Midas Reference Manual
2.0.0-1

Generated by Doxygen 1.3.9.1

Thu Mar 8 23:04:47 2007

CONTENTS 1

Contents

1 MidasData Acquisition

Welcome to the world of Midas.

The System

Midas is a versatile Data acquisition System for medium scale physics experiments.
This document will try to answer most of your questions regarding installation, setup,
running, and development.

If you’re looking for a flexible and simple DAQ, you may want to consider Midas and
its applications. Feel free to browse through the following links.

» Midas is a result of a development effort made by Stefan Ritt at PSI /Switzerland
(M das @Sl) in collaboration with the members of the Data acquisition group
at Tr i unf /Canada.

* Midas has a dedicated discussion forum (Electronic logbook) which provides
common place for midas users to report problems, share experience or post im-
provement wishes. You can browse this El 0g or register for Email notifications.

» The Midas source code is subject to the GPL and can be accessed from the SVN
repository site in Switzerland either for inspection or download.

¢ Tar and RPMs are also available either from the Swi t zer | and or Canadi an
sites.
* The main purpose of the MIDAS DAQ is to provide:

— data collection from local and/or remote hardware source.
— data recording to common storage media.

— Full data flow control.

It does also event-by-event analysis through PAW or Root based application.
Please refer to:

— ROVE analyzer framework.

— Roody GUI histogram visualizer application.

¢ The current hardware support is listed at this | ocat i on.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

https://daq-plone.triumf.ca/SR/MIDAS/images/midasintro.jpg
http://www.psi.ch
http://midas.psi.ch
http://www.triumf.org
https://ladd00.triumf.ca/elog/Midas
http://www.gnu.org/copyleft/gpl.html
http://savannah.psi.ch/viewcvs/trunk/?root=midas
http://midas.psi.ch/download/
http://ladd00.triumf.ca/~daqweb/ftp/
http://midas.psi.ch/rome
http://ladd00.triumf.ca/~daqweb/doc/roody/html
http://ladd00.triumf.ca/~daqweb/doc/midas/html/AppendixB.html

1.1 Content 2

¢ Other related links can be found her e.

* The following chapters refer to the online Midas documentation.

1.1 Content

¢ New Documented Features : Whats new in Midas.
e Introduction : Some initial words and description
e Components : Listing

¢ Quick Start : The HowTo for installation.

 Internal features : The main internal components of the system.

MIDAS Analyzer : PAW/Root Analyzer.
« Utilities : The Midas applications.
* Data format : Supported data format

» Supported hardware : Supported hardware.

CAMAC and VME access function call : CAMAC and VME access function
call.

Midas build options and operation considerations : Midas build options and op-
eration consideration.

¢ Midas Code and Libraries : Midas Library.

* Frequently Asked Questions : Frequently Asked Questions.

2 Midas Module Documentation

21 MidasVME standard

Modules

» group VME Functions (mvme_xXxx)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://daq-plone.triumf.ca/SR/MIDAS/

2.1 Midas VME standard

Data Structures

e struct MVME_INTERFACE

Defines

« #define MVME_SUCCESS 1

« #define MVME_DMODE_D8 1

« #define MVME_DMODE_D16 2

« #define MVME_DMODE_D32 3

« #define MVME_DMODE_D64 4

+ #define MVME_DMODE_RAMDI6 5

« #define MVME_DMODE_RAMD32 6

+ #define MVME_DMODE_LM 7

« #define MVME_BLT_NONE 1

« #define MVME_BLT_BLT32 2

+ #define MVME_BLT_MBLT64 3

+ #define MVME_BLT_2EVME 4

+ #define MVME_BLT _2ESST 5

+ #define MVME_BLT_BLT32FIFO 6

+ #define MVME_BLT_MBLT64FIFO 7

+ #define MVME_BLT_2EVMEFIFO 8

+ #define MVME_AM_A32_SB (0xOF)

+ #define MVME_AM_A32_SP (0x0E)

+ #define MVME_AM_A32_SD (0x0D)

+ #define MVME_AM_A32_NB (0x0B)

+ #define MVME_AM_A32_NP (0x0A)

« #define MVME_AM_A32_ND (0x09)

« #define MVME_AM_A32_SMBLT (0x0C)
« #define MVME_AM_A32_NMBLT (0x08)
+ #define MVME_AM_A24_SB (0x3F)

« #define MVME_AM_A24_SP (0x3E)

« #define MVME_AM_A24_SD (0x3D)

« #define MVME_AM_A24_NB (0x3B)

« #define MVME_AM_A24_NP (0x3A)

« #define MVME_AM_A24_ND (0x39)

« #define MVME_AM_A24_SMBLT (0x3C)
« #define MVME_AM_A24 NMBLT (0x38)
« #define MVME_AM_A16_SD (0x2D)

« #define MVME_AM_A16_ND (0x29)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.1 Midas VME standard

2.1.1 Define Documentation

2.11.1 #define MVME_ACCESS_ERROR 7

Definition at line 67 of file mvmestd.h.

