finwie 13879
T zurkar meeler |7 Toje AR Chook
T Speern Gemersl ~ ezt

1 Ltg cear c-az=al : %] acjomzas 1 1.z Gacaal

I farcaz T-F o [¥] KL roz=i=c

T i1 eawe s W=T f93 : [H]

Ty

2 SNELTE baguh. SEIWLTSE BEE Y ML

Figure 21: main Elog page.

The format of the message log can be written in HTML format.

HTML Elog message.

tan | Evil| Bupdy | teeq | L L i Rakay | Ziwtae |

_r.kﬂ Prind R _.L_.HJ Lart of St et 12 Aeordd e s feove 2t Sadagary

Eil.g-_hll: :i'll-'_h.'.l.d_l.d...".‘:!‘.!.lilgl.l : 5\:11 s i.l:1.|..

I Al maderivmnlew]2 wnrdve | Tar- Ialw

T Spoerr Gener T St Dl
Hello TUDA folke,

* T won somgearerd o e DG R upeomnng o F Beacaly™ traled

o T VME crues copian the PP ardl e CES SRADRE {0 CARA T sywach diwe:
= Tar ZBD & concazind 2o tae A2 CARAC Cra Comtrolaa

+ Aok D 108 A0 + &30 TIC,

CRATE1 baznac
Seelt-d ALE H1E S
Bt 1720 Th 3F

¥ Lanlezw op Cornrnared B

Sall ioutzic Begatsy CR2

Mok Friters 1w i 7

e Bral LS ot L

| EE

[Fra 2zdiinal

Eote [i L [T R
R R e Dookher AT 150 2K sten

System Scotms logn

By ..]

Sgorche 1450 Dzl 100 T ok 1o Ehix Sk

Figure 22: HTML Elog message.

The runlog button display the content of the £le runlog.txt which is expected to be
in the data directory specifed by the ODB key /Logger/Data Dir . Regardless of its
content, it will be displayed in the web page. Its common uses is to append lines after
every run. The task appending this run information can be any of the midas application.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 429

Example is available in the Example /experiment/analyzer.c which at each end-of-run
(EOR) will write to the runlog.txt some statistical informations.

Elog page, Runlog display.
MDA P Dl Expenkort har®

e thernt
R Lt Tl T
b S AR
. .. Lizznd
RO T It 3
RN
corrarrs
L.LlEmlLoe
LoLESL 8

Figure 23: Elog page, Runlog display.

‘When composing a new entry into the Elog, several £elds are available to specify the
nature of the message i.e: Author, Type, System, Subject. Under Type and System a
pulldown menu provides multiple category. These categories are user defnable through
the odb under the tree /Elog/Types, /Elog/Systems. The number of category is £xed to
20 maximum but any remaining £eld can be left empty.

Elog page, New Elog entry form.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 430

MIDAS Elsetronls Laghsek Expesisasnt chans™
Submid |
Betry date: Tue Ties 18 120613 2000 R number {13357
A Ii TEpe {Pouine vl
= - SR s e ey
Swsteis |Ceraml - e — Subject WirF G
¥ i T s (TN
Teat [AETe] Fix
Dletechar Wik
E:;:\un-:s Wi catian -
-B-M"u“!, g::‘:lhlﬁ
el
124
LIhzr

I 2kt ar IR bext

Lver sMachoecb Becoceme oo 22T wem s, wze™ gz an DD cbechorm st oaraker
| Browse.. |
AMacheet: | Tlr pnsesiee...

FY TR k] | Browse, ..

Figure 24: Elog page, New Elog entry form.

6.12.7 Program page

This page present the current active list of the task attached to the given experiment. On
the right hand side a dedicated button allows to stop the program which is equivalent
to the ODBedit command odbedit> sh <task name> .

The task name hyperlink pops a new window pointing to the ODB section related to
that program. The ODB structure for each program permit to apply alarm on the task
presence condition and automatic spawning at either the begining or the end of a run.

Program page.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mbhttpd task 431

-'Alis | _status |

'Pmp'm 'Rmmg on host | Alum -rl:!u EH!MM

Fmﬁ - | B EmumEdrr

e Sop MSlatus
Tl Stap BrisPC
3 T e |
T m MIDAS experiment "Ime” | Tae Doc 191301352000
Find | Coomte | Dwime | Alwmrs | Programs | s | teb|
Coote Gyt page [0
i Pragrams ! lmaRC
Key ' Viue
LAt STt ';]
Anto stop 5-_1
| Bustn rectart n
ji |
|Start cormmand WEmpty)
Checked last i0 (00,
-Wn-dh:d-:-im '|I:lm' i:l;ﬁﬂ]g

Figure 25: Program page.

6.12.8 History page

This page redects the History system settings (CVS r1.271). It lists on the top of the
page the possible group names containing a list of panels de£ned in the ODB. Next
a serie of buttons defnes the time scale of the graph with prede£ned time window,
ML I I S 1S S buttons permit the shifting of the graph in the time
direction. Other buttons will allow graph resizing, Elog attachment creation, confgu-
ration of the panel and custom time frame graph display. By default a single group is
created "Default” containing the trigger rate for the "Trigger" equipment.

The confguration options for a given panel consists in:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mbhttpd task 432

* Zooming capability, run markers, logarithmic scale.
* Data query in time.
* Time scale in date format.

» Web based page creation ("new" button) for up to 10 history channels per page.
History page.

= |

B ——— = |
| Drafamlt | Do snta
"f

|pate |z
EBa-rh Dranesror I& T=
(Froug Detectur (57 Ty

=

-

T
LB = ‘

LA
LEC_=
LR

LB

m_il' u”nﬁ ™ Ay A ol A

- T

T

9. 1%

-"-'-'--—ﬂ.-h r'J‘-. ---“—"'v-- I _—l"w—-_r-—— --..J{i-.'. F""\J'_r-ﬂ
Abeg FITE.] FITL."] [REE]

Figure 26: History page.

History channel selection Page.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 433

‘E‘éml Cancel | Refresh | Delete Panel |
| Panel "Bridge"
‘Time scale: Ilh
‘W Zero Yiow
T Logarighmic ¥ aui
‘I_ Show run marlcers
| Col | Event | Variahle | Factor | Offset
|TempBridge j |Eiric!g|_e Ch 1 Measured ;I |1 ID
- - Bridge Ch 2 Measured 2= [—— —
|TempElr|dge_ _j iElrldge CWea Bridge Ch 3 Measurad iD
Bridge Ch 4 Measured | |
TempBridge =] | Bridge Ch 3 Meaf iu

Bridge Ch & Measured
Bridge Ch ¥ Measured
Bridge Ch 1 Excitation
Bridge Ch 2 Excitation

E”;f;fat | Bridge Ch 5 Mea|Bridge Ch 3 Excitation

T Bridge Ch 4 Excitation | —
‘ITempBri!:Ige =l [Bridge Ch & Mea|Bridge Ch 5 Excitation iu

Bridge Ch 6 Excitation =
- - Bridge Ch 7 Excitation u i
|TempElr|dge j IElrch_g_g Ch7 Mea Elridge &h 1 BMES 0
_ Bridge Ch 2 BMES = —
| o Bridge Ch 3 BMES |D

Bridge Ch 4 BMES
‘I vI Bridge Ch 5 BMES
Bridge Ch & BMES

I ;I Bridge Chl'.-l"_EIMES

|

TempBridge | Bridge Ch 4 Mea

|

|

|

Figure 27: History channel selection Page.

6.12.9 Alarm page
This page redects the Alarm System settings. It presents the four type of alarms:

* [Evaluated alarms] Triggered by ODB value on given arithmetical condition.
* [Program alarms] Triggered on condition of the state of the defned task.

* [Internal alarms] Trigger on internal (program) alarm setting through the use of
the al_...() functions.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mbhttpd task 434

* [Periodic alarms] Triggered by timeout condition de£ned in the alarm setting.

6.12.10 Custom page

The Custom page is available since version 1.8.3. It has been improved during version
1.9.5 (mhttpd.c CVS-1.288).

This custom web page provides to the user a mean of creating a secondary personal web
page activated within the standard Midas web interface. This custom page can contain
specifc links to the ODB and therefore present in a more compact way the essential
parameter of the controlled experiment. Two mode of operations are available:

* Internal HTML document. : The html code is fully stored in the Online Database
(ODB). This page is web editable.

 External referenced HTML document. : ODB contains a link to an external html
document.

The new External referenced HTML document. feature remove the html code size re-
striction and support multiple custom web page. In addition, to each html document, a
dynamic ODB linked image extend the display presentation capability of the controlled
experiment.

6.12.10.1 Internal HTML document. This page redects the html content of a
given ODB key under the /Custom/ key. If keys are defned in the ODB under the
/Custom/ the name of the key will appear in the main status page as the Alias keys. By
clicking on the Custom page name, the content of the /Custom/<page> is interpreted
as html content.

Custom web page with history graph.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 435

‘ PIBETA experiment ‘ Custnm Eifgplajz
‘ ODEIl Elog | Alarms | Frograms | HisturyJ
Run #42708 [MHC 178916 |Trigger rate 67.5 |BOMHC ratio 12 6495 |BB: 1
PiBeta
37628 T
] "'
3?515—:
3?688—5
3?598—5
3?588—3
3?578—5
3?568—3
5 e L it 1) e o e] o 51) 2 0 0 2
-24 -2z —Z8 -1a -1 -14 -1z -1a -2 -B -4 =2]

Figure 28: Custom web page with history graph.

The access to the ODB £eld is then possible using specifc HTML tags:

* <odb src="odb £eld" > Display ODB £eld.
* <odb src="odb £eld" edit=1> Display and Editable ODB £eld.

* <form method="GET" action="http://hostname.domain:port/CS/<Custom -
page_key>"> De£ne method for key access.

* <meta http-equiv="Refresh" content="60"> Standard page refresh in second.

* <input type=submit name=cmd value=<Midas_page>> De£ne button for ac-
cessing Midas web pages. Valid values are the standard midas buttons (Start,
Pause, Resume, Stop, ODB, Elog, Alarms, History, Programs, etc).

*
Reference to an history page.

ODB /Custom/ html £eld.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 436

S LIERE o S Tt e Ll

Tac Sep 4 HUT AL THN
[fru] creatn | vanis § mtnma || Fragems | i | ra
Cremdn Elag Fom s paga |
1 Lt s
Ky Vi

e i et L STV PR L
FIDSTL rom=orss cizlacchands
IOT. FITa T IIT sen bt Lt gL L

T B i e e

B T T BT e T R TR TR I [P [B L T R PR

R R o L P R T |
SLOPEL CypEmsibiedn pes Thed W

ALNELE CypEesibans name e valussSiacorys
“Fech

[rwrarid “at- elomimwcobez s
SN AR T IR T T
Lk i R
EA B HEE

EEE)

& £ ! - 5 . el L SR
e

P Y R AL TIY RN TR L N

P ISR | NPT WP TR NN E) [PO FRPCLE R Y
eeddu FIBITL ooaown LLLllde e

Figure 29: ODB /Custom/ html £eld.

The insertion of a new Custom page requires the following steps:

Create an initial html £le using your favorite HTML editor.
* Insert the ODB HTML tags at your wish.

Invoke ODBedit, create the Custom directory, import the html £le.

* Example of loading the £le mcustom.htm] into odb.

Tue> odbedit
[local:midas:Stopped] />1s

System

Programs

Experiment

Logger

Runinfo

Alarms

Equipment
[local:midas:Stopped] />mkdir Custom
[local:midas:Stopped] />cd Custom/
[local:midas:Stopped] /Custom>import mcustom.html
Key name: Test&
[local:midas:Stopped] /Custom>

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 437

* Once the £le is load into ODB, you can ONLY edit it through the web (as
long as the mhttpd is active). Clicking on the ODB(button) ... Custom(Key)
... Edit(Hyperlink at the bottom of the key). The Custom page can also be ex-
ported back to a ASCII £le using the ODBedit command "export"

Tue> odbedit

[local:midas:Stopped] />cd Custom/
[local:midas:Stopped] /Custom>export testé&
File name: mcustom.html
[local:midas:Stopped] /Custom>

* The character "&" at the end of the custom key name forces the page to be open
within the current frame. If this character is omitted, the page will be spawned
into a new frame (default).

* If the custom page name is set to Status (no "&") it will become the default
midas Web page!

* html code Example mcustom.html

<l!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.76 [en] (Windows NT 5.0; U) [Netscape]">
<meta name="Author" content="Pierre-André Amaudruz">
<title>Set value</title>
</head>
<body text="#000000" bgcolor="#FFFFCC" 1link="#FF0000" v1ink="#800080" alink="#0000FF">
<form method="GET" action="http://host.domain:port/CS/WebLtno&">
<input type=hidden name=exp value="ltno">
<center><table CELLSPACING=0 CELLPADDING=0 COLS=3 WIDTH="100%" BGCOLOR="#99FF99" >
<caption>LTNO
Custom Web Page</caption>
<tr BGCOLOR="#FFCC99">
<td>Actions:
<input type=submit name=cmd value=Status>
<input type=submit name=cmd value=Start>
<input type=submit name=cmd value=Stop>
<td>
<input type=submit name=cmd value=ODB>
<input type=submit name=cmd value=History>
<input type=submit name=cmd value=Elog></td>
<td><div align=right>LTNO experiment </div>
</td></tr>
<tr><td>Cryostat section:

LN2 Bath Level : <odb src="/equipment/cryostat/variables/measured[12]">

Run# : <odb src="/runinfo/run number" edit=1>

Run#: <odb src="/runinfo/run number"></td>
<td WIDTH="100%" BGCOLOR="#009900">RF source section:

Run#: <odb src="/runinfo/run number"></td>
<td WIDTH="50%" BGCOLOR="#FF6600">Run section:

Start Time: <odb src="/runinfo/start time">

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 438

Stop Time: <odb src="/runinfo/stop time">

Run#: <odb src="/runinfo/run number"s></td>
</tr>

<tr>

<td BGCOLOR="#CC6600">Sucon magnet section:

Run#: <odb src="/runinfo/run number"></td>

<td BGCOLOR="#FFCC33">Scalers section:

Beam Current: <odb src="/equipment/epics/variables/measured[10]">

Run#: <odb src="/runinfo/run number"></td>

<td BGCOLOR="#66FFFF">Polarity section:

Run#: <odb src="/runinfo/run number"></td>
</tr>

</table></center>

<i>

 LTNO help</i>
</body>

</html>

6.12.10.2 External referenced HTML document. In the case the custom web
page is rather large and complex, it becomes easier to handle such £le through nor-
mal html editor and skip the reloading of the £le in the ODB. (import/export). This is
now possible by providing an external reference of the web page in the /Custom direc-
tory of the ODB. In addition special ODB settings are available to allow GIF image
insertion and ODB £elds bars and £1lup area superimposed on the image. This power-
ful new extention brings the mhttpd capability closer to other experiment web control
similar to EPICS.

The HTML examples below should operate in conjunction of the standard demo mi-
das example found in midas/examples/experiment. myexpt.html, xcumstom.odb and
myexpt.gif can be found in the midas/examples/custom directory.

Using your favorite html editor, you can create a custom page including any of the
options described in the Internal HTML document.. Once the mhttpd application is
started and connected to a valid Midas experiment, you can activate this page as follow:

[local:Default : Stopped] />pwd

/

[local:Default:Stopped] />mkdir Custom

[local:Default:Stopped] />cd Custom

[local:Default:Stopped] /Custom>create string Dewpointé&

String length [32]: 256

[local:Default:Stopped] /Custom>set Dewpoint& \doc\cooling\dewpoint.html

Note: This link refers to a local html document. In the case an external HTML is
requires, the de£nition should be placed under /Alias (see also ODB /Alias Tree).

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 439

[local:Default:Stopped] />mkdir Alias

[local:Default:Stopped] />cd alias

[local:Default:Stopped] /alias>create string WebDewpointé&

String length [32]: 256

[local:Default:Stopped] /alias>set WebDewpoint& "http://www.decatur.de/javascript/dew/index.html"

After refreshing the Midas status web page, the link Dewpoint should be visible in
the top area of the page. The "&" is to prevent a new frame to be displayed (see
ODB /Alias Tree). Clicking on it will bring you to your custom html documentation.
In the case you want to extend the Qexibility of your page by including features such
as:

* "live" ODB values position in a particular location of the page.
* "bar level" showing graphically levels or rate etc.

* "color level" where color is used as level indicator. you need to setup specifc
ODB tree related to a particular page. This overlay of the requested features is
done on a GIF £le representing you background experimental layout for exam-
ple. myexpt.html can be found in the examples/custom directory. For the full
operation of this custom demo, you’ll need to have the frontend "sample fron-
tend" (midas/example/experiment/frontend.c), mlogger, mhttpd running.