2.1.1.2 #define MVME_AM_A16 MVME_AM_A16_SD

Definition at line 130 of file mvmestd.h.

2.1.1.3 #define MVME_AM_A16_ND (0x29)
A16 Short Non-Privileged Data Access

Definition at line 128 of file mvmestd.h.

2.1.1.4 #define MVME_AM_A16_SD (0x2D)
A16 Short Supervisory Data Access

Definition at line 127 of file mvmestd.h.

2.1.15 #define MVME_AM_A24 MVME_AM_A24_SD

Definition at line 124 of file mvmestd.h.

2.1.1.6 #define MVME_AM_A24 D64 MVME_AM_A24_SMBLT

Definition at line 125 of file mvmestd.h.

2.1.1.7 #define MVME_AM_A24_NB (0x3B)
A24 Standard Non-Privileged Block Transfer

Definition at line 118 of file mvmestd.h.

2.1.1.8 #define MVME_AM_A24_ND (0x39)
A24 Standard Non-Privileged Data Access

Definition at line 120 of file mvmestd.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.1 Midas VME standard

2.1.1.9 #define MVME_AM_A24 NMBLT (0x38)
A24 Multiplexed Block Transfer (D64)

Definition at line 122 of file mvmestd.h.

2.1.1.10 #define MVME_AM_A24 NP (0x3A)
A24 Standard Non-Privileged Program Access

Definition at line 119 of file mvmestd.h.

2.1.1.11 #define MVME_AM_A24_SB (0x3F)
A24 Standard Supervisory Block Transfer

Definition at line 115 of file mvmestd.h.

2.1.1.12 #define MVME_AM_A24_SD (0x3D)
A24 Standard Supervisory Data Access

Definition at line 117 of file mvmestd.h.

2.1.1.13 #define MVME_AM_A24 SMBLT (0x3C)
A24 Multiplexed Block Transfer (D64)

Definition at line 121 of file mvmestd.h.

2.1.1.14 #define MVME_AM_A24_SP (0x3E)
A24 Standard Supervisory Program Access

Definition at line 116 of file mvmestd.h.

2.1.1.15 #define MVME_AM_A32 MVME_AM_A32_SD

Definition at line 112 of file mvmestd.h.

2.1.1.16 #define MVME_AM_A32_D64 MVME_AM_A32_SMBLT

Definition at line 113 of file mvmestd.h.

2.1.1.17 #define MVME_AM_A32_NB (0x0B)
A32 Extended Non-Privileged Block

Definition at line 106 of file mvmestd.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.1 Midas VME standard

2.1.1.18 #define MVME_AM_A32_ND (0x09)
A32 Extended Non-Privileged Data

Definition at line 108 of file mvmestd.h.

2.1.1.19 #define MVME_AM_A32_NMBLT (0x08)
A32 Multiplexed Block Transfer (D64)

Definition at line 110 of file mvmestd.h.

2.1.1.20 #define MVME_AM_A32_NP (0x0A)
A32 Extended Non-Privileged Program

Definition at line 107 of file mvmestd.h.

2.1.1.21 #define MVME_AM_A32_SB (0x0F)
A32 Extended Supervisory Block

Definition at line 103 of file mvmestd.h.

2.1.1.22 #define MVME_AM_A32_SD (0x0D)
A32 Extended Supervisory Data

Definition at line 105 of file mvmestd.h.

2.1.1.23 #define MVME_AM_A32 SMBLT (0x0C)
A32 Multiplexed Block Transfer (D64)

Definition at line 109 of file mvmestd.h.

2.1.1.24 #define MVME_AM_A32_SP (0x0E)
A32 Extended Supervisory Program

Definition at line 104 of file mvmestd.h.

2.1.1.25 #define MVME_AM_DEFAULT MVME_AM_A32

Definition at line 132 of file mvmestd.h.

2.1.1.26 #define MVME_BLT_2ESST 5

two edge source synchrnous transfer

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.1 Midas VME standard

Definition at line 96 of file mvmestd.h.