Html document myexpt.html

<html>
<head>
<title>MyExperiment Demo Status</title>
<meta http-equiv="Refresh" content="30">
</head>
<body>
<form name="forml" method="Get" action="/CS/MyExpt&">
<table border=3 cellpadding=2>
<tr><th bgcolor="#AOAOFF">Demo Experiment<th bgcolor="#AOAOFF">Custom Monitor/Control</tr>
<tr><td> Actions: <input
value="Status" name="cmd" type="submit"> <input type="submit"
name="cmd" value="Start"><input type="submit" name="cmd" value="Stop">
</td><td>
<center> Help </centers>
</td></tr>
<td>Current run #: <odb src="/Runinfo/run number"></td>
<td>ftevents: <odb src="/Equipment/Trigger/Statistics/Events sent"></td>
</tr><tr>
<td>Event Rate [/sec]l: <odb src="/Equipment/Trigger/Statistics/Events per sec."></td>
<td>Data Rate [kB/g]: <odb src="/Equipment/Trigger/Statistics/kBytes per sec."></td>
</tr><tr>
<td>Cell Pressure: <odb src="/Equipment/NewEpics/Variables/CellPressure"></td>
<td>FaradayCup : <odb src="/Equipment/NewEpics/Variables/ChargeFaradayCup"></td>
</tr><tr>
<td>Q1 Setpoint: <odb src="/Equipment/NewEpics/Variables/EpicsVars[17]" edit=1></td>
<td>Q2 Setpoint: <odb src="/Equipment/NewEpics/Variables/EpicsVars[19]" edit=1></td>
</tr><tr>

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 440

<th> <img src="http://localhost:8080/HS/Default/Trigger%20rate.gif?
exp=default&scale=12h&width=250">
</th>
<th> <img src="http://localhost:8080/HS/Default/Scaler%20rate.gif?
exp=default& scale=10m&width=250"></th>

</tr>

<tr><td colspan=2>

<map name="myexpt.map">
<area shape=rect coords="140,70, 420,170"
href="http://midas.triumf.ca/doc/html/index.html" title="Midas Doc">
<area shape=rect coords="200,200,400,400"
href="http://localhost:8080" title="Switch pump">
<area shape=rect coords="230,515,325,600"
href="http://localhost:8080" title="Logger in color level (using Fill) ">

</map>

</td></tr>

</table></form>

</body>

</html>

To activate this HTML document, it has to be de£ned in the ODB as follow:

[local:Default:Stopped] />cd /Custom

[local:Default:Stopped] /Custom>create string Myexpté&

String length [32]: 256

[local:Default:Stopped] /Custom>set Myexpt& \midas\examples\custom\myexpt.html

After refresh, the ODB values will be displayed, the mapping is still not active. as no
reference to the gif location has been given yet.

[local:Default:Stopped] /Custom>mkdir Images

[local:Default:Stopped] /Custom>cd Images/

[local:Default:Stopped] Images>mkdir myexpt.gif

[local:Default:Stopped] Images>cd myexpt.gif/

[local:Default:Stopped] myexpt.gif>create string Background

String length [32]: 256

[local:Default: Stopped] myexpt .gif>set Background \midas\examples\custom\myexpt.gif

After refresh, the £le myexpt.gif should by visible. The mapping based on myexpt.map
is active, hovering the mouse over the boxes will display the associated titles (Midas
Doc, Switch pump, etc), By clicking on either box the browser will go to the def£ned
html page specifed by the map.

Custom web page with external reference to html document.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task

441

prions S | i | _5op |
D Euperiment

Crarrerst o i 16

Evuint Fute [fsnr] | LOBIIEIR

el Pressure: RIEREIE]

Gl Setpoimt: SE4E

el ALY
Doat e Rt [lcBis]- 00811065
FarndayCup - LIR2ER11

0 Setpoint: 1247

Midas Experimen

Midas Doc

Swtich pump

Figure 30: Custom web external to html document.

In addition of these initial features, multiple ODB values can be superimposed at defne
location on the image. Each entry will have a ODB tree associated to it de£ning the

ODB variable, X/Y position, unit, color, etc...

[local:Default:Stopped] myexpt.gif>mkdir Labels
[local:Default:Stopped] myexpt.gif>cd labels
[local:Default:Stopped] Labels>mkdir Rate

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mbhttpd task 442

>>>>>>>> Refresh web page <<<<<<<<

12:32:38 [mhttpd] [mhttpd.c:5508:show custom gif] Empty Src key for label "Rate"

Creating "Labels/<label name>" sub-directory under the gif £le name, will automati-
cally at the next web page refresh complete its £1ling with default value for the structure
for that label.

[local:Default:Stopped] Labels>cd Rate/
[local:Default:Stopped] Rate>1ls -1

Key name Type #val Size Last Opn Mode Value
Src STRING 1 256 2m 0 RWD

Format STRING 1 32 2m 0 RWD %1.1f
Font STRING 1 32 2m 0 RWD Medium
Unit STRING 1 32 2m 0 RWD

X INT 1 4 2m 0 RWD O

Y INT 1 4 2m 0 RWD O
Align INT 1 4 2m 0 RWD O
FGColor STRING 1 8 2m 0 RWD 000000
BGColor STRING 1 8 2m 0 RWD FFFFFF

The Sre should point to a valid ODB Key variable. The X,Y £elds position the top left
corner of the label. The other £elds associated to this label are self-explanatory.

[local:Default:Stopped] Rate>set src "/Equipment/Trigger/statistics/kbytes per sec."
[local:Default:Stopped] Rate>set x 330

[local:Default:Stopped] Rate>set y 250

[local:Default:Stopped] Rate>set unit kB/s

Once the initial label is created, the simplest way to extent to multiple labels is to copy
the existing label sub-tree and modify the label parameters.

[local:Default:Stopped] Labels>cd ..

[local:Default:Stopped] Labels>copy Rate Events

[local:Default: Stopped] Labels>cd Events/

[local:Default:Stopped] Event>set src "/Equipment/Trigger/statistics/events per sec."
[local:Default:Stopped] Event>set Unit #Evts

[local:Default:Stopped] Event>set y 250

[local:Default:Stopped] Event>set x 200

In the same manner, you can create bars used for level representation. This code will
setup two ODB values de£ned by the £elds src.

[local:Default:Stopped] myexpt.gif>pwd
/Custom/Images/myexpt.gif
[local:Default:Stopped] myexpt.gif>mkdir Bars
[local:Default: Stopped]l myexpt.gif>cd bars/
[local:Default:Stopped] Labels>mkdir Rate

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task 443

>>>>>>>> Refresh web page <<<<<<<<

14:05:58 [mhttpd] [mhttpd.c:5508:show custom gif] Empty Src key for bars "Rate"
[local:Default:Stopped] Labels>cd Rate/

[local:Default:Stopped] Rate>set src "/Equipment/Trigger/statistics/kbytes per sec."
[local:Default:Stopped] Rate>set x 500

[local:Default:Stopped] Rate>set y 210

[local:Default:Stopped] Rate>set max leé

[local:Default:Stopped] Labels>cd ..

[local:Default:Stopped] Labels>copy Rate Events

[local:Default:Stopped] Labels>cd Events/

[local:Default:Stopped] Event>set src "/logger/channles/0/statistics/events written"
[local:Default:Stopped] Event>set direction 1

[local:Default:Stopped] Event>set y 240

[local:Default:Stopped] Event>set x 450

[local:Default:Stopped] Rate>set max le4

Following the same principle as for the labels, by creating Bars/<bar name="">>, the
structure for the rate will be £lled with a default setting after refreshing the custom
midas page. The different parameters are self-explanatory.

The last option available is the Fills where an area can be £lled with different colors
depending on the given ODB value (src parameter). The color selection is mapped
by correspondance of the index of the Limit array to the Fillcolor array. Presently the
structure is not pre-defned and need to be entered by hand.

[/Custom/Images/myexpt.gif/Fills/Levell
Src = STRING : [256] /equipment/Trigger/statistics/events sent
X = INT : 250

Y = INT : 550

Limits = DOUBLE[4]

[0o] O

[1] 10

[2] 10000

[3] 100000

Fillcolors = STRING[4]

[8] O0OFFO00

[8] AAFFO00

[8] An0000

[8] FF0000

Custom web page with external reference to html document.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.12 mhttpd task

444

Aersons: | Siaas | S | Swop |
Current nn #: 11

| Event Rate [50c] 946124
_C':Il Pressure 00586081
Q1 Sctpoi 2245

Dl lt.-'TMgger rate

Help

Hevents 1716

Dt Rate: [kB 5] 517411

FaradayCup : 000926811

@2 Sepns 117

Default/Scaler rate

LI L

g;
= LH
l
-4

wa-

E S
Midas Experment

b

s

Figure 31: Custom web external to html document.

Utilities - Top - Data format

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.13 New Documented Features 445

6.13 New Documented Features

Top - Top - Introduction

Some of the midas features are not yet fully documented or even referenced anywhere
in the documentation.

This section will maintain an up-to-date information with a log of the latest documen-
tation on past and current features. It will also mention the wish list documentation on
current developments.

* Current doc revision: 1.9.5-1

* Software version: 1.9.5

e Latesttarball: 1.9.5-1

e Latest RPM :1.9.2-1

[1.9.5-1]

— Custom page improvement. Implementation of external £le.html and dy-
namic linked graphic to ODB values.

. [1.9.5]

— When upgrading to 1.9.5 , ALL midas applications including user applica-
tions needs to be rebuild AND the ODB.SHM (.ODB.SHM) shared mem-
ory need to be removed. Prior the removal of the ODB.SHM, the ODB
database can be saved in ASCII format for later restoration.

— Run Transition Sequence changed to multiple level scheme.
— odbedit_task support of XML format for ODB dump.

— Large File support (>2GB) from mlogger task application.
— Folder Root Histogram support within mana.

— mevb task application.

— New Midas Frontend application argument for Event Builder option (-i in-
dex).

* Documentation on "Tests" results from analyzer.
— mySQL support from mlogger task.
— Increase system wide parameters values (see midas.h).
— Fix numerous small annoying bugs...

— Improve debugging messages in mserver -d (/tmp/mserver.log).

. [<19.5]

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.13 New Documented Features 446

— In writing

* Epics Slow Control documentation

* Introduce MIDASSYS environment variable
* Analyzer documention revision MIDAS Analyzer
» Watchdog bug £x (RH9.0)

* Restructured Midas distribution

— In the same effort as the documentation, the midas tree and CVS have been
modifed. The download area now contains separate directories for
doc, add-ons, publications etc.

[DOCUMENTATION in progress]

* A large effort has been put on the documentation for switching from the DOC++
to Doxygen We feel the cross-referencing to the source code is excellent and
hopefully will server better its purpose. Currently the MIDAS Analyzer is not
complete as well as the Quick Start. This Doxygen related £les will be made
accessible for better update.

* [Midas Short Course]

— During the RealTime Conference 2003 held in Montreal, a short course
was offered to introduce the Midas DAQ to the audience. This course
(.ppt, .pdf) is now part of the Midas distribution and can be found under
the doc/course/ directory as 2 £les (partl, part2). The Part 1 describes the
basic of the system and its implementation, while part 2 lists specifc fea-
tures. Partl.pdf, Part2.pdf .

. [1.9.3]

— Support for ROOT £les.

— mlogger task: New Data format ROOT and corresponding £le extension
root

— rmidas task: Initial Root/Midas GUI for Histogram and Run control.

— MIDAS Analyzer: New framework for Online/Oftine Root analysis using
socket connection.

— Makefle for ROOT, remove MANA_LITE, create HAVE ROOT,
HAVE_HBOOK.

— New Analyzer mana, hmana, rmana depending on the type of package.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.13 New Documented Features 447

. [1.9.2]

— odbedit: <tab> completion is working with Bags too, "Load" protect the
data dir if changed.

— lazylogger task: This task has been improved for tape manilupation as well
as messages display. It has also now extra £ilds for shell scripts when the
tape rewinds. It supports also split run capability when running multiple
instance of the task. Please refer to the documentation for explanation of
the new £elds.

— mixspeaker: Added possible system call to wav £le for "beeping" user be-
fore message.

— mhist: Add index range for -i with -v.

— eventbuilder: Revised version with user code scheme. Still in a develop-
ment stage.

— cm_cleanup() if you were using this call, you need now to provide an empty
char arg to make it compatible.

. [1.9.1]

— This version addresses several bugs reported in the web interface, history,
logger, odbedit and implements new features in particular for the history
pages on web interface. The detail list of the modi£cations can be found in
CHANGELOG .

* [EQ_FRAGMENTED] Possibility to send extremely large event
through the system without modi£cation of the system confguration
(see The Equipment structure)

* [logger subdir option] Allows to redirect the data £les to a sub-
directory based on the time of the creation of the data £le (see
ODB /Logger Tree).

* Option for building an analyzer without the CERN library (HBOOK)
(see Midas build options and operation considerations).

* [MOD. REQ.] This release requires several modi£cations in the user
code in order to compile the 1.9.1.

1. [db_get_value() function] Requires an extra parameter see
Midas Code and Libraries.

2. [max_event_size_ frag] Required in all the frontend code as fol-
low:

// maximum event size produced by this frontend

INT max _event size = 10000;

// maximum event size for fragmented events (EQ FRAGMENTED)
INT max_event_size frag = 5*1024*1024;

— [/Logger tree] As this tree includes new £eld, you will need to recreate this
tree.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 448

— [general] 1t is wise to create a fresh ODB when switching to 1.9.1 version.
This can be done by:
1. removing all attached midas client to your experiment
. saving the current ODB to a £le
. removing all shared memory £les (hidden £les .x.SHM)
creating new ODB (odbedit -s size)
trimming the odb save £le to keep user specifc structures (if any).
. restoring the trimmed odb £le.

O VA WN

. [<19.1]

— Hopefully nobody is still running an older version.

Top - Top - Introduction

6.14 ODB Structure

Internal features - Top - Data format

The Online Database contains information that system and user wants to share. Ba-
sically all transactions for experiment setup and monitoring go through the ODB. It
also contains some specifc system information related to the "Midas client" currently
involved in an experiment (/system).

Each ODB £eld or so called KEY is accessible by the user through either an in-
teractive way (see odbedit task) or by C-programming (see functions db_xxx in
Midas Code and Libraries).

The ODB information is stored in a "tree/branch" structure where each branch refers to
a specifc set of data. On the £rst invocation of the database (£rst Midas application) a
minimal system record will be created. Later on each application will add its own set
of parameters to the database depending on its requirement. For instance, starting the
ODB for the £rst time, the tree /Run€nfo, /Experiment, /System will be created. The
application mlogger task will add its own tree /Logger/...

As mentioned earlier, ODB is the main communication platform between any Midas
application. As such, the content of the ODB is application dependent. Several "dor-
mant" trees can be awaken by the user in order to provide extra Qexibility of the system.
Such "dormant" tree are Alias, Script, Edit on Start , Security, Run parameters .

* ODB /System Tree

ODB /RunInfo Tree
* ODB /Equipment Tree
* ODB /Logger Tree

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 449

* ODB /Experiment Tree
* ODB /History Tree

* ODB /Alarms Tree

* ODB /Script Tree

* ODB /Alias Tree

* ODB /Elog Tree

* ODB /Programs Tree

* ODB /Lazy Tree

* ODB /EBuilder Tree

* ODB /Custom Tree

6.14.1 ODB /System Tree
The system tree contains information specifc to each "Midas client" currenltly con-
nected to the experiment. This information is not primarly for the user but may be

informative in some respect to the reader.

[host :expt : Stopped] />1s -r -1 /system

Key name Type #Val Size Last Opn Mode Value
System DIR
Clients DIR
29580 DIR
Name STRING 1 32 17h O R decay
Host STRING 1 256 17h 0 R host1
Hardware type INT 1 4 17h O R 42
Server Port INT 1 4 17h 0 R 1227
Transition Mask DWORD 1 4 17h 0 R 329
Deferred Transition DWORD 1 4 17h 0 R 6
RPC DIR
16000 BOOL 1 4 17h 0 R Y
16001 BOOL 1 4 17h 0 R Y
29638 DIR
Name STRING 1 32 17h 0 R MStatus
Host STRING 1 256 17h 0 R host1
Hardware type INT 1 4 17h 0 R 42
Server Port INT 1 4 17h 0 R 1228
Transition Mask DWORD 1 4 17h 0 R 0
Deferred Transition DWORD 1 4 17h 0 R 0
29810 DIR
Name STRING 1 32 17h 0 R Nova_029810

Host STRING 1 256 17h 0

o]

host

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 450

Hardware type INT 1 4 17h 0 R 42
Server Port INT 1 4 17h 0 R 1235
Transition Mask DWORD 1 4 17h 0 R 0
29919 DIR
Name STRING 1 32 17h 0 R Epics
Host STRING 1 256 17h 0 R host
Hardware type INT 1 4 17h 0 R 42
Server Port INT 1 4 17h 0 R 1237
Transition Mask DWORD 1 4 17h 0 R 329
Deferred Transition DWORD 1 4 17h 0 R 0
RPC DIR
16000 BOOL 1 4 17h O R Y
16001 BOOL 1 4 17h O R Y
12164 DIR
Name STRING 1 32 63 0 R ODBEdit
Host STRING 1 256 6s 0 R host2
Hardware type INT 1 4 6s 0 R 42
Server Port INT 1 4 6s 0 R 4893
Transition Mask DWORD 1 4 63 0 R 0
Deferred Transition DWORD 1 4 63 0 R 0
Link timeout INT 1 4 63 0 R 10000
Client Notify INT 1 4 63 0 RWD O
Prompt STRING 1 256 >99d 0 RWD [%h:%e:%S]%p>
Tmp DIR

* [Remark 1] The key Prompt sets up the prompt of the ODBEdit program.

odbedit
[local:midas:Stopped] />cd /System/
[local:midas:Stopped] /System>1ls

Clients

Tmp

Client Notify 0

Prompt [3h:%e:%S] %p>

[local:midas:Stopped] /System>set Prompt my prompts>

my prompt>set Prompt [Host:%h-Expt:%e:State:%s]Path:%p>

[Host :local-Expt :midas-State:S]Path:/System>set Prompt [Host:%h-Expt:%e-State:%S]Path:%p>
[Host :1local-Expt :midas-State:Stopped] Path:/System>

6.14.2 ODB /Runlnfo Tree

This branch contains system information related to the run information. Several time
£elds are available for run time statistics.

odb -e expt -h host
[host :expt :Running] />1s -r -1 /runinfo

Key name Type #val Size Last Opn Mode Value
Runinfo DIR
State INT 1 4 2h 0 RWD 3

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 451

Online Mode INT 1 4 2h 0 RWD 1

Run number INT 1 4 2h 0 RWD 8521

Transition in progress INT 1 4 2h 0 RWD O

Requested transition INT 1 4 2h 0 RWD O

Start time STRING 1 32 2h 0 RWD Thu Mar 23 10:03:44 2000
Start time binary DWORD 1 4 2h 0 RWD 953834624

Stop time STRING 1 32 2h 0 RWD Thu Mar 23 10:03:33 2000
Stop time binary DWORD 1 4 2h 0 RWD O

* [State] Specifes in which state the current run is. The possible states are 1:
STOPPED, 2: RUNNING, 3: PAUSED.