2.1.1.27 #define MVME_BLT_2EVME 4
two edge block transfer

Definition at line 95 of file mvmestd.h.

2.1.1.28 #define MVME_BLT_2EVMEFIFO 8
two edge block transfer with FIFO mode

Definition at line 99 of file mvmestd.h.

2.1.1.29 #define MVME_BLT BLT322
32-bit block transfer

Definition at line 93 of file mvmestd.h.

2.1.1.30 #define MVME_BLT BLT32FIFO 6
FIFO mode, don’t increment address

Definition at line 97 of file mvmestd.h.

2.1.1.31 #define MVME_BLT_MBLT64 3
multiplexed 64-bit block transfer

Definition at line 94 of file mvmestd.h.

2.1.1.32 #define MVME_BLT_MBLT64FIFO 7
FIFO mode, don’t increment address

Definition at line 98 of file mvmestd.h.

2.1.1.33 #define MVME_BLT_NONE 1
normal programmed 10

Definition at line 92 of file mvmestd.h.

2.1.1.34 #define MVME_DMODE_D16 2
D16

Definition at line 81 of file mvmestd.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.1 Midas VME standard

2.1.1.35 #define MVME_DMODE_D32 3
D32

Definition at line 82 of file mvmestd.h.

2.1.1.36 #define MVME_DMODE_D64 4
D64

Definition at line 83 of file mvmestd.h.

2.1.1.37 #define MVME_DMODE_DS8 1
D8

Definition at line 80 of file mvmestd.h.

2.1.1.38 #define MVME_DMODE_DEFAULT MVME_DMODE_D32

Definition at line 88 of file mvmestd.h.

2.1.1.39 #define MVME_DMODE_LM 7
local memory mapped to VME

Definition at line 86 of file mvmestd.h.

2.1.1.40 #define MVME_DMODE_RAMD16 5
RAM memory of VME adapter

Definition at line 84 of file mvmestd.h.

2.1.1.41 #define MVME_DMODE_RAMD32 6
RAM memory of VME adapter

Definition at line 85 of file mvmestd.h.

2.1.1.42 #define MVME_INVALID_PARAM 5

Definition at line 65 of file mvmestd.h.

2.1.1.43 #define MVME_NO_CRATE 3

Definition at line 63 of file mvmestd.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.2 VME Functions (mvme_xxx) 9

2.1.1.44 #define MVME_NO_INTERFACE 2

Definition at line 62 of file mvmestd.h.

2.1.1.45 #define MVME_NO_MEM 6

Definition at line 66 of file mvmestd.h.

2.1.1.46 #define MVME_SUCCESS 1
dOXskskskstokskotskstokskokskstokskofokstokskokskstotskofskskokskokskstotskofosk stk skofsksk stk sk skofok ok skskofok ok ko

Definition at line 61 of file mvmestd.h.

2.1.1.47 #define MVME_UNSUPPORTED 4

Definition at line 64 of file mvmestd.h.

2.1.2 Typedef Documentation

2.1.2.1 typedef unsigned int mvme_addr_t

Definition at line 71 of file mvmestd.h.

2.1.2.2 typedef unsigned int mvme_locaddr_t

Definition at line 72 of file mvmestd.h.

2.1.2.3 typedef unsigned int mvme_size_t

Definition at line 73 of file mvmestd.h.

2.2 VME Functions (mvme_Xxx)

Functions

* int EXPRT mvme_open (MVME_INTERFACE *xvme, int index)

¢ int EXPRT mvme_close (MVME_INTERFACE *vme)

* int EXPRT mvme_sysreset (MVME_INTERFACE xvme)

e int EXPRT mvme_read (MVME_INTERFACE *vme, mvme_locaddr_t xdst,
mvme_addr_t vme_addr, mvme_size_t n_bytes)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.2 VME Functions (mvme_xxx) 10

e unsigned int EXPRT mvme_read_value (MVME_INTERFACE xvme,
mvme_addr_t vme_addr)

¢ int EXPRT mvme_write MVME_INTERFACE xvme, mvme_addr_t vme_addr,
mvme_locaddr_t *src, mvme_size_t n_bytes)

e int EXPRT mvme_write_value (MVME_INTERFACE xvme, mvme_addr_t
vme_addr, unsigned int value)

e int EXPRT mvme_set_am (MVME_INTERFACE xvme, int am)

* int EXPRT mvme_get_am (MVME_INTERFACE *vme, int *am)

¢ int EXPRT mvme_set_dmode (MVME_INTERFACE xvme, int dmode)

* int EXPRT mvme_get_dmode (MVME_INTERFACE sxvme, int *dmode)

e int EXPRT mvme_set_blt (MVME_INTERFACE xvme, int mode)

* int EXPRT mvme_get_blt (MVME_INTERFACE xvme, int *xmode)

2.2.1 Function Documentation

2211 int EXPRT mvme_close (MVME_INTERFACE * vme)

Close and release ALL the opened VME channel. See example in mvme_open()

Parameters:
xvme VME structure.