* [Online Mode] Specifes the expected acquisition mode. This parameter allows
the user to detect if the data are coming from a "real-time" hardware source or
from a data save-set. Note that for analysis replay using "analyzer" this dag will
be switched off.

[Run number] Specifes the current run number. This number is automatically
incremented by a successful run start procedure.

* [Transition in progress] Specifes the current internal state of the system. This
parameter is used for multiple source of "run start" synchronization.

[Requested transition] Specifes the current internal of the Deferred Transition
state of the system.

* [Start Time] Specifes in an ASCII format the time at which the last run has
been started.

* [Start Time binary] Specifes in a binary format at the time at which the last
run has been started This £eld is useful for time interval computation.

[Stop Time] Specifes in an ASCII format the time at which the last run has been
stopped.

* [Stop Time binary] Specifes in a binary format the time at which the last run
has been stopped. This £eld is useful for time interval computation.

6.14.3 ODB /Equipment Tree

Every frontend create a entry under the /Equipment tree. The name of the sub-tree is
taken from the frontend source code in the equipment declaration (frontend.c). More
detailed explanation of the composition of that tree will be found throughout this doc-
ument.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 452

{
"DgpecCheck", // equipment name
{
"Scaler", // equipment name
Example:
Key name Type #Val Size Last Opn Mode Value
HistoCheck DIR
DSpecCheck DIR
HistoPoll DIR
HistoEOR DIR
DSpecEOR DIR
Scaler DIR
SuconMagnet DIR
TempBridge DIR
Cryostat DIR
Meters DIR
RFSource DIR
DSPec DIR

The equipment tree is then split in several sections which by default the system creates.

* Common : Contains the system information. Should not be overwritten by the
user.

* Variables : Contains the equipment data if enabled (see below).

* Settings : Contains the equipment specifc information that the user may want
to maintain. In the case of a Slow Control System equipment, extended tree
structure is created by the system.

» Statistics : Contains equipment statistics information such as event taken, event
rate, data rate.

[local:S]ls -1 -r /equipment/scaler

Key name Type #val Size Last Opn Mode Value
Scaler DIR
Common DIR
Event ID WORD 1 2 léh 0 RWD 1
Trigger mask WORD 1 2 léh 0 RWD 256
Buffer STRING 1 32 léh 0 RWD SYSTEM
Type INT 1 4 16h 0 RWD 1
Source INT 1 4 léh 0 RWD O
Format STRING 1 8 léh 0 RWD MIDAS
Enabled BOOL 1 4 léh 0 RWD vy
Read on INT 1 4 léh 0 RWD 377

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure

453

Period

Event limit

Num subevents

Log history

Frontend host

Frontend name

Frontend file name
Variables

SCLR

RATE

Statistics
Events sent
Events per sec.
kBytes per sec.

6.14.4 ODB /Logger Tree

INT
DOUBLE
DWORD
INT
STRING
STRING
STRING
DIR
DWORD

FLOAT

DIR

DOUBLE
DOUBLE
DOUBLE

RRrRRRRRR

[o]
[1]
[2]
[31]
[4]
[5]

[o]
[1]
[2]
[31]
[4]
[5]

[y

16h
16h
16h
16h
16h
16h
16h

1s

1s

1s
1s
1s

o OO oo o

(==l lNo N

(=l =lelelNe o N

RWD 1000

RWD O

RWD O

RWD O

RWD midtis03

RWD £feLTNO

RWD C:\online\sc ltno.c
RWD

RWD

RWDE 370

RWDE 0.789578
RWDE 0.0678543

The /Logger ODB tree contains all the relevant information for the Midas logger utility
(mlogger task) to run properly. This utility provides the mean of storing the physical
data retrieved by the frontend to a storage media. The user has no code to write in
order for the system to operate correctly. Its general behavior can be customized and
multiple logging channels can be de£ned. The application supports so far three type of
storage devices i.e.: Disk, Tape and FTP channel.

Default settings are created automatically when the logger starts the £rst time:

Key name

#val

Size

Last Opn Mode

Logger
Data dir
Message file
Write data
ODB Dump
ODB Dump File
Auto restart
Tape message
Channels
0
Settings

DIR
STRING
STRING
BOOL
BOOL
STRING
BOOL
BOOL
DIR
DIR
DIR

RRrRRrRRRRR

4h

22h
2h

22h
22h
22h
15h

==l N1

RWD
RWD
RWD
RWD
RWD
RWD
RWD

/scr0/spring2000
midas.log
n

Y
run%05d. odb

Y
Y

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 454

Active BOOL 1 4 ilh O RWD vy
Type STRING 1 8 1h 0 RWD Disgk
Filename STRING 1 256 1h 0 RWD run%05d.ybs
Format STRING 1 8 1h 0 RWD YBOS
ODB Dump BOOL 1 4 1h 0 RWD y
Log messages DWORD 1 4 1h 0 RWD O
Buffer STRING 1 32 1h 0 RWD SYSTEM
Event ID INT 1 4 1h 0 RWD -1
Trigger Mask INT 1 4 1h 0 RWD -1
Event limit DWORD 1 4 1h 0 RWD O
Byte limit DOUBLE 1 8 1h 0 RWD O
Tape capacity DOUBLE 1 8 1h 0 RWD O
Subdir format STRING 1 32 7h 0 RWD %Y%m%d
Current filenameSTRING 1 256 7h 0 RWD 20020605\run00078.mid
Statistics DIR
Events written DOUBLE 1 8 1h 0 RWD O
Bytes written DOUBLE 1 8 1h 0 RWD O
Bytes written toDOUBLE 1 8 1h 0 RWD 3.24316e+11
Files written INT 1 4 1h 0 RWD 334

From Midas version 1.9.5, the logger has the possibility to store information to a
mySQL database. This is achieved by defning at build time the preprocessor tag
HAVE_MYSQL. This option when enabled will create a sub tree SOL under /Logger
in the ODB. This tree contains information for mySQL access with prede£ned mySQL
database name Midas and table Runlog. Under 2 dedicated sub directories i.e: BOR
and EOR, prede£ned links exists which will be used respectively at BOR and EOR for
storing into the database. These elements are ODB links allowing the user to extend the
list with any parameter of the ODB database. This logger mySQL option is to replace
or complement the runlog.zxt functionality of the ana_end_of run() function from the
analyzer.c.

[local:midas:S] /Logger>ls -1lr SQL

Key name Type #val Size Last Opn Mode Value
SQL DIR
Create database BOOL 1 4 27s 0 RWD n
Write data BOOL 1 4 278 0 RWD n
Hostname STRING 1 80 27s 0 RWD localhost
Username STRING 1 80 27s O RWD root
Password STRING 1 80 27s 0 RWD
Database STRING 1 32 278 0 RWD midas
Table STRING 1 80 27s 0 RWD Runlog
Links BOR DIR
Run number LINK 1 20 588 0 RWD /Runinfo/Run number
Start time LINK 1 20 588 0 RWD /Runinfo/Start time
Links EOR DIR
Stop time LINK 1 19 4m 0 RWD /Runinfo/Stop time

* [Data dir] Specifes in which directory £les produced by the logger should be
written. Once the Logger in running, this Data_Dir will be pointing to the loca-
tion of the midas.log , ODB dump £les, history £les, message £les. In the case

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14

ODB Structure 455

of multiple logging channels, the data path for all the channels is defaulted to the
same location. In the case where specifc directory has to be assigned to each
individual logging channel, the £eld /logger/channel/<x>>/Settings/Filename
can contain the full path of the location of the .mid, .ybs, .asc £le. By £nding the
OS specifc SEPARATOR_DIR ("/", "\"). The £eld Filename will overwite the
global Data_Dir setting for that particular channel.

[History Dir] This £eld is optional and doesn’t appear by default in the logger. If
present the location of the History system £les is reassigned to the de£ned path
instead of the default Data_Dir .

[Elog Dir] This £eld is optional and doesn’t appear by default in the logger. If
present the location of the Electronic Logbook £les is reassigned to the def£ned
path instead of the default Data_Dir.

[Message £le] Specifes the £le name for the log £le which contains all mes-
sages from the MIDAS message system. The message log £le is a simple ASCII
£le, which can be viewed at any time to see a history of what happened in an
experiment.

[Write data] Global @ag which turns data logging on and off for all channels. It
can be set to zero temporarily to make a short test run without data logging. The
key "Write data?" is prede£ned logger key for enabling data logging. This action
can be overridden by setting the active key to 1.

[ODB Dump] Specifes if a dump of the complete ODB should be written to the
£le specifed by ODB Dump File.

[ODB Dump File] At the end of each run. If the £le name contains a "%", this
gets replaced by the current run number similar to the printf() C function. The
format specifer 05d from above would be evaluated to a £ve digit run number
with leading zeros like run00002.0db. The ODB dump £le is in ASCII format
and can be used for off-line analysis to check run parameters etc. For a descrip-
tion of the ASCII format see db_copy().

[Auto restart] When this Sag is one, a new run gets automatically restarted when
the previous run has been stopped by the logger due to an event or byte limit.

[Tape message] Specifes if tape messages during mounting and writing of EOF
marks are generated. This can be useful for slow tapes to inform all users in a
counting house about the tape status.

[channels] Sub-directory which contains settings for individual channels. By
default, only channel "0" is created. To de£ne other channels, an existing channel
can be copied:

[local] Logger>cd channels
[local] Channels>1s

0

[local] Channels>copy 0 1

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 456

[local] Channels>ls
0
1

The Settings part of the channel tree has the following meaning:

* [active] turns a channel on (1) or off (0). Data is only logged to channels that are
active.

* [Type] Specify the type of media on which the logging should take place. It can
be Disk, Tape or FTP to write directly to a remote computer via FTP.

* [Filename] Specify the name of a £le in case of a disk logging, where 05d is
replaced by the current run number the same way as for the ODB dump £les. In
the case of a tape logging, the £lename specifes a tape device like /dev/nrmt0 or
/dev/nst0 under UNIX or \\.\tape0 under Windows NT.

— In FTP mode, the £lename specifes the access information for the FTP
server. It has the following format:
<host name>, <port numbers>, <user name>, <password>, <directory>, <file name>
The normal FTP port number is 21 and 1021 for a Unitree Archive like the

one used at the Paul Scherrer Institute. By using the FTP mode, a back-end
computer can directly write to the archive.

myhost.my.domain, 21, john, password, /usr/users/data, run$05d.mid

* [Format] Specifes the format to be used for writing the data to the logging chan-
nel. It can one of the £ve value: MIDAS, YBOS, ROOT, ASCII and DUMP.
The MIDAS and YBOS binary formats Midas format and YBOS format, respec-
tively. The extention for the £le name has to match one of the following.

— .mid for MIDAS

.ybs for YBOS

oot for ROOT

.asc for ASCII

.txt for DUMP

» The ASCII format converts events into readable text format which can be eas-
ily analyzed by programs which have problems reading binary data. While the
ASCII format tries to minimize the £le size by printing one event per line, the
DUMP format gives a very detailed ASCII representation of the event including
bank information, serial numbers etc, it should be used for diagnostics. Consis-
tency of this type of format has to be maintained between the frontend declara-
tion and the logger.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14

ODB Structure 457

[ODB Dump] Specifes the complete dump of the ODB to the logging channel
before and after every run. The ODB content is dumped in one long ASCII
string redecting the status at begin-of-run event and at end-of-run event. These
special events have an ID of EVENT ID BOR and EVENTID_EOR and a serial
number equals to the current run number. An analyzer in the off-line analysis
stage can restore the ODB to its online state.

[Log messages] This is a bit-£eld for logging system messages. If a bit in this
£eld is set, the according system message is written to the logging channel as a
message event with an ID of EVENT ID MESSAGE (0x8002). The bits are 1
for error, 2 for info, 4 for debug, 8 for user, 16 for log, 32 for talk, 64 for call
messages and 255 to log all messages. For an explanation of these messages
refer to Buffer Manager, Event ID and Trigger .

[Mask] Specify which events to log. See Frontend code to learn how events are
selected by their ID and trigger mask. To receive all events, -1 is used for the
event ID and the trigger mask. By using a buffer other than the "SYSTEM"
buffer, event £lters can be realized. An analyzer can request all events from
the "SYSTEM" buffer, but only write acceptable events to a new buffer called
"FILTERED". When the logger request now only events from the new buffer
instead of the "SYSTEM" buffer, only £ltered events get logged.

[Event limit, Byte limit and Tape capacity] These £elds can be used to stop a run
when set to a non-zero value. The statistics values Events written, Bytes written
and Bytes written total are checked respectively against these limits. When one
of these condition is reached, the run is stopped automatically by the logger.
Updates of the statistics branch is performed automatically every so often. This
branch contains the number of events and bytes written. These two keys are
cleared at the beginning of each run. The Bytes written total and Files written
keys are only reset when a tape is rewound with the ODBEdit command rewind.
The Bytes written total entry can therefore be used as an indicator if a tape is
full. The Files written entry can be used off-line to determine how many £les on
tape have to be skipped in order to reach a specifc run.

[Subdir format, Current £lename] In the case the Subdir format is not empty,
this £eld will enable the placement of the data log £le into a sub directory. The
name of this subdirectory is composed by the given Subdir format string. Its
format follows the de£nition of the system call strftime() . Ordinary characters
placed in the format string are copied to s without conversion. Conversion spec-
ifers are introduced by a ‘%’ character, and are replaced in s as follows for the
most used one:

— Y : Year (ex: 2002)
— y: Year (range:00..99)
— m : Month (range: 01..12)

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure

458

— d: Day (range: 00..31) The other characters are: a, A, b, B, ¢, C,d, D, e,
E’ G’ g’ h’ H’ I’j’ k’ 1’ m’ M, n’ O’ p’ P’ r’ R’ S, S, t’ T’ u’ U’V’ W’W’ X’ X’
Y, Y, z, Z, +, %. (See man strftime() for explanations).

* [Current £lename] will retect the full path of the saved data £le.

6.14.5 ODB /Experiment Tree

Under this tree, the Midas system stores special features for the user in order to facili-
tate his job on controlling a run. Initially only one empty key is defned labeled Name
for the experiment name. The user can create four system keys in order to provide
extra run control Xexibility i.e.: '"Run Parameter/", "Edit on Start/", '"Lock when

running/" and "Security/".

Key name Type
Experiment DIR
Name STRING
Run Parameter DIR
Beam Polarity STRING
Beam Momentum FLOAT
2LT: log file name? STRING
1LT: file name? STRING
Comment STRING
Target Angle FLOAT
Target Material STRING
Edit on start DIR
Beam Momentum FLOAT
Beam Polarity STRING
Target Material STRING
Target Angle FLOAT
1LT: file name? STRING
Trigger 2 BOOL
2LT: log file name? STRING
Comment STRING
Write data BOOL
Lock when running DIR
Run Parameter DIR
Beam Polarity STRING
Beam Momentum FLOAT
2LT: log file name? STRING
1LT: file name? STRING
Comment STRING
Target Angle FLOAT
Target Material STRING
Security DIR
Password STRING
Allowed hosts DIR
host.sample.domain INT
pierre.triumf.ca INT

RRrRRPRRRRRRR RRrRRrRRRRR

RRrRRRRRR

256

256

256

256

256

256

256

256

256
256

256
256
256
256
256

32

Last Opn Mode Value

228 O

2h
2h
2h
2h
2h
2h
2h

==l N1

2h
2h
2h
2h
2h
2h
2h
2h
2h

OO0 00000 OoOOoO

2h
2h
2h
2h
2h
2h
2h

(= elNelo e NN

léh 0

>99d 0
>99d 0

MWW OWmo™

vl B

b
E

MWW o DD

3

RWD
RWD

chaos

negative

91

cnios
files.cni.zero
ch2 target

0

ch2

91

negative

ch2

0
files.cni.zero
n

cnios

ch2 target

Y

negative

91

cnios
files.cni.zero
ch2 target

0

ch2

#@D&3F56

0
0

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 459

pcch02. triumf.ca INT 1 4 >99d 0 RWD O
koslxl.triumf.ca INT 1 4 >99d 0 RWD O
koslx2.triumf.ca INT 1 4 >99d 0 RWD O
vwchaos. triumf.ca INT 1 4 >99d 0 RWD O
koslx0.triumf.ca INT 1 4 >99d 0 RWD O

Allowed programs DIR
mstat INT 1 4 >99d 0 RWD O
mhttpd INT 1 4 >99d 0 RWD O

Web Password STRING 1 32 léh 0 RWD pon4e@#@%SSDF2

* [Name] Specifes the name of the experiment.

* [Run Parameters] Specifes a £x directory name where you can create and de£ne
keys which can be presented at Run start for run condition selection. The actual
activation of any of those line is done via a "logical link key" de£ned in the Edit
on Start/ sub-tree. The links don’t have to point to run parameters necessarily.
They can point to any ODB key including the logger settings. It can make sense
to create a link to the logger setting which enables/disables writing of data. A
quick test run can then be made without data logging for example:

[local] />create key "/Experiment/Run parameters"

Then one or more run parameters can be created in that directory:

[local]l]Run parameters>create int "Run mode"
[local]l]Run parameters>create string Comment

[Edit on Start] Specifes a £x directory name where you can de£ne an ODB link (similar
to a symbolic link in UNIX) key to the pre-de£ned directory Run Parameters. Any link
key present in this directory pointing to a valid ODB key will be requested for input
during the run start procedure.

A new feature has been added to this section for the possibility of preventing the user to
change the run number from the web interface during the start sequence. By de£ning
the key /Experiment/Edit on Start/Edit run number as a boolean variable the ability of
editing the run number is enabled or disabled. By default if this key is not present the
run number is editable.