Returns:
MVME_SUCCESS, MVME_ACCESS_ERROR

2.2.1.2 int EXPRT mvme_get am (MVME_INTERFACE * vme, int x am)
Get Address Modifier.

Parameters:
xvme VME structure

xam returned address modifier

Returns:
MVME_SUCCESS

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.2 VME Functions (mvme_xxx) 11

2.2.1.3 int EXPRT mvme_get blt (MVME_INTERFACE * vme, int x mode)

Get current Data mode.

Parameters:
xvme VME structure

xmode returned BLT mode

Returns:
MVME_SUCCESS

2.2.1.4 int EXPRT mvme_get dmode (MVME_INTERFACE x vme, int x
dmode)

Get current Data mode.

Parameters:
xvme VME structure

xdmode returned address modifier

Returns:
MVME_SUCCESS

2.2.1.5 int EXPRT mvme_interrupt_attach (MVME_INTERFACE x mvme, int
level, int vector, void(x)(int, void x, void x) isr, void * info)

2.2.1.6 int EXPRT mvme_interrupt_detach (MVME_INTERFACE x mvme, int
level, int vector, void x* info)

2.2.1.7 int EXPRT mvme_interrupt_disable (MVME_INTERFACE x mvme, int
level, int vector, void x* info)

2.2.1.8 int EXPRT mvme_interrupt_enable (MVME_INTERFACE x mvme, int
level, int vector, void x* info)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.2 VME Functions (mvme_xxx) 12

2.2.1.9 int EXPRT mvme_interrupt_generate (MVME_INTERFACE * mvme,
int level, int vector, void x info)

2.2.1.10 int EXPRT mvme_open (MVME_INTERFACE xx vme, int index)

VME open The code below summarize the use of most of the mvme calls included in
this interface.

#include "'vmicvme.h" // or other VME interface driver.

int main O {
int i, status, vmeio_status, data;
MVME__INTERFACE *myvme;

// Open VME channel
status = mvme_open(&myvme, 0);

// Reset VME
// Under VMIC reboot CPU!!
// status = mvme_sysreset(myvme);

// Setup AM
status = mvme_set_am(myvme, MVME_AM_A24 ND);

// Setup Data size
status = mvme_set_dmode(myvme, MVME_DMODE_D32);

// Read VMEIO status
status = mvme_read(myvme, &vmeio_status, 0x78001C, 4);
printfF("WMEIO status : Ox%x\n", vmeio_status);

// Write Single value
mvme_write_value(myvme, 0x780010, 0x3);

// Read Single Value
printf(*'Value : Ox%x\n", mvme_read_value(myvme, 0x780018));

// Write to the VMEIO in latch mode
for (i=0;1<10000;i++) {

data = OxF;
status = mvme_write(myvme, 0x780010, &data, 4);
data = 0xO0;

status = mvme_write(myvme, 0x780010, &data, 4);
3

// Close VME channel
status = mvme_close(myvme);
return 1;

¥

Parameters:
xxvme user VME pointer to the interface

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.2 VME Functions (mvme_xxx) 13

index interface number should be used to distingush multiple VME interface ac-
cess within the same program.

Returns:
status MVME_SUCCESS, MVME_NO_INTERFACE, MVME_INVALID -
PARAM, MVME_ACCESS_ERROR

2.2.1.11 intEXPRT mvme_read (MVME_INTERFACE x vme, mvme_locaddr_t
x dst, mvme_addr_t vme_addr, mvme_size_t n_bytes)

Read from VME bus. Implementation of the read can include automatic DMA transfer
based on the size of the data. See example in mvme_open()

Parameters:
xvme VME structure

xdst destination pointer
vme_addr source address (VME location).

n_bytes requested transfer size.

Returns:
MVME_SUCCESS

2.2.1.12 unsigned int EXPRT mvme_read_value (MVME_INTERFACE * vme,
mvme_addr_t vme_addr)

Read single data from VME bus. Useful for register access. See example in
mvme_open()

Parameters:
xvme VME structure

vme_addr source address (VME location).