[local] />create key "Experiment/Edit on start"
[local] />cd "Experiment/Edit on start"
[local]l />1n "/Experiment/Run parameters/Run mode" "Run mode"

‘When a run is started from ODBE(it, all links in /Experiment/Edit on start are scanned
and read in:

[local] />start
Run mode [0]:1
Run number [3]:<return to accepts>
Are the above parameters correct?
([yl/n/q): <return to accept "y">
Starting run #2
Run #2 started

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14

ODB Structure 460

[local] />cd "Experiment/Edit on start"
[local] />create BOOL "Edit run number"

[Lock when running] Specifes a £x directory for def£ning logical link keys to be
set in Read only access mode while the run is in progress. The lock when running
can contains logical link to key(s) for setting these keys protection to "read only"
while running. In the example below, all the parameters under the declared tree
will be switched to read only preventing any parameters modi£cation during the
run.

[local] />create key "Experiment/Lock when running"
[local] />cd "Experiment/Lock when running”

[local]l />1n "/Experiment/Run parameters" "Run parameter"
[local]l />1n "/Logger/Write Data" "Write Data?"

[Security] Specifes a £x directory name where information regarding security
can be setup. By default, there is no restriction for user to connect locally or
remotely to a given experiment. If an access restriction has to be setup in order
to protect the experiment from unwilling access, a password mechanism has to
be de£ned.

[Password] Specifes the encrypted password for accessing current experiment.

[locall />passwd
Password : <xxxx>
Retype password:<xxxx>

To remove the full password checking mechanism, the ODB security sub-tree
has to be entirely deleted using the following command:

[local] />rm /Experiment/Security
Are you sure to delete the key

" /Experiment/Security"

and all its subkeys? (y/I[nl) y

After running the odb command passwd, four new sub-£elds will be present
under the Security tree.

— Password

— Allowed hosts

— Allowed programs
— Web Password

[Allowed hosts] Specifes a £x directory name where allowed remote hostname
can be defned for free access to the current experiment. While the access re-
striction can make sense to deny access to outsider to a given experiment, it can
be annoying for the people working directly at the back-end computer or for the
automatic frontend reloading mechanism (MS-DOS, VxWorks confguration).
To address this problem specifc hosts can be exempt from having to supply a
password and being granted of full access.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 461

[local] />cd "/Experiment/Security/Allowed hosts"
[local]l rhosts>create int myhost.domain
[local] rhosts>

‘Where <myhost>.<domain> has to be replaces by the full IP address of the
host requesting full clearance.

* [Allowed programs] Specifes a list of programs having full access to the ODB
independently of the node they running from.

[local] />cd "/Experiment/Security/Allowed programs"
[local] :S>create int mstat
[local] : 8>

* [Web Password] Specifes a separate password for the Web server access
(mhttpd task). If this £eld is active, the user will be requested to provide the

"Web Password" when accessing the requested experiment in a "Write Access".
In all condition the Read Only Access" is available.

6.14.6 ODB /History Tree

This tree is automatically created when the logger is started. The logger will create a
default sub-tree containing the following structure:

[local:midas:S] /History>ls -1 -r

Key name Type #val Size Last Opn Mode Value
History DIR
Links DIR
System DIR
Trigger per sec. /Equipment /Trigger/Statistics/Events per sec.

Trigger kB per sec. /Equipment/Trigger/Statistics/kBytes per sec.

[local:midas:S]/>cd /History/Links/System/
[local:midas:S] System>1s -1
Key name Type #Val Size Last Opn Mode Value

Trigger per sec. LINK 1 46 >99d 0 RWD /Equipment/Trigger/Statistics/Events per sec.
Trigger kB per sec. LINK 1 46 >99d 0 RWD /Equipment/Trigger/Statistics/kBytes per sec.

A second sub-tree is added to the /History by the mhttpd task Midas web server when
the button "History" on the main status page is pressed.

[local:midas:S] /History>ls -1 -r Display
Key name Type #val Size Last Opn Mode Value

Display DIR

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure

462

Default DIR
Trigger rate DIR
Variables STRING 2 32 36h 0 RWD
[0] System:Trigger per sec.
[1] System:Trigger kB per sec.
Factor FLOAT 2 4 36h 0 RWD
[o0] 1
[1] 1
Timescale INT 1 4 36h 0 RWD 3600
Zero ylow BOOL 1 4 36h 0 RWD y

This de£ne a default history display under the Midas web server as long as the reference
to "System" is correct. See History system for more information regarding explanation
on these £elds.

‘Where the 2 trigger £elds are symbolic links to the given path. The sub-tree System
defnes a "virtual" equipment and get by the system assigned a particular "History
Event ID".

6.14.7 ODB /Alarms Tree

This branch contains system information related to alarms. Currently the overall alarm
is checked once every minute. Once the alarm has been triggered, the message associ-
ated to the alarm can be repeated at a different rate. The structure is split in 2 sections.
The "Alarms" itself which de£ne the condition to be tested and the "Classes" which
de£nes the action to be taken when the alarm occurs. In order to make the system Sexi-
ble, beside some default message logging (Classes/Write system message), each action
may have a particular "detached script” spawned by it (Classes/Execute command).

odb -e expt -h host
[host :expt : Stopped] /Alarms>1ls -1r

Key name Type #val Size Last Opn Mode Value
Alarms DIR
Alarm system active BOOL 1 4 6h 0 RWD n
Alarms DIR
Test DIR
Active BOOL 1 4 31h 0 RWD n
Triggered INT 1 4 31h O RWD O
Type INT 1 4 3ln 0 RWD 3
Check interval INT 1 4 31h 0 RWD 60
Checked last DWORD 1 4 31h © RWD O
Time triggered firstSTRING 1 32 31h O RWD
Time triggered last STRING 1 32 31h O RWD
Condition STRING 1 256 31h 0 RWD
Alarm Class STRING 1 32 31h © RWD Alarm
Alarm Message STRING 1 80 3l1h 0 RWD
wc3_anode DIR
Active BOOL 1 4 31h 0 RWD n
Triggered INT 1 4 31h O RWD O

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

/Runinfo/Run number > 10

Run number became too large

6.14 ODB Structure 463

Type INT 1 4 3lh 0 RWD 3
Check interval INT 1 4 31h O RWD 10
Checked last DWORD 1 4 31h 0 RWD 958070825
Time triggered firstSTRING 1 32 31h 0 RWD
Time triggered last STRING 1 32 31h O RWD
Condition STRING 1 256 31h 0 RWD /equipment/chv/variables/chvv[6] <
Alarm Class STRING 1 32 31lh 0 RWD Alarm
Alarm Message STRING 1 80 31lh 0 RWD WC3 Anode voltage is too low
chaos DIR
Active BOOL 1 4 31h o0 RWD n
Triggered INT 1 4 31h O RWD O
Type INT 1 4 3ln 0 RWD 3
Check interval INT 1 4 31h O RWD 10
Checked last DWORD 1 4 31lh 0 RWD O
Time triggered firstSTRING 1 32 31h O RWD
Time triggered last STRING 1 32 31h O RWD
Condition STRING 1 256 31h 0 RWD /Equipment/Bl2Y/Variables/B12Y[2]
Alarm Class STRING 1 32 31lh 0 RWD Alarm
Alarm Message STRING 1 80 31lh 0 RWD CHAOS magnet has tripped.
Classes DIR
Alarm DIR
Write system messageBOOL 1 4 31lh 0 RWD vy
Write Elog message BOOL 1 4 31h O RWD n
System message interINT 1 4 31lh 0 RWD 60
System message last DWORD 1 4 31lh 0 RWD O
Execute command STRING 1 256 31lh 0 RWD
Execute interval INT 1 4 31h O RWD O
Execute last DWORD 1 4 31lh 0 RWD O
Stop run BOOL 1 4 3lh 0 RWD
Warning DIR
Write system messageBOOL 1 4 3l1h 0 RWD vy
Write Elog message BOOL 1 4 31h O RWD n
System message interINT 1 4 3l1h 0 RWD 60
System message last DWORD 1 4 3l1h 0 RWD O
Execute command STRING 1 256 3l1h 0 RWD
Execute interval INT 1 4 31h O RWD O
Execute last DWORD 1 4 3l1h 0 RWD O
Stop run BOOL 1 4 3lh 0 RWD n

* [Alarm system active] Overall Alarm enable Hag.
* [Alarms] Sub-tree de£ning each individual alarm condition.

* [Classes] Sub-tree defning each individual action to be performed by a pre-
de£ned and requested alarm.

6.14.8 ODB /Script Tree

This branch permits to invoke scripts from the web page. By creating the ODB tree
/Script every entry in that tree will be available on the Web status page with the name
of the key. Each key entry is then composed with a list of ODB £eld (or links). The

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 464

£1rst ODB £eld should be the executable command followed by as many arguments as
you wish to be passed to the script.

[host : :expt : Stopped] /Script>ls

BNMR Hold

Continue

Real

Test

Kill

[host :expt : Stopped] /Script>1ls -1lr Continue

Key name Type #val Size Last Opn Mode Value

Continue DIR
cmd STRING 1 128 3%9h 0 RWD /home/bnmr/perl/continue.pl
Name STRING 1 32 28s O RWD bnmrl
hold BOOL 1 4 3lh 0 RWD n

6.14.9 ODB /Alias Tree

This branch is not present until the user creates it. It is meant to contain symbolic
links list to any ODB location. It is used for the Midas web interface where all the
sub-trees will appear in the main window. By default the clicking of the button in the
web interface will spawn a new frame. To force the display of the alias link in the same
frame, a "&" has to be added to the name of the alias.

odbedit

1s

create key Alias

cd Alias

1n /Equipment/Trigger/Common "Trig Setting" <-- New frame

1n /Equipment/Trigger/Common "Trig Setting&" <-- Same frame

6.14.10 ODB /Elog Tree

This branch describes the Elog settings used through the Midas web server. See
mhttpd task for setting up the different Elog page display.

[local:midas:S] /Elog>1ls -1lr

Key name Type #val Size Last Opn Mode Value
Elog DIR
Email STRING 1 64 25h 0 RWD midasetriumf.ca
Display run number BOOL 1 4 25h 0 RWD vy
Allow delete BOOL 1 4 25h 0 RWD n
Types STRING 20 32 25h 0 RWD

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 465

[0] Routine
[1] Shift summary
[2] Minor error
[3] Severe error
[4] Fix
[5] Question
[6] Info
[7] Modification
[8] Reply
[9] Alarm
[10] Test
[11] Other
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
Systems STRING 20 32 25h 0 RWD
[0] General
[1] DAQ
[2] Detector
[3] Electronics
[4] Target
[5] Beamline
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
Buttons

8h

24h

3d

74

Host name myhost.triumf.ca
SMTP host STRING 1 64 25h 0 RWD trmail.triumf.ca

* [Email] De£nes the Email address for Elog reply.

* [Display run number] Allows to disable the run number display in the Elog en-
tries.

* [Allow delete] Flag for permiting the deletion of Elog entry.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 466

* [Types] Pre-de£ned types displayed when composing an Elog entry. A maximum
of 20 types are available. The list will be terminated by the encounter of the £rst
blank type.

* [Systems] Pre-defned categories displayed when composing an Elog entry. A
maximum of 20 types are available. The list will be terminated by the encounter
of the £rst blank type.

* [SMTP host] Mail server address for routing the composed Elog message to the
destination.

* [Buttons] Permits to recall up to four possible time span for the Elog command.
* [Host name] Host name.

* [Email <...>] Email address to where the message should be sent when com-
posing it under "Systems" of the type <...>,

6.14.11 ODB /Programs Tree

System created tree containing task specifc characteristics such as the watchdog and
alarm condition. See Alarm System .

Key name Type #val Size Last Opn Mode Value
Programs DIR
EBuilder DIR

Required BOOL 1 4 0s 0 RWD vy
Watchdog timeout INT 1 4 0s 0 RWD 10000
Check interval DWORD 1 4 0s 0 RWD 10000
Start command STRING 1 256 0s 0 RWD mevb -D
Auto start BOOL 1 4 Os 0 RWD n
Auto stop BOOL 1 4 Os 0 RWD n
Auto restart BOOL 1 4 Os 0 RWD n
Alarm class STRING 1 32 0s 0 RWD Alarm
First failed DWORD 1 4 0s 0 RWD O

6.14.12 ODB /Lazy Tree

Backup facility Tree. Created with default parameters on the £rst activation of
lazylogger task. This task connects to a de£ned channel (i.e: Tape). when started.
Multiple instance of the program can run contemporary.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODBS

tructure

467

Opn

Mode

Value

Key name Type
Lazy DIR
Tape DIR
Settings DIR
Maintain free space (INT
Stay behind INT
Alarm Class STRING
Running condition STRING
Data dir STRING
Data format STRING
Filename format STRING
Backup type STRING
Execute after rewindSTRING
Path STRING
Capacity (Bytes) FLOAT
List label STRING
Execute before writiSTRING
Execute after writinSTRING
Statistics DIR
Backup file STRING
File size [Bytes] FLOAT
KBytes copied FLOAT
Total Bytes copied FLOAT
Copy progress [%] FLOAT
Copy Rate [bytes perFLOAT
Backup status [%] FLOAT
Number of Files INT
Current Lazy run INT
List DIR
TWO0076 INT
6.14.13 ODB /EBuilder Tree

RRRRRRRERRRERRERRERRR

RRRERRRRRRR

[o]
[1]
[2]

32

128
256
128

64
128

128
64

128

BB R R

IS

23h
23h
23h
23h
23h
23h
23h
23h
23h
23h
23h
3h

23h
23h

3h
3h
3h
3h
3h
3h
3h
3h
3h

3h

0O 000000000 O0OO0OO0OOoO

O 0O 00000 OoOOo

5575
5576
5577

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWDE
RWDE
RWDE
RWDE
RWDE
RWDE
RWDE
RWDE
RWDE

RWD

15
-1

ALWAYS
/data_onl/current
YBOS

run%05d.ybs

Tape

ask for tape.sh
/dev/nsto0

4.8e+10

tw0078

lazy prewrite.csh
rundb_addrun.pl

run05627.ybs
2.00176e+09
2.00176e+09
2.00176e+09
100
6.21462e+06
4.17034

1

5627

The Event Builder tree is created by mevb task and is placed in the Equipment list.

Key name

EBuilder
Settings

Event ID
Trigger mask

Buf f

er

Format
Event mask

host
Statisti

name
cs

Events sent
Events per sec.

WORD
WORD
STRING
STRING
DWORD
STRING
DIR
DOUBLE
DOUBLE

#val

Size

32
32

64

Last Opn Mode Value

65h
65h
65h
65h
65h
3h

3h
3h

(==l elNo o N

o o

RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD

SYSTEM
YBOS

3
myhost

653423
1779.17

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 468

kBytes per sec. DOUBLE 1 8 3h 0 RWD O
Channels DIR
Fragl DIR
Settings DIR
Event ID WORD 1 2 65h 0 RWD 1
Trigger mask WORD 1 2 65h 0 RWD 65535
Buffer STRING 1 32 65h 0 RWD YBUF1
Format STRING 1 32 65h 0 RWD YBOS
Event mask DWORD 1 4 65h 0 RWD 1
Statistics DIR
Events sent DOUBLE 1 8 3h 0 RWD 653423
Events per sec. DOUBLE 1 8 3h 0 RWD 1779.17
kBytes per sec. DOUBLE 1 8 3h 0 RWD O
Frag2 DIR
Settings DIR
Event ID WORD 1 2 65h 0 RWD 5
Trigger mask WORD 1 2 65h 0 RWD 65535
Buffer STRING 1 32 65h 0 RWD YBUF2
Format STRING 1 32 65h 0 RWD YBOS
Event mask DWORD 1 4 65h 0 RWD 2
Statistics DIR
Events sent DOUBLE 1 8 3h 0 RWD 653423
Events per sec. DOUBLE 1 8 3h 0 RWD 1779.17
kBytes per sec. DOUBLE 1 8 3h 0 RWD O

6.14.14 ODB /Custom Tree

‘Web string for custom web page. Editable ONLY from your Web browser through
Custom page .

Key name Type #val Size Last Opn Mode Value
WebLtno& STRING 1 2976 25h 0 RWD <multi-line>
<ldoctype html public "-//w3c//dtd html 4.0 transitional//en">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.76 [en] (Windows NT 5.0; U) [Netscapel">
<meta name="Author" content="Pierre-Andr?Amaudruz">
<title>Set value</title>
</head>
<body text="#000000" bgcolor="#FFFFCC" link="#FF0000" v1ink="#800080" alink="#0000FF">
<form method="GET" action="http://myhost.triumf.ca:8081/CS/WebLtno&">
<input type=hidden name=exp value="ltno">
<center><table CELLSPACING=1 CELLPADDING=1 COLS=3 WIDTH="100%" BGCOLOR="#99FF99" >
<caption>LTNO
Custom Web Page</caption>

<tr BGCOLOR="#FFCC99">

<td>Actions:
<input type=submit name=cmd value=Status>

<input type=submit name=cmd value=Start>

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 469

<input type=submit name=cmd value=Stop>

<td BGCOLOR="#66FFFF">Polarity section:

Run#: <odb src="/runinfo/run number"s>

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number" edit=1></td>
</tr>

</table></center>

<i>

LTNO help</i>

</body>

</html>

6.14.15 Hot Link

It is often desirable to modify hardware parameters like discriminator levels or trigger
logic connected to the frontend computer. Given the according hardware is accessible
from the frontend code, theses parameters are easily controllable when a hot-link ODB
is established between the frontend and the ODB itself.

HotLink process

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 470

Contral Prograrm

oh_set wvalue(Equipment/ Trigger/Settings/evel1", 3217

Cnling Database

{EquiprmentsTrigoer/Settings/
Lewvell 321 £

Level? 123
hot-
link Front-end
struct §
int levell:
int level2:

} trigger_settings;

Callback routine E”QQELUPUE’[EH %
ropagates
g c%agnges set(trigoer_settings . levell),
to hardware set(trigoer_settings.evel2),
'
db_open_record"Eduipments
Create hot-link Trigger/Settings”,
In main() routine &trigger_settings,

trigger_update);

Figure 32: HotLink process

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 471

First the parameters have to be def£ned in the ODB under the Settings tree for the given
equipment. Let’s assume we have two discriminator levels belonging to the trigger

electronics, which should be controllable. Following commands de£ne these levels in
the ODB:

[local]l />cd /Equipment/Trigger/
[local] Trigger>create key Settings
[local] Trigger>cd Settings

[local] Settings>create int levell
[local] Settings>create int level2
[local] Settings>ls

The frontend can now map a C structure to these settings. In order to simplify this
process, ODBEdit can be requested to generate a header £le containing this C struc-
ture. This £le is usually called event.h. It can be generated in the current directory
with the ODB command make which generates in the current directory the header £le
experim.h :

[local] Settings>make

Now this £le can be copied to the frontend directory and included in the frontend
source code. It contains a section with a C structure of the trigger settings and an
ASCII representation:

typedef struct {
INT levell;
INT level2;
TRIGGER_SETTINGS;

#define TRIGGER SETTINGS STR(name) char * name[] = {\

n[‘]n’\

"levell = INT : O",\
"level2 = INT : O",\
nn’\

NULL

This defnition can be used to defne a C structure containing the parameters in
frontend.c:

#include <experim.h>

TRIGGER_SETTINGS trigger settings;

A hot-link between the ODB values and the C structure is established in the
frontend _init() routine:

INT frontend init()

{

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 472

HNDLE hDB, hkey;
TRIGGER_SETTINGS_STR(trigger settings str);

cm_get_experiment_ database (&hDB, NULL) ;

db_create record(hDB, O,
" /Equipment/Trigger/Settings",
strcomb (trigger settings_str)):;

db_find key(hDB, O,
" /Equipment/Trigger/Settings", &hkey);

if (db_open record(hDB, hkey,
&trigger settings,
sizeof (trigger settings), MODE_ READ,
trigger update) != DB_SUCCESS)

cm_msg (MERROR, "frontend init",
"Cannot open Trigger Settings in ODB") ;
return -1;

return SUCCESS;

The db_create_record() function re-creates the settings sub-tree in the ODB from the
ASCII representation in case it has been corrupted or deleted. The db_open_record()
now establishes the hot-link between the settings in the ODB and the trigger_settings
structure. Each time the ODB settings are modifed, the changes are written to the
trigger_settings structure and the callback routine trigger update() is executed after-
wards. This routine has the task to set the hardware according to the settings in the
trigger_settings structure.

It may look like:

void trigger update (INT hDB, INT hkey)

printf ("New levels: %d %d4",
trigger settings.levell,
trigger settings.level2);

Of course the printf() function should be replaced by a function which accesses the
hardware properly. Modifying the trigger values with ODBEJit can test the whole
scheme:

[locall />cd /Equipment/Trigger/Settings
[local] Settings>set levell 123
[local] Settings>set level2 456

Immediately after each modifcation the frontend should display the new values. The
settings can be saved to a £le and loaded back later:

[locall />cd /Equipment/Trigger/Settings

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 473

[local] Settings>save settings.odb
[local] Settings>set levell 789
[local] Settings>load settings.odb

The settings can also be modifed from any application just by accessing the ODB.
Following listing is a complete user application that modi£es the trigger level:

#include <midas.h>
main ()

HNDLE hDB;
INT level;

cm_connect_experiment ("", "Sample", "Test",
NULL) ;
cm_get experiment database (&hDB, NULL) ;

level = 321;

db set_value (hDB, 0,
" /Equipment/Trigger/Settings/Levell"”,
&level, sizeof (INT), 1, TID_INT);

cm_disconnect_experiment () ;

The following £gure summarizes the involved components:

To make sure a hot-link exists, one can use the ODBEdit command sor (show open
records):

[local] Settings>cd /
[local] />sor
/Equipment /Trigger/Settings open 1 times by ...

6.14.16 History system

The history system is an add-on capability build in the data logger (see mlogger task)
to record information in parallel to the data logging. This information is recorded with
a time stamp and saved into "data base £le" like for later retrieval. One set of £le is
created per day containing all the requested history events.

The history is working only if the logger is running, but it is not necessary to have any
channel enabled.

The de£nition of the history event is done through two different means:
* frontend history event: Each equipment has the capability to generate "history

data" if the particular history £eld value is different then zero. The value will
redect the periodicity of the history logging (see The Equipment structure).

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 474

* "Virtual History event": Composed within the Online Database under the spe-
cifc tree "/History/Links" (see ODB /History Tree)

Both defnition mode takes effects when the data logger gets a "start run" transition.
Any modifcation during the run is not applied until the next run is started.

* [frontend history event] As mentioned earlier, each equipment can be enabled to
generate history event based on the periodicity of the history value (in second!).
The content if the event will be completely copied into the history £les using the
de£nition of the event as tag names for every element of the event.

The history variable name for each element of the event is composed following one of
the rules below:

* [bank event] /equipment/<...>/Variables/<bank name>[] is the only reference
of the event, the history name is composed of the bank name follwed by the
corresponding index of the element.

[bank event] /equipment/<...>>/Settings/Names <bank name>>[] is present, the
history name is composed of the corresponding name found in the "Names
<bank_name>" array. The size of this array should match the size of the
/equipment/<...>/Variables/<bank name[]> .

[host :chaos:Running] Target>ls -1 -r

Key name Type #val Size Last Opn Mode Value
Target DIR
settings DIR
Names TGT STRING 7 32 10h O RWD

[o] Time
[1] Cryostat vacuum
[2] Heat Pipe pressure
[3] Target pressure
[4] Target temperature
[5] Shield temperature
[6] Diode temperature

Common DIR

Variables DIR

TGT_ FLOAT 7 4 10s O RWD

[o] 114059
[1] 4.661
[2] 23.16
[3] -0.498
[4] 22.888
[5] 82.099
[6] 40

Statistics DIR

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 475

e [£xed event] The names of the individual element under
/equipment/<...>/variables/ will be used for the history name composi-
tion.

* [£xed event with array] If the /equipment/<...>>/Settings/Names[] exists, each
element of the array will be referenced using the corresponding name of the
/Settings/Names[] array.

* [ODB history event]

6.14.17 Alarm System

The alarm system is built in and part of the main experiment scheduler. This means
no separate task is necessary to benefcate from it, but this feature is active during
ONLINE mode ONLY . Alarm setup and activation is done through the Online Data-
Base. Alarm system includes several other features such as: sequencing control of the
experiment. The alarm capabilities are:

* Alarm setting on any ODB variables against threshold parameter.
* Alarm check frequency
* Alarm trigger frequency

* Customizable alarm scheme, under this scheme multiple choice of alarm type
can be selected.

* Program control on run transition.

Beside the setup through ODBEdit, the Alarm can also be setup through the Midas web
page..

Midas Web Alarm setting display

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.14 ODB Structure 476

| reastalalare [nlane ot | St |
: e

Alurm Blwle [Firsi driggered Class | CondiLien Cmrreml valee
Mot Dieshled| - |ALsmn Founinfo R wescber = 100 T
BEtdp Dieshiled| - | Pasae ecuipmenttingi odbivartabies RE state = 1 [e
Fhu_meniter 0K = P ecpipmentindio odbivarinblea Fluos mositor comtz=0. @
| = Prn--n' rogrsm: abarms
| Alimm State | First triggered Class |) Comiition
| o Internal alosmes

Alarm Gtate |First triggered Class | Condition Mesnge

Figure 33: Midas Web Alarm setting display

Midas Web Alarm setting display

Find | _Create | Delete | _Alarms | Programs | Stats | Help |
Creats Elog from this page.
| / Programs / Nova 014019 /

‘ Ke}_r ‘ Value
Auto start n

Auto stop n

!Auto restart n

Required n
‘Stafjt conhnanéi ‘j empty)

\Alann Class ‘ {empty)

Checked last 965499473 {0x398C3AS53)
‘Alarm count 0 (0x0)

‘Watchdog timeout 110000 {0x2710)

Figure 34: Midas Web Alarm setting display

Midas Web Alarm Program status display

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 477

i MIDAS experiment " irinae” Sat Ang S 11:17:30 2K
| Alerms | Statws |

Programn RFuonming on hest Alarn class Aunterestart

2 No Stop ODBEE
IEmAT rE INEEEIENN - No | IR

MSiatns - Mo Siop MStss
Lagger - Mo Siop Lapger J

ove axs010 [N

3 Mo Stop Nova_01ap18 |

Figure 35: Midas Web Alarm Program status display

Internal features - Top - Data format

6.15 Quick Start

Components - Top - Internal features

This section is under revision to better recect the latest installation and basic op-
eration of the Midas package.

... This section will... describes step-by-step the installation procedure of the Midas
package on several platform as well as the procedure to run a demo sample experiment.
In a second stage, the frontend or the analyzer can be moved to another computer to
test the remote connection capability.

The Midas Package source and binaries can be found at : PSTI or at TRIUMF . An
online CVS web site is also available for the latest developments.

Even though Midas is available for multiple platforms, the following description are
for Linux installation and Windows installation.

6.15.1 Linux installation

1. Extraction:

* Compressed £les The compressed £1e contains the source and binary code.
It does expand under the directory name of midas. This extraction can be
done at the user level.

cd /home/mydir
tar -zxvf midas-1.9.x.tar.gz

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 478

The midas directory structure will be composed of several subdirectories

such as:
>1ls
COPYING doc/ examples/ include/ 1linux/ makefile.nt mscb/
cvs/ drivers/ gui/ java/ Makefile* mcleanup* src/

* RPM Current RPM is not fully up-to-date. We suggest that you use
the compressed £les or the CVS repository. In the case of the rpm, the
binaries are placed in the /usr/local/bin /usr/local/include /usr/local/lib.

* CVS The source code can be extracted from the CVS repository. The
following two anonymous commands can used for respectively checking
out (£rst time) and updating the full midas tree. The password required
for access is "cvs".

cvs -e ssh -d :ext:cvsemidas.psi.ch:/usr/local/cvsroot checkout midas
cvs -e ssh -d :ext:cvsemidas.psi.ch:/usr/local/cvsroot update

2. Installation: The installation consists in placing the image £les in the
fasr/local/ directories. This operation requires superuser privilege. The open
"install" from the Make£le will automatically do this installation for you.

cd /home/mydir/midas
su -
make install

3. Confguration: Several system £les needs to be modifed for the full Midas
implementation.

« /etc/services : For remote access. Inclusion of the midas service. Add
following line:

midas service
midas 1175/tcp # Midas server

« /etc/xinetd.d/midas : Daecmon defnition. Create new £le named midas

service midas

{

flags = REUSE NOLIBWRAP
socket_type = stream

wait = no

user = root

server = /usr/local/bin/mserver
log_on_success += USERID HOST PID

log on failure += USERID HOST

disable = no

}

* /etc/ld.so.conf : Dynamic Linked library list. Add directory pointing to
location of the midas.so £le (add /usr/local/lib).

/usr/local/lib

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

utils/
vxworks/

6.15 Quick Start 479
The system environment LD_LIBRARY_PATH can used instead.
* /etc/exptab : Midas Experiment de£nition £le (see below).
4. Experiment defnition: Midas system supports multiple experiment running

contemporary on the same computer. Even though it may not be ef£cient, this ca-
pability makes sense when the experiments are simple detector lab setups which
shared hardware resources for data collection. In order to support this feature,
Midas requires a uniquely identifed set of parameter for each experiment that is
used to de£ne the location of the Online Database.

Every experiment under Midas has its own ODB. In order to differentiate them,
an experiment name and directory are assigned to each experiment. This allows
several experiments to run concurrently on the same host using a common Midas
installation.

‘Whenever a program participating in an experiment is started, the experiment
name can be specifed as a command line argument or as an environment vari-
able.

A list of all possible running experiments on a given machine is kept in the £le
exptab. This £le exptab is expected by default to be located under /etc/exptab.
This can be overwritten by the Environment variables MIDAS_EXPTAB.

exptab £le is composed of one line per experiment de£nition. Each line contains
three parameters, i.e: experiment name, experiment directory name and user
name. Example:

#
Midas experiment list
midas /home/midas/online midas

decay /home/slave/decay dag slave

Experiments not defned into exptab are not accessible remotely, but can still be
accessed locally using the Environment variables MIDAS_DIR if defned. This
environment superceed the exptab de£nition.

. Compilation & Build: You should be able to rebuild the full package once the

Midas tree structure has been placed in your temporary directory. The compila-
tion and link will try to generate the rmidas application which requires ROOT.
The application mana will also be compiled for HBOOK and ROOT. Look in
the make listing below for the HAVE_HBOOK, HAVE_ROOT.

> cd /home/mydir/midas
> make

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB

-o linux/lib/midas.o src/midas.c

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB

-o linux/lib/system.o src/system.c

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB

-o linux/lib/mrpc.o src/mrpc.c

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

-DOS_LINUX
-DOS_LINUX
-DOS_LINUX

-DOS_LINUX

-fPIC

-fPIC

-fPIC

-fPIC

6.15 Quick Start 480

-o linux/lib/odb.o src/odb.c

cc -¢ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-o linux/lib/ybos.o src/ybos.c

cc -¢ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-o linux/lib/ftplib.o src/ftplib.c

rm -f linux/lib/libmidas.a

ar -crv linux/lib/libmidas.a linux/lib/midas.o linux/lib/system.o linux/lib/mrpc.o
linux/lib/odb.o linux/lib/ybos.o linux/lib/ftplib.o

a - linux/lib/midas.o

a - linux/lib/system.o

a - linux/lib/mrpc.o

a - linux/lib/odb.o

a - linux/lib/ybos.o

a - linux/lib/ftplib.o

rm -f linux/lib/libmidas.so

1d -shared -o linux/lib/libmidas.so linux/lib/midas.o linux/lib/system.o
linux/lib/mrpc.o linux/lib/odb.o linux/lib/ybos.o linux/lib/ftplib.o -lutil
-lpthread -1c

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-o linux/lib/mana.o src/mana.c

cc -Dextname -DHAVE HBOOK -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib

-DINCLUDE FTPLIB -DOS LINUX -fPIC -o linux/lib/hmana.o src/mana.c

g++ -DHAVE ROOT -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB
-DOS_LINUX -fPIC -D_REENTRANT -I/homel/midas/ root/include -o linux/lib/rmana.o
src/mana.c

g++ -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINU

-fPIC -o linux/lib/mfe.o src/mfe.c
cc -Dextname -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib
-DINCLUDE FTPLIB -DOS LINUX -fPIC -o linux/lib/fal.o src/fal.c

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mserver src/mserver.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mhttpd src/mhttpd.c src/mgd.c -lmidas -lutil -lpthread -1m

g++ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-DHAVE_ROOT -D REENTRANT -I/homel/midas/root/include

-o linux/bin/mlogger src/mlogger.c -lmidas

-L/homel/midas/root/lib -1Core -1Cint -1lHist -1Graf -1Graf3d -1Gpad -1Tree

-1Rint -1lPostscript -1Matrix -1Physics -1lpthread -1lm -1dl -rdynamic -lutil -1lpthread
cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_ LINUX -fPIC
-o linux/bin/odbedit src/odbedit.c src/cmdedit.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mtape utils/mtape.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mhist utils/mhist.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mstat utils/mstat.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mcnaf utils/mcnaf.c drivers/bus/camacrpc.c -lmidas -lutil -lpthread
cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mdump utils/mdump.c -lmidas -1z -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/lazylogger src/lazylogger.c -lmidas -1z -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mchart utils/mchart.c -lmidas -lutil -lpthread

cp -f utils/stripchart.tcl linux/bin/.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 481

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-o linux/bin/webpaw utils/webpaw.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-o linux/bin/odbhist utils/odbhist.c -lmidas -lutil -1lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/melog utils/melog.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/mlxspeaker utils/mlxspeaker.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-o linux/bin/dio utils/dio.c -1lmidas -lutil-lpthread

g++ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS LINUX -fPIC
-DHAVE_ROOT -D REENTRANT -I/homel/midas/root/include -o linux/bin/rmidas src/rmidas.c
-lmidas -L/homel/midas/root/lib -1lCore -1Cint -1Hist -1Graf -1Graf3d -1Gpad

-1Tree -1Rint -1lPostscript -1Matrix -1Physics -1Gui -lpthread -1lm -1dl -rdynamic
-lutil -1lpthread

6. Demo examples: The midas £le structure contains examples of code which
can be (should be) used for template. In the midas/examples/experiment you
will £nd a full set for frontend and analysis code. The building of this example
is performed with the Makeg£le of this directory. The reference to the Midas
package is done relative to your current location (../../include). In the case the
content of this directory is copied to a different location (template), you will need
to modify the local parameters within the Make£le

B o o o e oo e e
The following lines define direcories. Adjust if necessary
#
DRV_DIR = ../../drivers/bus
INC DIR = ../../include
LIB_DIR = ../../linux/1ib
Replace by:
B o o o e oo e e
The following lines define direcories. Adjust if necessary
#
DRV_DIR = /home/mydir/midas/drivers/bus
INC DIR = /usr/local/include
LIB_DIR = /usr/local//lib

> cd /home/mydir/midas/examples/experiment

> make

gcc -g -02 -Wall -g -I../../include -I../../drivers/bus -DOS_LINUX -Dextname -c
-o camacnul.o ../../drivers/bus/camacnul.c

g++ -g -02 -Wall -g -I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o
frontend frontend.c

camacnul.o ../../linux/lib/mfe.o ../../linux/lib/libmidas.a -1lm -1z -lutil
-lnsl -lpthread

g++ -D_REENTRANT -I/homel/midas/root/include -DHAVE ROOT -g -02 -Wall -g
-I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o analyzer.o

-c analyzer.c

g++ -D_REENTRANT -I/homel/midas/root/include -DHAVE ROOT -g -02 -Wall -g
-I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o adccalib.o -c adccalib.c

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 482

g++ -D REENTRANT -I/homel/midas/root/include -DHAVE ROOT -g -02 -Wall -g
-I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o adcsum.o -c adcsum.c
g++ -D REENTRANT -I/homel/midas/root/include -DHAVE ROOT -g -02 -Wall -g
-I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o scaler.o -c scaler.c
g++ -o analyzer ../../linux/lib/rmana.o analyzer.o adccalib.o adcsum.o scaler.o
../../linux/lib/libmidas.a -L/homel/midas/root/lib -1Core -1Cint -1Hist -1Graf
-1Graf3d -1Gpad -1Tree -1lRint -1lPostscript -1Matrix -1Physics -lpthread -1m -1d1
-rdynamic -1Thread -1m -1z -lutil -1lnsl -lpthread

For testing the system, you can start the frontend as follow:

> frontend

Event buffer size : 100000

Buffer allocation : 2 x 100000

System max event size : 524288

User max event size : 10000

User max frag. size : 5242880

of events per buffer : 10

Connect to experiment ...Available experiments on local computer:

0 : midas

1 : root

Select number:0 <---- predefined experiment from exptab file
Sample Frontend connected to <local>. Press "!" to exit 17:27:47
Run status Stopped Run number 0

Equipment Status Events Events/sec Rate[kB/s] ODB->FE FE->0DB
Trigger OK 0 0.0 0.0 0 0

Scaler OK 0 0.0 0.0 0 0

In a different terminal window

>odbedit

Available experiments on local computer:
0 : midas

1 : root

Select number: 0

[local:midas:S]/>start now

Starting run #1

17:28:58 [ODBEdit] Run #1 started
[local:midas:R]/>

The run has been started as seen in the frontend terminal window. See the /ex-
amples/experiment/frontend.c for data generation code.