Returns:
MVME_SUCCESS

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.2 VME Functions (mvme_xxx) 14

2.2.1.13 int EXPRT mvme_set_ am (MVME_INTERFACE x vme, int am)
Set Address Modifier.

Parameters:
xvme VME structure

am address modifier

Returns:
MVME_SUCCESS

2.2.1.14 int EXPRT mvme_set_blt (MVME_INTERFACE x vme, int mode)

Set Block Transfer mode.

Parameters:
xvme VME structure

mode BLT mode

Returns:
MVME_SUCCESS

2.2.1.15 int EXPRT mvme_set_dmode (MVME_INTERFACE x* vme, int dmode)

Set Data mode.

Parameters:
xvme VME structure

dmode Data mode

Returns:
MVME_SUCCESS

2.2.1.16 int EXPRT mvme_sysreset (MVME_INTERFACE x* vme)

VME bus reset. Effect of the VME bus reset is dependent of the type of VME interface
used. See example in mvme_open()

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.2 VME Functions (mvme_xxx) 15

Parameters:
xvme VME structure.

Returns:
MVME_SUCCESS, MVME_ACCESS_ERROR

2.2.1.17 int EXPRT mvme_write (MVME_INTERFACE * vme, mvme_addr_t
vme_addr, mvme_locaddr_t x src, mvme_size_t n_bhytes)

Write data to VME bus. Implementation of the write can include automatic DMA
transfer based on the size of the data. See example in mvme_open()

Parameters:
xvme VME structure

vme_addr source address (VME location).
*SIC source array

n_bytes size of the array in bytes

Returns:
MVME_SUCCESS

22118 int EXPRT mvme_write_value (MVME_INTERFACE x vme,
mvme_addr_t vme_addr, unsigned int value)

Write single data to VME bus. Useful for register access. See example in
mvme_open()

Parameters:
xvme VME structure

vme_addr source address (VME location).
value Value to be written to the VME bus

Returns:
MVME_SUCCESS

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.3 Midas CAMAC standard 16

2.3 MidasCAMAC standard
Modules

* group Camac Functions (camxxx)

2.4 Camac Functions (camxxx)
Functions

¢« EXTERNAL INLINE void EXPRT cam16i (const int ¢, const int n, const int a,
const int f, WORD x*d)

e EXTERNAL INLINE void EXPRT cam24i (const int ¢, const int n, const int a,
const int f, DWORD x*d)

* EXTERNAL INLINE void EXPRT cam8i_q (const int c, const int n, const int a,
const int f, BYTE x*d, int *x, int *q)

* EXTERNAL INLINE void EXPRT cam16i_q (const int ¢, const int n, const int
a, const int f, WORD xd, int *x, int *q)

* EXTERNAL INLINE void EXPRT cam24i_q (const int ¢, const int n, const int
a, const int f, DWORD xd, int *X, int *q)

« EXTERNAL INLINE void EXPRT cam16i_r (const int ¢, const int n, const int
a, const int f, WORD xd, const int r)

e« EXTERNAL INLINE void EXPRT cam24i_r (const int ¢, const int n, const int
a, const int f, DWORD xxd, const int r)

* EXTERNAL INLINE void EXPRT cam8i_rq (const int ¢, const int n, const int
a, const int f, BYTE #xd, const int r)

* EXTERNAL INLINE void EXPRT cam16i_rq (const int ¢, const int n, const int
a, const int f, WORD x*xd, const int r)

* EXTERNAL INLINE void EXPRT cam?24i_rq (const int ¢, const int n, const int
a, const int f, DWORD x*xd, const int r)

e EXTERNAL INLINE void EXPRT cam8i_sa (const int ¢, const int n, const int
a, const int f, BYTE *xd, const int r)

« EXTERNAL INLINE void EXPRT cam16i_sa (const int ¢, const int n, const int
a, const int f, WORD xxd, const int r)

e« EXTERNAL INLINE void EXPRT cam24i_sa (const int ¢, const int n, const int
a, const int f, DWORD xx*d, const int r)

e EXTERNAL INLINE void EXPRT cam8i_sn (const int ¢, const int n, const int
a, const int f, BYTE #*xd, const int r)

e EXTERNAL INLINE void EXPRT cam16i_sn (const int ¢, const int n, const int
a, const int f, WORD xxd, const int r)

e EXTERNAL INLINE void EXPRT cam24i_sn (const int ¢, const int n, const int
a, const int f, DWORD xxd, const int r)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 17

EXTERNAL INLINE void EXPRT cami (const int ¢, const int n, const int a,
const int f, WORD x*d)