Sample Frontend connected to <local>. Press "!" to exit 17:29:07
Run status: Running Run number 1
Equipment Status Events Events/sec Rate[kB/s] ODB->FE FE->0DB

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 483

Trigger OK 865 99.3 5.4 0 9
Scaler OK 1 0.0 0.0

6.15.2 Windows installation

1. Extraction:

2. Installation:

3. Confguration:

4. Experiment defnition:

5. Compilation:

6. Demo examples:

Components - Top - Internal features Internal features - Top - Data format
The Midas system provides several off-the-shelf programs to control, monitor, debug
the data aquisition system. Starting with the main utility (odbedit) which provide ac-
cess to the Online data base and run control.

* odbedit task : Online Database Editor

— ODB Structure

* Midas Frontend application : Midas Frontend application

* mstat task : Midas ASCII status report

* analyzer task : Midas data analyzer

— MIDAS Analyzer

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15

Quick Start

484

mlogger task : Midas data logger

lazylogger task : Background data logger

mdump task : Event dump application

mevb task : Event Builder application

mspeaker, mlxspeaker tasks : Speech synthesizer
mcnaf task : CAMAC standalone application
mhttpd task : Midas Web server

melog task : Electronic entry application

mhist task : History retrieval application

mchart task : Standalone Chart display application
mtape task : Tape device manipulator

dio task : Direct IO provider

stripchart.tcl £le : Tcl/Tk for chart display
rmidas task : Root/Midas Simple GUI application
hvedit task : High Voltage Slow Control GUI

Midas Remote server : Midas Remote server

6.15.3 Midas Frontend application

The purpose of the Midas Frontend application is to collect data from the hardware
and transmit this information to a central place where data logging and analysis can be
performed. This task is achieved with a) a specifc code written by the user describing
the sequence of action to acquire the hardware data and b) a framework code handling
the data “ow control, data transmission and run control operation. From Midas version
1.9.5 a new argument (-i index) has been introduce to facilitate the multiple frontend

confguration operation required for the Event Builder Functions.

Arguments
— [-h]: help
— [-h hostname] : host name (see odbedit task)

— [-e exptname] : experiment name (see odbedit task)

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 485

— [-D] : Become a Daemon.

— [-O]: Become a Daemon but keep stdout

— [-d]: Used for debugging.

— [-1index] : Set frontend index (used with mevb task).

» Usage

6.15.4 odbedit task

odbedit refers to the Online DataBase Editor. This is the main application to interact
with the different components of the Midas system.

See ODB Structure for more information.

* Arguments
— [-h]: help.

— [-h hostname] :Specifes host to connect to. Must be a valid IP host name.
This option supersedes the MIDAS SERVER_HOST environment vari-
able.

— [-e exptname] :Specifes the experiment to connect to. This option super-
sedes the MIDAS_EXPT NAME environment variable.

— [-c command] :Perform a single command. Can be used to perform oper-
ations in script £les.

— [-c @commandFile] :Perform commands in sequence found in the
commandFile.

— [-s size] : size in byte (for creation). Specify the size of the ODB £le to
be created when no share £le is present in the experiment directory (default
128KB).

— [-d ODB tree] :Specify the initial entry ODB path to go to.

» Usage ODBedit is the MIDAS run control program. It has a simple command
line interface with command line editing similar to the UNIX tcsh shell. Follow-
ing edit keys are implemented:

— [Backspace] Erase character left from cursor
— [Delete/Ctrl-D] Erase character under cursor
— [Ctrl-W/Ctrl-U] Erase current line

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 486

[Ctrl-K] Erase line from cursor to end

[Left arrow/Ctrl-B] Move cursor left

[Right arrow/Ctrl-F] Move cursor right
[Home/Ctrl-A] Move cursor to beginning of line
[End/Ctrl-E] Move cursor to end of line

[Up arrow/Ctrl-P] Recall previous command

— [Down arrow/Ctrl-N] Recall next command

[Ctrl-F] Find most recent command which starts with current line

[Tab/Ctrl-I] Complete directory. The command Is /Sy <tab> yields to Is
/System.

* Remarks

— ODBedit treats the hierarchical online database very much like a £le sys-
tem. Most commands are similar to UNIX £le commands like 1s, cd,
chmod, In etc. The help command displays a short description of all com-
mands.

— From Midas version 1.9.5, the ODB content can be saved into XML format
if the £le extension is .xml

C:\odbedit
[local:midas:8]/>save odb.xml
[local:midas:S]/>q
more odb.xml
<?xml version="1.0" encoding="IS0-8859-1"?>
<!-- created by ODBEdit on Wed Oct 06 22:48:26 2004 -->
<dir name="root">
<dir name="System">
<dir name="Clients">
<dir name="3880">
<key name="Name" type="STRING" size="32">ebfeOl</key>
<key name="Host" type="STRING" size="256">pierre2</key>
<key name="Hardware type" type="INT">42</key>
<key name="Server Port" type="INT">4658</key>

[local:midas:Stopped] />help

Database commands ([] are options, <> are placeholders):

alarm - reset all alarms

cd <dirs> - change current directory

chat - enter chat mode

chmod <mode> <key> - change access mode of a key
l=read | 2=write | 4=delete

cleanup - delete hanging clients

copy <src> <dest> - copy a subtree to a new location

create <type> <key> - create a key of a certain type

create <type> <key>[n] - create an array of size [n]

del/rm [-1] [-f] \<key> - delete a key and its subkeys

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 487

-1 follow links

-f force deletion without asking
exec <key>/<cmd> - execute shell command (stored in key) on server
find <patterns> - find a key with wildcard pattern
help/? [command] - print this help [for a specific command]
hi [analyzer] [id] - tell analyzer to clear histos
1n <source> <linkname> - create a link to <sources> key
load <file> - load database from .ODB file at current position
ls/dir [-1lhvrp] [<pat>] - show database entries which match pattern

-1 detailed info

-h hex format

-V only value

-r show database entries recursively

-p pause between screens
make [analyzer name] - create experim.h
mem - show memeory Usage
mkdir <subdir> - make new <subdir>
move <key> [top/bottom/[n]] - move key to position in keylist
msg [user] <msg> - compose user message
old - display old messages
passwd - change MIDAS password
pause - pause current run
pwd - show current directory
resume - resume current run
rename <old> <new> - rename key
rewind [channel] - rewind tapes in logger
save [-c -8] <file> - save database at current position

in ASCII format

-c as a C structure

-8 as a #define’d string
set <key> <value> - set the value of a key
gset <key>[i] <value> - gset the value of index i
gset <key>[*] <value> - set the value of all indices of a key
gset <key>[i..j] <value> - set the value of all indices i..j
scl [-w] - show all active clients [with watchdog infol
shutdown <client>/all - shutdown individual or all clients
sor - show open records in current subtree
start [number] I[now] [-v] - start a run [with a specific number], [without questionl]

[-v verbose the transaction to the different clients]
stop [-v] - stop current run
[-v verbose the transaction to the different clients]
trunc <key> <index> - truncate key to [index] values
ver - show MIDAS library version
webpasswd - change WWW password for mhttpd
wait <keys> - wait for key to get modified
quit/exit - exit
* Example

>odbedit -c stop
>odbedit
[hostxxx:exptxxx:Running] /> ls /equipment/trigger

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 488

6.15.5 mstat task

mstat is a simple ASCII status display. It presents in a compact form the most valuable
information of the current condition of the Midas Acquisition system. The display is
composed at the most of 5 sections depending on the current status of the experiment.
The section displayed in order from top to bottom refer to:

* Run information.

 Equipment listing and statistics. if any frontend is active.
* Logger information and statistics if mlogger is active.

* Lazylogger status if lazylogger is active.

* Client listing.

* Arguments

— [-h]: help
— [-h hostname] : host name (see odbedit task)
— [-e exptname] : experiment name (see odbedit task)

"!"

— [-1]: loop. Forces mstat to remain in a display loop. Enter "!" to terminate

the command.

— [-w time] : refresh rate in second. Specifes the delay in second before
refreshing the screen with up to date information. Default: 5 seconds. Has
to be used in conjunction with -1 switch. Enter "R" to refresh screen on

next update.
» Usage
>mstat -1
-v1.8.0- MIDAS status page -------------------—---—--- Mon Apr 3 11:52:52 2000-
Experiment : chaos Run#:8699 State:Running Run time :00:11:34

Start time:Mon Apr 3 11:41:18 2000

FE Equip. Node Event Taken Event Rate[/s] Data Rate[Kb/s]

B12Y pcch02 67 0.0 0.0

CUM_Scaler vwchaos 23 0.2 0.2

CHV pcch02 68 0.0 0.0

KOS_Scalers vwchaos 330 0.4 0.6

KOS_Trigger vwchaos 434226 652.4 408.3

KOS_File vwchaos 0 0.0 0.0

Target pcch02 66 0.0 0.0

Logger Data dir: /scr0/spring2000 Message File: midas.log

Chan. Active Type Filename Events Taken KBytes Taken
0 Yes Disk run08699.ybs 434206 4.24e+406

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 489

Lazy Label Progress File name #files Total

cni-53 100 [%] run08696.ybs 15 44.3[%]

Clients: MStatus/koslx0 Logger/kos1x0 Lazy Tape/koslx0
CHV/pcch02 MChartl/umelba ODBEdit/kosglx0
CHAOS /vwchaos ecl/koslx0 Speaker/koslx0
MChart/umelba targetFE/pcch02 HV_MONITOR/umelba
SUSIYBOS/koslx0 History/kosal2 MStatusl/dasdevpc

6.15.6 analyzer task

analyzer is the main online / oftine event analysis application. analyzer uses fully the
ODB capabilities as all the analyzer parameters are dynamically controllable from the
Online Database editor odbedit task.

For more detailed information see MIDAS Analyzer

* Arguments

-c <flenamel> <£flename2> Confguration £le name(s). May contain a
’%05d’ to be replaced by the run number. Up to ten £les can be specifed

in one "-c" statement.

— -d Debug mag when started the analyzer fron a debugger. Prevents the
system to kill the analyzer when the debugger stops at a breakpoint

— -D Start analyzer as a daemon in the background (UNIX only).
— -e <experiment> MIDAS experiment to connect to. (see odbedit task)

— -f Filter mode. Write original events to output £le only if analyzer accepts
them (doesn’t return ANA_SKIP).

— -h <hostname> MIDAS host to connect to when running the analyzer on-
line (see odbedit task)

— -i <flenamel> <£lename2> Input £le name. May contain a ’%05d’ to
be replaced by the run number. Up to ten input £les can be specifed in one
"-i" statement.

— -11If set, don’t load histos from last histo £le when running online.

— -L HBOOK LREC size. Default is 8190.

— -n <count> Analyze only "count" events.

— -n <£rst> <last> Analyze only events from "£rst" to "last".

— -n <£rst> <last> <n> Analyze every n-th event from "£rst" to "last".

— -0 <flename> Output £le name. Extension may be .mid (MIDAS binary),
.asc (ASCII) or .rz (HBOOK). If the name contains a *%05d’, one output
£le is generated for each run. Use "OFLN" as output £le name to creaate a
HBOOK shared memory instead of a £le.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 490

— -p <param=value> Set individual parameters to a specifc value. Overrides
any setting in confguration £les

— -P <ODB tree> Protect an ODB subtree from being overwritten with the
online data when ODB gets loaded from .mid £le

— -q Quiet pag. If set, don’t display run progress in ofttine mode.

— -r <range> Range of run numbers to analyzer like "-r 120 125" to analyze
runs 120 to 125 (inclusive). The "-r" Hag must be used with a *%05d’ in
the input £le name.

— -s <port#> Specify the ROOT server TCP/IP port number (default 9090).

— -v Verbose output.

— -w Produce row-wise N-tuples in outpur .rz £le. By default, column-wise
N-tuples are used.

* Remarks

— The creation of the experim.h is done through the odbedit> make
<analyzer>. In order to include your analyzer section, the ODB
/<Analyzer>/Parameters has to be present.

» Usage

>analyzer

>analyzer -D -r 9092

>analyzer -i run00023.mid -o run00023.rz -w

>analyzer -i run%$05d.mid -o runall.rz -r 23 75 -w

6.15.7 mlogger task

mlogger is the main application to collect data from the different frontend under cer-
tain condition and store them onto physical device such as disk or tape. 1t also act as
an history event collector if either the history Qags is enabled in the frontend equip-
ment (see The Equipment structure or if the ODB tree /History/Links is defned (See
History system). See the ODB /Logger Tree for reference on the tree structure.

* Arguments

[-h]: help

[-e exptname] : experiment name (see odbedit task)
[-D] : start program as a daemon (UNIX only).

[-s] : Save mode (debugging: protect ODB).

[-v] : Verbose (not to be used in conjunction with -D).

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 491

» Usage

>mlogger -D

* Remarks

— The mlogger application requires to have an existing /Equipment/ tree in
the ODB!

— As soon as the mlogger is running, the history is mechanism is enabled.

— The data channels as well as the history logging is rescanned automatically
at each "begin of run" transition. In other word, additional channel can be
defned while running but effect will be taken place only at the following
begin of run transition.

— The default setting defnes a data "Midas" format with a £le name of the
type "run\%05d.mid". Make sure this is the requested setting for your
experiment.

— Once the mlogger is running, you should be able to monitor its state.
through the mstat task or through the mhttpd task web browser.

— From version 1.9.5

* mlogger will not run if started remotely (argument -h hostname has
been removed).

* The £le size limitation (<2GB) has been removed for older OS ver-
sion.

* mySQL data entry support.

6.15.8 lazylogger task

lazylogger is an application which decouples the data aquisition from the data logging
mechanism. The need of such application has been dictated by the slow response time
of some of the media logging devices (Tape devices). Delay due to tape mounting,
retension, reposition imply that the data acquisition has to hold until operation comple-
tion. By using mlegger to log data to disk in a £rst stage and then using lazylogger to
copy or move the stored £les to the "slow device" we can keep the acquisition running
without interruption.

* Multiple lazylogger can be running comtemporary on the same computer, each
one taking care of a particular channel.

* Each lazylogger channel will have a dedicated ODB tree containg its own infor-
mation.

* All the lazylogger channel will be under the ODB /Lazy/< channel name>/...

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 492

* Each channel tree is composed of three sub-tree Settings, Statistics, List.

Self-explanatory the Settings and Statistics contains the running operation of the chan-
nel. While the List- will have a dynamic list of run number which has been sucessfully
manipulate by the Lazylogger channel. This list won’t exists until the £rst successful
operation of the channel is complete.

* Arguments
— [-h]: help.
— [-h hostname] : host name.
— [-e exptname] : experiment name.
— [-D]: start program as a daemon.
— [-c channel] : logging channel. Specify the lazylogger to activate.

— [-z] : zap statistics. Clear the statistics tree of all the de£ned lazylogger
channels.

* ODB parameters (Settings/)

Settings DIR
Maintain free space (%) INT 1 4 3m 0 RWD
Stay behind INT 1 4 3m 0 RWD
Alarm Class STRING 1 32 3m 0 RWD
Running condition STRING 1 128 3m 0 RWD
Data dir STRING 1 256 3m 0 RWD
Data format STRING 1 8 3m 0 RWD
Filename format STRING 1 128 3m 0 RWD
Backup type STRING 1 8 3m 0 RWD
Execute after rewind STRING 1 64 3m 0 RWD
Path STRING 1 128 3m 0 RWD
Capacity (Bytes) FLOAT 1 4 3m 0 RWD
List label STRING 1 128 3m 0 RWD
Execute before writing file STRING 1 64 1i1h o0 RWD
Execute after writing file STRING 1 64 1i1h o0 RWD
Modulo.Position STRING 1 8 11h o0 RWD
Tape Data Append BOOL 1 4 11h O RWD

— [Maintain free space] As the Data Logger (mlogger) runs independently
from the Lazylogger, the disk will contains all the recorded data £les. Un-
der this condition, Lazylogger can be instructed to "purge" the data logging
device (disk) after successful backup of the data onto the "slow device".
The Maintain free space(%) parameter controls (if none zero) the percent-
age of disk space required to be maintain free.

* The condition for removing a data £le is de£ned as:

The data £le corresponding to the given run number following
the format declared under "Settings/Filename format' IS
PRESENT on the "Settings/Data Dir" path. AND The given run

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

0
-3

ALWAYS
/home/midas/online
MIDAS

run%05d.mid

Tape

5e+09

lazy prewrite.csh
rundb_addrun.pl
2.1

Y

6.15 Quick Start 493

number appears anywhere under the "List/" directory of ALL
the Lazy channel having the same "Settings/Filename format'as
this channel. AND The given run number appears anywhere
under the "List/" directory of that channel

— [Stay behind] This parameter defnes how many consecutive data £le
should be kept between the current run and the last lazylogger run.

* Example with "Stay behind =-3" :

1. Current acquisition run number 253 -> run00253.mid is being logger
by mlogger.

2. Files available on the disk corresponding to run #248, #249, #250,
#251, #252.

3. Lazylogger will start backing up run #250 as soon new run 254 will
start. -3 "Stay behind = -3" will correspond to 3 £le untouch on the
disk (#251, #252, #253). The negative sign instructs lazylogger to
always scan the entire "Data Dir" from the oldest to the most recent
£le sitting on the disk at the "Data Dir" path- for backup. If the "Stay
behind" is positive, lazylogger will backup starting from- x behind the
current acquisition run number. Run older will be ignored.

— [Alarm Class] Specify the Alarm class to be used in case of triggered
alarm.

— [Running condition] Specify the type of condition for which lazylogger
should be actived. By default lazylogger is ALWAYS- running. In the case
of high data rate acquisition it could be necessary to activate lazylogger
only when the run is either pauses, stopped or when some external condi-
tion is satisfed such as "Low beam intensity". In this later case, condition
based on a single £eld of the ODB can be given to establish when the ap-
plication should be active.

* Example :

odbedit> set "Running condition" WHILE_ACQ NOT RUNNING
odbedit> set "Running condition" "/alias/max_rate \< 200"

— [Data dir] Specify the Data directory path of the data £les. By default if
the "/Logger/Data Dir" is present, the pointed value is taken otherwise the
current directory where lazylogger has been started is used.

— [Data format] Specify the Data format of the data £les. Currently sup-
ported format are: MIDAS or YBOS.

— [Filename format] Specify the £le format of the data £les. Same format
as given for the data logger.

— [Backup type] Specify the "slow device" backup type. Default Tape. Can
be Disk or Ftp.

— [Execute after rewind] Specify a script to be run after completion of a

lazylogger backup set (see below "Capacity (Bytes)").
— [Path] Specify the "slow device" path. Three possible type of Path:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 494

* For Tape : /dev/mst0- (UNIX like).
* For Disk : /datal/myexpt
* For Ftp : host,port,user,password,directory
— [Capacity (Bytes)] Specify the maximum "slow device" capacity in bytes.
‘When this capacity is reached, lazylogger will close the backup device and
clear the "List Label" £eld to prevent further backup (see below). It will
aslo rewind the stream device if possible.

— [List label] Specify a label for a set of backed up £les to the "slow device".
This label is used only internaly by lazylogger for creating under the "/List"
a new array composed of the backed up runs until the "Capacity" value has
been reached. As the backup set is complete, lazylogger will clear this £eld
and therefore prevent any further backup until a none empty label list is
entered again. In the other hand the list label will remain under the "/List"
key to display all run being backed up until the corresponding £les have
been removed from the disk.

— [Exec preW £le] Permits to run a script before the begining of the lazy
job. The Arguments passed to the scripts are: input £le name , output £le
name, current block number.

— [Exec postW £le] Permits to run a script after the completion of the lazy
job. The Arguments passed to the scripts are: list label, current job num-
ber, source path, £le name, £le size in MB, current block number.

— [Modulo.Pesition] This £eld is for multiple instance of lazylogger where
each instance works on a sub-set of run number. By specifying the Mod-
ulo.Position you’re telling the current lazy instance how many instance are
simultaneously running (3.) and the position of which this instance is as-
signed to (.1). As an example for 3 lazylogger running contemporaneously
the £eld assignment should be :

Channel Field Run#

Lazy 1 3.0 21, 24, 27,
Lazy 2 3.1 22, 25, 28,
Lazy 3 3.2 23, 26, 29,

— [Tape Data Append] Enable the spooling of the Tape device to the End_-
of_Device (EOD) before starting the lazy job. This command is valid only
for "Backup Type" Tape. If this Dag is not enable the lazy job starts at the
current tape position.

— [Statistics/] ODB tree specifying general information about the status of
the current lazylogger channel state.

— [List/] ODB tree, will contain arrays of run number associated to the array
name backup-set label. Any run number appearing in any of the array is
considered to have been backed up.

» Usage lazylogger requires to be setup prior data £le can be moved. This setup
consists in 4 steps:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 495

— [Step 1] Invoking lazylogger once for setting up the appropriate ODB tree
and exit.

>lazylogger -c Tape

— [Step 2] Edit the newly created ODB tree. Correct the setting £eld to match
your requirement.

> odbedit -e midas
[local:midas:Stopped] />cd /Lazy/tape/
[local:midas:Stopped] tape>1s
[local:midas:Stopped] tape>1ls -1lr

Key name Type #val Size Last Opn Mode Value
tape DIR
Settings DIR
Maintain free space(%) INT 1 4 3m 0 RWD O
Stay behind INT 1 4 3m 0 RWD -3
Alarm Class STRING 1 32 3m 0 RWD
Running condition STRING 1 128 3m 0 RWD ALWAYS
Data dir STRING 1 256 3m 0 RWD /home/midas/online
Data format STRING 1 8 3m 0 RWD MIDAS
Filename format STRING 1 128 3m 0 RWD run%05d.mid
Backup type STRING 1 8 3m 0 RWD Tape
Execute after rewind STRING 1 64 3m 0 RWD
Path STRING 1 128 3m 0 RWD
Capacity (Bytes) FLOAT 1 4 3m 0 RWD b5e+09
List label STRING 1 128 3m 0 RWD
Statistics DIR
Backup file STRING 1 128 3m 0 RWD none
File size [Bytes] FLOAT 1 4 3m 0 RWD O
KBytes copied FLOAT 1 4 3m 0 RWD O
Total Bytes copied FLOAT 1 4 3m 0 RWD O
Copy progress [%] FLOAT 1 4 3m 0 RWD O
Copy Rate [bytes per s] FLOAT 1 4 3m 0 RWD O
Backup status [%] FLOAT 1 4 3m 0 RWD O
Number of Files INT 1 4 3m 0 RWD O
Current Lazy run INT 1 4 3m 0 RWD O

[local:midas:Stopped] tape>cd Settings/
[local:midas:Stopped] Settings>set "Data dir" /data
[local:midas:Stopped] Settings>set "Capacity (Bytes)" 15e9

— [Step 3] Start lazylogger in the background
>lazylogger -c Tape -D

— [Step 4] At this point the lazylogger is running and waiting for the "list
label" to be defned before starting the copy procedure. mstat task will
display information regarding the status of the lazylogger.

> odbedit -e midas

[local:midas:Stopped] />cd /Lazy/tape/Settings
[local:midas:Stopped] Settings>set "List label" cni-043

* Remarks

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

Quick Start 496

— For every major operation of the lazylogger a message is sent to the Mes-
sage buffer and will be appended to the default Midas log £le (midas.log).
These messages are the only mean of £nding out What/When/Where/How
the lazylogger has operate on a data £le. See below a fragment of the mi-
das::log for the chaos experiment. In this case the Maintain free space()
£eld was enabled which produce the cleanup of the data £les and the entry
in the List tree after copy.

Fri Mar 24 14:40:08 2000 [Lazy Tape] 8351 (rm:16050ms) /scr0/spring2000/run08351.ybs file

Fri Mar 24 14:40:08 2000 [Lazy Tape] Tape run#8351 entry REMOVED

Fri Mar 24 14:59:55 2000 [Logger] stopping run after having received 1200000 events

Fri Mar 24 14:59:56 2000 [CHAOS] Run 8366 stopped

Fri Mar 24 14:59:56 2000 [Logger] Run #8366 stopped

Fri Mar 24 14:59:57 2000 [SUSIYBOS] saving info in run log
Fri Mar 24 15:00:07 2000 [Logger] starting new run

Fri Mar 24 15:00:07 2000 [CHAOS] Run 8367 started

Fri Mar 24 15:00:07 2000 [Logger] Run #8367 started

Fri Mar 24 15:06:59 2000 [Lazy Tape] cni-043[15] (cp:410.68) /dev/nst0/run08365.ybs 864.02
Fri Mar 24 15:07:35 2000 [Lazy Tape] 8352 (rm:25854ms) /scr0/spring2000/run08352.ybs file

Fri Mar 24 15:07:35 2000 [Lazy Tape] Tape run#8352 entry REMOVED

Fri Mar 24 15:27:09 2000 [Lazy Tape] 8353 (rm:23693ms) /scr0/spring2000/run08353.ybs file

Fri Mar 24 15:27:09 2000 [Lazy Tape] Tape run#8353 entry REMOVED

Fri Mar 24 15:33:22 2000 [Logger] stopping run after having received 1200000 events

Fri Mar 24 15:33:22 2000 [CHAOS] Run 8367 stopped

Fri Mar 24 15:33:23 2000 [Logger] Run #8367 stopped

Fri Mar 24 15:33:24 2000 [SUSIYBOS] saving info in run log
Fri Mar 24 15:33:33 2000 [Logger] starting new run

Fri Mar 24 15:33:34 2000 [CHAOS] Run 8368 started

Fri Mar 24 15:33:34 2000 [Logger] Run #8368 started

Fri Mar 24 15:40:18 2000 [Lazy Tape] cni-043[16] (cp:395.4s8) /dev/nst0/run08366.ybs 857.67
Fri Mar 24 15:50:15 2000 [Lazy Tape] 8354 (rm:28867ms) /scr0/spring2000/run08354.ybs file

Fri Mar 24 15:50:15 2000 [Lazy Tape] Tape run#8354 entry REMOVED

— Once lazylogger has started a job on a data £le, trying to terminate the
application will result on producing a log message informing about the
actual percentage of the backup being completed so far. This message will
repeat it self until completion of the backup and only then the lazylogger
application will terminate.

— If an interruption of the lazylogger is forced (kill...) The state of the backup
device is undertermined. Recovery is not possible and the full backup set
has to be redone. In order to do this, you need:

— To rewind the backup device.
— Delete the /Lazy/<channel name>/List/<list label> array.
— Restart lazylogger with the -z switch which will "zap" the statistics entries.

— In order to facilitate the recovery procedure, lazylogger produces an ODB
ASCII £le of the lazy channel tree after completion of successful operation.
This £le (Tape_recover.odb) stored in Data_Dir can be used for ODB as
well as lazylogger recovery.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 497

6.15.9 mdump task

This application allows to "peep" into the data Jow in order to display a snap-shot of
the event. Its use is particularly powerful during experiment setup. In addition mdump
has the capability to operate on data save-set £les stored on disk or tape. The main
mdump restriction is the fact that it works only for events formatted in banks (i.e.:
MIDAS, YBOS bank).

* Arguments for Online

— [-h]: help for online use.

— [-h hostname] : Host name.

— [-e exptname] : Experiment name.

— [-b bank name] : Display event containg only specifed bank name.

— [-c compose] : Retrieve and compose £le with either Add run# or Not
(def:N).

— [-f format] : Data representation (x/d/ascii) def:hex.

— [-g type] : Sampling mode either Some or All (def:S). >>> in case of -c
it is recommented to used -g all.

— [-iid]: Event Id.
— [-j 1: Display bank header only.

— [k id] : Event mask. >>> -i and -k are valid for YBOS ONLY if EVID
bank is present in the event

— [-]1 number] : Number of consecutive event to display (def:1).

— [-m mode] : Display mode either Bank or Raw (def:B)

— [-p path] : Path for £le composition (see -c)

— [-s]: Data transfer rate diagnositic.

— [-w time] : Insert wait in [sec] between each display.

— [-x £lename] : Input channel. data £le name of data device. (def:online)
— [-y]: Display consistency check only.

— [-z buffer name] : Midas buffer name to attach to (def:SYSTEM)

+ Additional Arguments for Ofine

— [x-h]: help for oftine use.

— [-t type] : Bank format (Midas/Ybos). >>> if -x is a /dev/xxx, -t has to
be specifed.

— [-r#] : skip record(YBOS) or event(MIDAS) to #.

— [-w what] : Header, Record, Length, Event, Jbank list (def:E) >>>
Header & Record are not supported for MIDAS as it has no physical record
structure.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 498

 Usage mdump can operate on either data stream (online) or on save-set data £le.
Specifc help is available for each mode.

> mdump -h
> mdump -x -h

Tue> mdump -x run37496.mid | more

———————————————————————— Event# 0 ---------mmmmme e e
———————————————————————— Event# 1 ----------mmmmemcmmm e
Evid:0001- Mask:0100- Serial:1- Time:0x393c299a- Dsgize:72/0x48
#banks:2 - Bank list:-SCLRRATE-

Bank:SCLR Length: 24(I*1)/6(I*4)/6(Type) Type:Integer*4
1-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Bank:RATE Length: 24 (I*1)/6(I*4)/6(Type) Type:Real*4 (FMT machine dependent)
1-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

———————————————————————— Event# 2 ---------mmmmm e e

Evid:0001- Mask:0004- Serial:1- Time:0x393c299a- Dsize:56/0x38

#banks:2 - Bank list:-MMESMMOD-

Bank:MMES Length: 24 (I*1)/6(I*4)/6(Type) Type:Real*4 (FMT machine dependent)
1-> 0x3de35788 0x3d0b0e29 0x00000000 0x00000000 0x3£800000 0x00000000

Bank:MMOD Length: 4(I*1)/1(I*4)/1(Type) Type:Integer*4

1-> 0x00000001
———————————————————————— Event# 3 ---------mmmmme e e
Evid:0001- Mask:0008- Serial:1- Time:0x393c299a- Dsize:48/0x30
#banks:1 - Bank list:-BMES-

Bank:BMES Length: 28 (I*1)/7(I*4)/7(Type) Type:Real*4 (FMT machine dependent)
1-> 0x443d7333 0x444cf333 0x44454000 0x4448e000 0x43bca667 0x43ce0000 0x43£98000
———————————————————————— Event# 4 -----------mmme e
Evid:0001- Mask:0010- Serial:1- Time:0x393c299a- Dsize:168/0xa8
#banks:1 - Bank list:-CMES-

Bank:CMES Length: 148(I*1)/37(I*4)/37(Type) Type:Real*4 (FMT machine dependent)
1-> 0x3f2f9fe2 0x3ff77fd6 0x3fl173fe6 Ox3daeffe2 0x410f83e8 0x40ac07e3 0x3f6ebfds
9-> 0x3e60ffda 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
17-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
25-> 0x3£800000 0x3£800000 0x3f800000 0x00000000 0x3£800000 0x00000000 0x3£800000
33-> 0x3£800000 0x3£800000 0x3f800000 0x3£800000 0x00000000
———————————————————————— Event# 5 ---------mmmmme e e
Evid:0001- Mask:0020- Serial:1- Time:0x393c299a- Dsgize:32/0x20
#banks:1 - Bank list:-METR-

Bank:METR Length: 12(I*1)/3(I*4)/3(Type) Type:Real*4 (FMT machine dependent)
1-> 0x00000000 0x39005d87 0x00000000

* Example

> mdump -j

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

0x3c47ffde
0x3£800000
0x00000000
0x3£800000

6.15 Quick Start 499

6.15.10 mevb task

mevb is an event builder application taking several frontends Midas data source and
assemble a new overall Midas event.

In the case where overall data collection is handled by multiple physically separated
frontend, it could be necessary to assemble these data fragments into a dedicated event.
The synchonization of the fragment collection is left to the user which is done usu-
ally through specifc hardware mechanism. Once the fragments are composed in each
frontend, they are sent to the "Event Builder" (eb) where the serial number (pheader-
>serial_number) of each fragment is compared one event at a time for serial match. In
case of match, a new event will be composed with its own event ID and serial number
followed by all the expected fragments. The composed event is then sent to the next
stage which is usually the data logger (mlogger).

The mhttpd task will present the status of the event builder as an extra equipment with
its corresponding statistical information.

* Arguments
— [-h]: help

— [-h hostname] : host name

— [-e exptname] : experiment name
— [-b] : Buffer name

— [-v] : Show wheel

— [-d] : debug messages

— [-D] : start program as a daemon

» Usage

Thu> mevb -e midas
Program mevb/EBuilder version 2 started

 See Event Builder Functions for more details

6.15.11 mspeaker, mixspeaker tasks

mspeaker, mlxspeaker are utilities which listen to the Midas messages system and
pipe these messages to a speech synthesizer application. mspeaker is for the Windows
based system and interface to the FirstByte/ProvVoice package. The mixs-
peaker is for Linux based system and interface to the Festival. In case of use of
either package, the speech synthesis system has to be install prior the activation of the
mspeaker, mlxspeaker.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 500

* Arguments
— [-h]: help
— [-h hostname] : host name
— [-e exptname] : experiment name
— [t mt_talk_cmd] : Specify the talk alert command (ux only).
— [-umt user_cmd] : Specify the user alert command (ux only).

— [-s shut up time]: Specify the min time interval between alert [s] The -t &
-u switch require a command equivalent to: -t play —volume=0.3 £le.wav’

— [-D] : start program as a daemon

» Usage

> mlxspeaker -D

6.15.12 mcnaf task

mcnaf is an interactive CAMAC tool which allow "direct" access to the CAMAC hard-
ware. This application is operational under either of the two following conditions:

1. mcnaf has been built against a particular CAMAC driver (see CAMAC drivers).

2. A user frontend code using a valid CAMAC driver is currently active. In this
case the frontend acts as a RPC CAMAC server and will handle the CAMAC
request. This last option is only available if the frontend code (mfe.c) from the
Building Options has inctuded the HAVE_CAMAC pre-compiler Sag.