EXTERNAL INLINE void EXPRT cam8o (const int ¢, const int n, const int a,
const int f, BYTE d)

EXTERNAL INLINE void EXPRT cam160 (const int ¢, const int n, const int a,
const int f, WORD d)

EXTERNAL INLINE void EXPRT cam240 (const int ¢, const int n, const int a,
const int f, DWORD d)

EXTERNAL INLINE void EXPRT cam8o_q (const int ¢, const int n, const int
a, const int f, BYTE d, int *x, int *q)

EXTERNAL INLINE void EXPRT cam160_q (const int c, const int n, const int
a, const int f, WORD d, int *X, int *q)

EXTERNAL INLINE void EXPRT cam240_q (const int ¢, const int n, const int
a, const int f, DWORD d, int *x, int xq)

EXTERNAL INLINE void EXPRT cam8o_r (const int ¢, const int n, const int a,
const int f, BYTE xd, const int r)

EXTERNAL INLINE void EXPRT cam160_r (const int ¢, const int n, const int
a, const int f, WORD xd, const int r)

EXTERNAL INLINE void EXPRT cam24o0_r (const int ¢, const int n, const int
a, const int f, DWORD xd, const int r)

EXTERNAL INLINE void EXPRT camo (const int ¢, const int n, const int a,
const int f, WORD d)

EXTERNAL INLINE int EXPRT camc_chk (const int ¢)

EXTERNAL INLINE void EXPRT camc (const int ¢, const int n, const int a,
const int f)

EXTERNAL INLINE void EXPRT camc_q (const int ¢, const int n, const int a,
const int f, int *q)

EXTERNAL INLINE void EXPRT camc_sa (const int ¢, const int n, const int a,
const int f, const int r)

EXTERNAL INLINE void EXPRT camc_sn (const int ¢, const int n, const int a,
const int f, const int r)

EXTERNAL INLINE int EXPRT cam_init (void)

EXTERNAL INLINE int EXPRT cam_init_rpc (char xhost_name, char
xexp_name, char xfe_name, char xclient_name, char *rpc_server)

EXTERNAL INLINE void EXPRT cam_exit (void)

EXTERNAL INLINE void EXPRT cam_inhibit_set (const int ¢)

EXTERNAL INLINE void EXPRT cam_inhibit_clear (const int c)
EXTERNAL INLINE int EXPRT cam_inhibit_test (const int ¢)

EXTERNAL INLINE void EXPRT cam_crate_clear (const int c¢)

EXTERNAL INLINE void EXPRT cam_crate_zinit (const int ¢)

EXTERNAL INLINE void EXPRT cam_lam_enable (const int ¢, const int n)
EXTERNAL INLINE void EXPRT cam_lam_disable (const int ¢, const int n)
EXTERNAL void cam_lam_read (const int c, DWORD xlam)

EXTERNAL INLINE void EXPRT cam_lam_clear (const int ¢, const int n)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 18

¢« EXTERNAL INLINE int EXPRT cam_lam_wait (int xc, DWORD =n, const int
millisec)

* EXTERNAL INLINE void EXPRT cam_interrupt_enable (const int c)

 EXTERNAL INLINE void EXPRT cam_interrupt_disable (const int c)

* EXTERNAL INLINE int EXPRT cam_interrupt_test (const int c)

* EXTERNAL INLINE void EXPRT cam_interrupt_attach (const int c, const int
n, void(xisr)(void))

* EXTERNAL INLINE void EXPRT cam_interrupt_detach (const int c, const int
n)

2.4.1 Function Documentation

2.4.1.1 EXTERNAL INLINE void EXPRT cam16i (const int c, const int n, const
int a, const int f, WORD x d)

16 bits input.

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)
f function (0..7)

d data read out data

Returns:
void

2.4.1.2 EXTERNAL INLINE void EXPRT cam16i_q (const int ¢, const int n,
const int a, const int f, WORD = d, int x X, int x q)

16 bits input with Q response.

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)
f function (0..7)

d data read out data

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 19

X X response (0:failed,1:success)
g Q resonpse (0:no Q, 1: Q)

Returns:
void

Referenced by csmad(), and cssa().

2.4.1.3 EXTERNAL INLINE void EXPRT caml16i_r (const int c, const int n,
const int a, const int f, WORD x*x d, const int r)

Repeat 16 bits input.

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d data read out data

r repeat time

Returns:
void

2.4.1.4 EXTERNAL INLINE void EXPRT caml6i_rq (const int ¢, const int n,
const int a, const int f, WORD x*x d, const int r)

Repeat 16 bits input with Q stop.