* Arguments
— [-h]: help

— [-h hostname] : host name
— [-e exptname] : experiment name
— [-f frontend name] : Frontend name to connect to.

— [-s RPC server name] : CAMAC RPC server name for remote connection.

* Building application The midas/utils/make£le.mcnaf will build a collection
of menaf applications which are hardware dependent, see Example below:

— [miocnaf] cnaf application using the declared CAMAC hardware DRIVER
(kcs2927 in this case). To be used with dio CAMAC application starter (see
dio task).

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 501

— [mwecnaf] cnaf application using the WI-E-N-ER PCI/CAMAC interface
(see CAMAC drivers). Please contact mailto:midasetriumf.ca for
further information.

— [mcnaf] cnaf application using the CAMAC RPC capability of any Midas
frontend program having CAMAC access.

— [mdrvenaf] cnaf application using the Linux CAMAC driver for ei-
ther kcs2927, kcs2926, dsp004. This application would require to have
the proper Linux module loaded in the system £rst. Please contact
mailto:midas@triumf . ca for further information.

Thu> cd /midas/utils

Thu> make -f makefile.mcnaf DRIVER=kcs2927

gcc -03 -I../include -DOS_LINUX -c -o mcnaf.o mcnaf.c

gcc -03 -I../include -DOS_LINUX -c -o kcs2927.o0 ../drivers/bus/kcs2927.c

gcc -03 -I../include -DOS_LINUX -o miocnaf mcnaf.o kcs2927.o0 ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o wecc32.o0 ../drivers/bus/wecc32.c

gcc -03 -I../include -DOS_LINUX -o mwecnaf mcnaf.o wecc32.o ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o camacrpc.o ../drivers/bus/camacrpc.c

gcc -03 -I../include -DOS_LINUX -o mcnaf mcnaf.o camacrpc.o ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o camaclx.o ../drivers/bus/camaclx.c

gcc -03 -I../include -DOS_LINUX -o mdrvcnaf mcnaf.o camaclx.o ../linux/lib/libmidas.a -lutil
rm *.o

* Running application

— Direct CAMAC access: This requires the computer to have the proper CA-
MAC interface installed and the BASE ADDRESS matching the value
defned in the corresponding CAMAC driver. For kcs2926.c, kcs2927.c,
dsp004.c, hyt1331.c, the base address (CAMAC_BASE) is set to 0x280.

>dio miocnaf

— RPC CAMAC through frontend: This requires to have a frontend running
which will be able to serve the CAMAC RPC request. Any Midas frontend
has that capability built-in but it has to have the proper CAMAC driver
included in it.

>mcnaf -e <expt> -h <host> -f <fe_name>

6.15.13 melog task

Electronic Log utility. Submit full Elog entry to the specifed Elog port.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 502

* Arguments
— [-h]: help

— [-h hostname] : host name

— [-1 exptname or logbook]

— [-u username password]

— [-f <attachment>] : up to 10 £les.

— -a <attribute>=<value> : up to 20 attributes. The attribute "Author=..."
must at least be present for submission of Elog.

— -m <textfle> | text> Arguments with blanks must be enclosed in quotes.
The elog message can either be submitted on the command line or in a £le
with the -m Bag. Multiple attributes and attachments can be supplied.

» Usage By default the attributes are "Author", "Type", "System" and "Subject".
The "Author" attribute has to be present in the elog command in order to suc-
cessfully submit the message. If multiple attributes are required append before
"text" £eld the full specifcation of the attribute. In case of multiple attachement,
only one "-f" is required followed by up to 10 £le names.

>melog -h myhost -p 8081 -1 myexpt -a author=pierre "Just a elog message"
>melog -h myhost -p 8081 -1 myexpt -a author=pierre -f file2attach.txt \
"Just this message with an attachement"”
>melog -h myhost -p 8081 -1 myexpt -a author=pierre -m file_containing the_message.txt
>melog -h myhost -p 8081 -1 myexpt -a Author=pierre -a Type=routine -a system=general \
-a Subject="my test" "A full Elog message"

* Remarks

6.15.14 mbhist task

History data retriever.

* Arguments
— [-h]: help
— [-e Event ID] : specify event ID
— [-v Variable Name] : specify variable name for given Event ID
— [-i Index] : index of variables which are arrays
— [-i Index1:Index2] index range of variables which are arrays (max 50)

— [-t Interval] : minimum interval in sec. between two displayed records

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 503

[-h Hours] : display between some hours ago and now

[-d Days] : display between some days ago and now

[-f File] : specify history £le explicitly

[-s Start date] : specify start date DDMMY Y [.HHMM][SS]]
[-p End date] : specify end date DDMMY Y[.HHMM[SS]]

[-1] : list available events and variables

[-b] : display time stamp in decimal format
[-z] : History directory (def: cwd).

» Usage

* Example

--- All variables of event ID 9 during last hour with at least 5 minutes interval.
> mhist

Available events:

ID 9: Target

ID 5: CHV

ID 6: B1l2Y

ID 20: System

Select event ID: 9

Available variables:
: Time

Cryostat vacuum

: Heat Pipe pressure
Target pressure
Target temperature
Shield temperature
Diode temperature

AUk WNh RO

Select variable (0..6,-1 for all): -1
How many hours: 1

Interval [sec]: 300

Date Time Cryostat vacuum Heat Pipe pressure Target pressure Target temperature
Jun 19 10:26:23 2000 104444 4.614 23.16 -0.498 22.931 82.163 40
Jun 19 10:31:24 2000 104956 4.602 23.16 -0.498 22.892 82.108 40
Jun 19 10:36:24 2000 105509 4.597 23.099 -0.498 22.892 82.126 40
Jun 19 10:41:33 2000 110021 4.592 23.16 -0.498 22.856 82.08 40
Jun 19 10:46:40 2000 110534 4.597 23.147 -0.498 22.892 82.117 40
Jun 19 10:51:44 2000 111046 4.622 23.172 -0.498 22.907 82.117 40
Jun 19 10:56:47 2000 111558 4.617 23.086 -0.498 22.892 82.117 40
Jun 19 11:01:56 2000 112009 4.624 23.208 -0.498 22.892 82.117 40
Jun 19 11:07:00 2000 112521 4.629 23.172 -0.498 22.896 82.099 40
Jun 19 11:12:05 2000 113034 4.639 23.074 -0.498 22.896 82.117 40
Jun 19 11:17:09 2000 113546 4.644 23.172 -0.498 22.892 82.126 40
Jun 19 11:22:15 2000 114059 4.661 23.16 -0.498 22.888 82.099 40

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15

Quick Start

504

* Single variable "I-WC1+_Anode" of event 5 every hour over the full April
24/2000.

mhist

Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

-e 5 -v "I-WCl+_Anode" -t 3600 -s 240400 -p 250400
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
0l:
0l:
0l:
0l:
0l:
0l:
0l:
0l:
0l:
0l:
0l:
0l:
0l:

00:
0l:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

09
12
13
14
21
26
31
37
40
49
52
01
03
03
04
05
11
14
19
19
21
23
32
39

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

160
160
160
160
180
0

160
160
160
160
160
160
160

* Remarks History data can be retrieved and display through the Midas web page
(see mhttpd task).

* Example

Midas Web History display.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 505

I_IEI_I_%%L.JI_I_I_ EE—E

3]

1-lmwinl =

;—: _.j--_l_r:;_ . f’ﬁ""""" ‘h\-""—*---

3\ [z | _,_P-H*"”_ R - ..4-“.&:

S e — —
ke -__,.,_1,_._.-.--"__

0] [HETal |

e

143

125

10

B i
=

e

._- o
o I S B~ S M - M | M ~ M. . M~ M. M |~) | S S |

Figure 36: Midas Web History display.

6.15.15 mchart task

mchart is a periodic data retriever of a specifc path in the ODB which can be used in
conjunction with a stripchart graphic program.

* In the £1st of two step procedure, a specifc path in the ODB can be scanned

for composing a confguration £le by extracting all numerical data references
£le.conf .

* In the second step the mchart will produce at £x time interval a refreshed data
£le containing the values of the numerical data specifed in the confguration £le.
This £le is then available for a stripchart program to be used for chart recording
type of graph.

Two possible stripchart available are:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 506

* gstripchart The confguration £le generated by mchart is compatible with the
GNU stripchart which permit sofsticated data equation manipulation. In the
other hand, the data display is not very fency and provide just a basic chart
recorder.

stripchart.tcl £le This tcl/tk application written by Gertjan Hofman provides a
far better graphical chart recorder display tool, it also permits history save-set
display, but the equation scheme is not implemented.

* Arguments
— [-h]: help

— [-h hostname] : host name.

— [-e exptname] : experiment name.

— [-D] : start program as a daemon.

— [-u time] : data update periodicity (def:5s).

— [-f £le] : £le name (+.conf: if using existing £le).

— [-q ODBpath] : ODB tree path for extraction of the variables.
— [-c]1: ONLY creates the confguration £le for later use.

— [-b lower_value] : sets general lower limit for all variables.
— [-t upper_value] : sets general upper limit for all variables.
— [-g1: spawn the graphical stripchart if available.

— [-gg]: force the use of gstripchart for graphic.

— [-gh] : force the use of stripchart (tcl/tk) for graphic.

» Usage The confguration contains an entry for each variable found under the
ODBpath requested. The format is described in the gstripchart documentation.

Once the confguration £le has been created, it is possible to apply any valid operation
(equation) to the parameters of the £le following the gstripchart syntax.
In the case of the use of the stripchart from G.Hofman, only the "£lename", "pattern",

"maximum", "minimum" £elds are used.

‘When using mchart with -D Argument, it is necessary to have the MCHART DIR
defned in order to allow the daemon to £nd the location of the confguration and data
£les (see Environment variables).

chaos:~/chart> more trigger.conf

#Equipment : >/equipment/kos_trigger/statistics
menu: on

slider: on

type: gtk

minor_ticks: 12

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 507

major_ticks: 6

chart-interval: 1.000
chart-filter: 0.500
glider-interval: 0.200
0

gslider-filter: .200
begin: Events_sent
filename: /home/chaos/chart/trigger
fields: 2
pattern: Events_sent
equation: \$2
color: \$blue
maximum: 1083540.00
minimum: 270885.00
id_char: 1
end: Events_sent
begin: Events_per_sec.
filename: /home/chaos/chart/trigger
fields: 2
pattern: Events_per_sec.
equation: $2
color: \$red
maximum: 1305.56
minimum: 326.39
id_char: 1
end: Events_per_sec.
begin: kBytes_per_ sec.
filename: /home/chaos/chart/trigger
fields: 2
pattern: kBytes_per_ sec.
equation: $2
color: \ $brown
maximum: 898.46
minimum: 224.61
id_char: 1
end: kBytes_per_sec.

A second £le (data £1le) will be updated a £xed interval by the {mchart- utility.

chaos:~/chart> more trigger
Events_sent 6.620470e+05
Events_per sec. 6.463608e+02
kBytes_per_sec. 4.424778e+02

* Example

* Creation with ODBpath being one array and one element of 2 sitting under vari-
ables/:

chaos:~/chart> mchart -f chvv -q /equipment/chv/variables/chvv -c
chaos:~/chart> 1ls -1 chvv*

-rw-r--r-- 1 chaos users 474 Apr 18 14:37 chvv
-rw-r--r-- 1 chaos users 4656 Apr 18 14:37 chvv.conf

* Creation with ODBpath of all the sub-keys sittings in variables:

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 508

mchart -e myexpt -h myhost -f chv -q /equipment/chv/variables -c
* Creation and running in debug:

chaos:~/chart> mchart -f chv -q /equipment/chv/variables -d
CHVV : size:68

#name:17 #Values:17

CHVI : size:68

* Running a pre-existing conf £le (chv.conf) debug:
chaos:~/chart> mchart -f chv.conf -d
CHVV : size:68
#name:17 #Values:17

CHVI : size:68
#name:17 #Values:17

* Running a pre-existing confguration £le and spawning gstripchart:

chaos:~/chart> mchart -f chv.conf -gg

spawning graph with gstripchart -g 500x200-200-800 -f /home/chaos/chart/chv.conf ...

* Running a pre-existing confguration £le and spawning stripchart, this will work
only if Tcl/Tk and bltwish packages are installed and the stripchart.tcl has been
installed through the Midas Make£le.

chaos:~/chart> mchart -f chv.conf -gh
spawning graph with stripchart /home/chaos/chart/chv.conf ...

6.15.16 mtape task
Tape manipulation utility.

* Arguments

— [-h]: help
[-h hostname] : host name

[-e exptname] : experiment name

[-D] : start program as a daemon

» Usage
* Example

>mtape

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 509

6.15.17 dio task

Direct I/O task provider (LINUX).
If no particular Linux driver is installed for the CAMAC access, the dio- program
will allows you to gain access to the I/O ports to which the CAMAC interface card is
connected to.
* Arguments
— [application name] : Program name requiring I/O permission.

» Usage

>dio miocnaf
>dio frontend

* Remark
* This "hacking" utility restricts the access to a range of I/O port from 0x200 to
0x3FF.

* As this mode of I/O access by-passes the driver (if any), concurrent access to
the same I/O port may produce unexpected result and in the worth case freeze
the computer. It is therefore important to ensure to run one and only one dio
application to a given port in order to prevent potential hangup problem.

* Interrupt handling, DMA capabilities of the interface will not be accessible under
this mode of operation.

6.15.18 stripchart.tcl £le

Graphical stripchart data display. Operates on mchart task data or on Midas history
save-set £les. (see also History system).
* Arguments
— [-mhist] : start stripchart for Midas history data.

* Usage : stripchart <-options> <confg-£le> -mhist (look at history £le -default)
-dmhist debug mhist -debug debug stripchart confg_£le: see mchart task

> stripchart.tcl -debug
> stripchart.tcl

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 510

* Example

> stripchart.tcl -h

gstripchart display with parameters and data pop-up.

+iGnome & -1o]x]

File: Help

L B L B L e o L L } |-

VA gstripchart ,_-_[Ql,fi[
. Param jiurren'|TDp J
bl PC_diff 140 261 =10lx]
He_Diff_ - B¥6 000

F'C_diff|He_Diff_]."—‘-.tmnsphere PC_Pump || gtmosphere 755K 1.51K ressi

A J\Ialue FC_Pump 218, 438

ldentifier PC_diff
Color blue
Filename junk
Fattern PC_diff
Equation 2

Expected range 703 .. 281.
Displayed range 70.3 .. 281.
Current value 140,

= Active

<:_-'3 ok I o apply & Cancel I ‘ 2 Halp

Figure 37: gstripchart display with parameters and data pop-up.

stripchart.tcl mhist mode: main window with pull-downs.

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 511

phﬂ'li_;nl.n!n-uy D ‘ E

pluss_crnbed welee - 0D Ty = MHISET hode of Operation:
MiMISZ_Crates arange 3 mins Open old history e mihist . Displey of history fes.
faitsS_cratez red T30 mens Same file, Hew event | |indate : Real ime display used
i 15 _craled cyan * 1 hiur el haEtory - e path with mchart,
pisl5_cratel DakGreen =10 hours

Hi=F cralol Il 2o Hous

e O B T TN
mirmess esdel green
wirne A% el gl mned

Figure 38: stripchart.tcl mhist mode: main window with pull-downs.

stripchart.tcl Online data, running in conjunction with mchart

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 512

S)

'_ILI 1

Zoom using mouse Ei'nggng [
£ \ |
mten

B \ ; g

vt . e

| T e R T L |
L e S M LT «-*\\ T M T

| e e

HIUEE Bitee mimEn wsies ouims ddd

~ — Detali-all sebection from mam window:
- Display 4 graphs per page.
- Page selection an top of window,

Figure 39: stripchart.tcl Online data, running in conjunction with mchart

6.15.19 rmidas task

Root/Midas remote GUI application for root histograms and possible run control under
the ROOT. environment.

* Arguments
— [-h]: help
— [-h hostname] : host name
— [-e exptname] : experiment name

» Usage to be written.
* Example

>rmidas midasserver.domain

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 513

rmidas display sample. Using the example/experiment/ demo setup.

BMidas connected to midas !EE_
Eile
Histo | status |
FHIS00 I" ADC sum |
FHIS01 ADCSUM
ADCSUM Entries 3050
CADCON 60 Mean 1385
CaDCol RMS 546.9
CADCOz
CADCO3 50

40

30

20

10

L|IIII.|II IIII|IIII|IIII|IIII|IILI|JIII|IILI
1000 2000 3000 4000 5000 6000 7000 $000 S000 10000

DI]III

Llpdatel G_Iearl

Figure 40: rmidas display sample. Using the example/experiment/ demo setup.

6.15.20 hvedit task

High Voltage editor, graphical interface to the Slow Control System. Originally for
‘Windows machines, but recently ported on Linux under Qt by Andreas Suter.
* Arguments

— [-h]: help
— [-h hostname] : host name

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

6.15 Quick Start 514

— [-e exptname] : experiment name

— [-D]: start program as a daemon
» Usage To control the high voltage system, the program HVEdit can be used
under Windows 95/NT. It can be used to set channels, save and load values from
disk and print them. The program can be started several times even on different
computers. Since they are all linked to the same ODB arrays, the demand and

measured values are consistent between them at any time. HVEdit is started from
the command line:

* Example

>hvedit

6.15.21 Midas Remote server

mserver provides remote access to any midas client. This task usually runs in the back-
ground and doesn’t not to be modifed. In the case debugging is required, the mserver
can be started with the -d @ag which will write an entry for each transaction appearing
into the mserver. This log entry contains the time stamp and RPC call request.

* Arguments
— [-h]: help
— [-s]: Single process server
— [-t] : Multi thread server
— [-m] : Milti process server (default)
— [-d]: Write debug info to /tmp/mserver.log

— [-D]: Become a Daecmon

» Usage

Generated on Tue Jan 25 17:04:31 2005 for Midas by Doxygen