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d pointer to data read out

r repeat time

Returns:
void

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 20

2.4.1.5 EXTERNAL INLINE void EXPRT caml6i_sa (const int ¢, const int n,
const int a, const int f, WORD x*x d, const int r)

Read the given CAMAC address and increment the sub-address by one. Repeat r times.

WORD pbkdat[4];
caml6i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

caml6i(crate, 5, 0, 2, &pbkdat[0]);
caml6i(crate, 5, 1, 2, &pbkdat[1]);
caml6éi(crate, 5, 2, 2, &pbkdat[2]);
caml6i(crate, 5, 3, 2, &pbkdat[3]);
Parameters:

¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d pointer to data read out

r number of consecutive sub-address to read

Returns:
void

2.4.1.6 EXTERNAL INLINE void EXPRT cam16i_sn (const int ¢, const int n,
const int a, const int f, WORD xx d, const int r)

Read the given CAMAC address and increment the station number by one. Repeat r
times.

WORD pbkdat[4];
caml6i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

caml6i(crate, 5, 0, 2, &pbkdat[0]);
camléi(crate, 6, 0, 2, &pbkdat[1]);
caml6i(crate, 7, 0, 2, &pbkdat[2]);
caml6i(crate, 8, 0, 2, &pbkdat[3]);
Parameters:

¢ crate number (0..)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 21

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d pointer to data read out

r number of consecutive station to read

Returns:
void

2.4.1.7 EXTERNAL INLINE void EXPRT cam160 (const int c, const int n, const
int a, const int f, WORD d)

Write data to given CAMAC address.

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

Returns:
void

2.4.1.8 EXTERNAL INLINE void EXPRT caml6o0_g (const int c, const int n,
const int a, const int f, WORD d, int * X, int * Q)

Write data to given CAMAC address with Q response.

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

X X response (0:failed,1:success)
g Q resonpse (0:no Q, 1: Q)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 22

Returns:
void

Referenced by cssa().

2.4.1.9 EXTERNAL INLINE void EXPRT caml160_r (const int c, const int n,
const int a, const int f, WORD = d, const intr)

Repeat write data to given CAMAC address r times.

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

r number of repeatition

Returns:
void

2.4.1.10 EXTERNAL INLINE void EXPRT cam24i (const int ¢, const int n,
const int a, const int f, DWORD x d)

24 bits input.

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)
f function (0..7)

d data read out data

Returns:
void

Referenced by read_scaler_event().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 23

2.4.1.11 EXTERNAL INLINE void EXPRT cam24i_q (const int c, const int n,
const int a, const int f, DWORD x d, int * X, int x q)

24 bits input with Q response.

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d data read out data

X X response (0:failed,1:success)
g Qresonpse (0:no Q, 1: Q)

Returns:
void

Referenced by cfmad(), and cfsa().

2.4.1.12 EXTERNAL INLINE void EXPRT cam24i_r (const int ¢, const int n,
const int a, const int f, DWORD xx d, const int r)

Repeat 24 bits input.

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d data read out

r repeat time

Returns:
void

2.4.1.13 EXTERNAL INLINE void EXPRT cam24i_rq (const int ¢, const int n,
const int a, const int f, DWORD xx d, const int r)

Repeat 24 bits input with Q stop.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx)

24

Parameters:

¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (0..7)

d pointer to data read out

r repeat time

Returns:
void

2.41.14 EXTERNAL INLINE void EXPRT cam24i_sa (const int c, const int n,

const int a, const int f, DWORD x*x d, const int r)

Read the given CAMAC address and increment the sub-address by one. Repeat r times.

DWORD pbkdat[8];
cam24i_sa(crate,

equivalent to

cam24i(crate,
cam24i(crate,
cam24i(crate,
cam24i(crate,

Parameters:

o~NO O

5, 0, 2, &pbkdat, 8);

[eNeoNoNe)

NNDNN

¢ crate number (0..)

&pbkdat[0]);
&pbkdat[1]);
&pbkdat[2]);
&pbkdat[3]);

n station number (0..30)

a sub-address (0..15)

f function (0..7)

d pointer to data read out

r number of consecutive sub-address to read

Returns:
void

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 25

2.4.1.15 EXTERNAL INLINE void EXPRT cam24i_sn (const int ¢, const int n,
const int a, const int f, DWORD xx d, const int r)

Read the given CAMAC address and increment the station number by one. Repeat r
times.

DWORD pbkdat[4];
cam24i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

cam24i(crate, 5, 0, 2, &pbkdat[0]);
cam24i(crate, 6, 0, 2, &pbkdat[1]);
cam24i(crate, 7, 0, 2, &pbkdat[2]);
cam24i(crate, 8, 0, 2, &pbkdat[3]);
Parameters:

¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d pointer to data read out

r number of consecutive station to read

Returns:
void

24116 EXTERNAL INLINE void EXPRT cam24o0 (const int c, const int n,
const int a, const int f, DWORD d)

Write data to given CAMAC address.

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

Returns:
void

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 26

2.4.1.17 EXTERNAL INLINE void EXPRT cam240_q (const int ¢, const int n,
const int a, const int f, DWORD d, int x X, int x q)

Write data to given CAMAC address with Q response.

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

X X response (0:failed,1:success)
g Qresponse (0:no Q, 1: Q)

Returns:
void

Referenced by cfsa().

2.4.1.18 EXTERNAL INLINE void EXPRT cam240_r (const int ¢, const int n,
const int a, const int f, DWORD x d, const int r)

Repeat write data to given CAMAC address r times.

Parameters:
C crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

r number of repeatition

Returns:
void

2.4.1.19 EXTERNAL INLINE void EXPRT cam8i_q (const int ¢, const int n,
constint a, constint f, BYTE x d, int x X, int x q)

8 bits input with Q response.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 27

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (0..7)

d data read out data

X X response (0:failed,1:success)
g Q resonpse (0:no Q, 1: Q)

Returns:
void

2.4.1.20 EXTERNAL INLINE void EXPRT cam8i_rq (const int ¢, const int n,
const int a, const int f, BYTE *x d, const int r)

Repeat 8 bits input with Q stop.
Parameters:

c crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (0..7)

d pointer to data read out

r repeat time

Returns:
void

2.4.1.21 EXTERNAL INLINE void EXPRT cam8i_sa (const int ¢, const int n,
const int a, const int f, BYTE «x d, const intr)

Read the given CAMAC address and increment the sub-address by one. Repeat r times.

BYTE pbkdat[4];
cam8i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 28

cam8i(crate, 5, 0, 2, &pbkdat[0]);
cam8i(crate, 5, 1, 2, &pbkdat[1]);
cam8i(crate, 5, 2, 2, &pbkdat[2]);
cam8i(crate, 5, 3, 2, &pbkdat[3]);
Parameters:

¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d pointer to data read out

r number of consecutive sub-address to read

Returns:
void

2.4.1.22 EXTERNAL INLINE void EXPRT cam8i_sn (const int ¢, const int n,
const int a, const int f, BYTE «x d, const intr)

Read the given CAMAC address and increment the station number by one. Repeat r
times.

BYTE pbkdat[4];
cam8i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

cam8i(crate, 5, 0, 2, &pbkdat[0]);
cam8i(crate, 6, 0, 2, &pbkdat[1]);
cam8i(crate, 7, 0, 2, &pbkdat[2]);
cam8i(crate, 8, 0, 2, &pbkdat[3]);

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d pointer to data read out

r number of consecutive station to read

Returns:
void

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 29

2.4.1.23 EXTERNAL INLINE void EXPRT cam8o (const int ¢, const int n, const
inta, constint f, BYTE d)

Write data to given CAMAC address.

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

Returns:
void

2.4.1.24 EXTERNAL INLINE void EXPRT cam8o_q (const int c, const int n,
constinta, constintf, BYTE d, int x X, int x q)

Write data to given CAMAC address with Q response.

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

X X response (0:failed,1:success)
g Q resonpse (0:no Q, 1: Q)

Returns:
void

2.4.1.25 EXTERNAL INLINE void EXPRT cam8o_r (const int ¢, const int n,
constint a, constint f, BYTE « d, const intr)

Repeat write data to given CAMAC address r times.

Parameters:
¢ crate number (0..)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 30

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

r number of repeatition

Returns:
void

2.4.1.26 EXTERNAL INLINE void EXPRT cam_crate_clear (const int c)
Issue CLEAR to crate.

Parameters:
¢ crate number (0..)

Returns:
void

Referenced by cccc(), and frontend_init().

2.4.1.27 EXTERNAL INLINE void EXPRT cam_crate_zinit (const int c)

Issue Z to crate.

Parameters:
¢ crate number (0..)

Returns:
void

Referenced by cccz(), and frontend_init().

2.4.1.28 EXTERNAL INLINE void EXPRT cam_exit (void)
Close CAMAC accesss.

2.4.1.29 EXTERNAL INLINE void EXPRT cam_inhibit_clear (const int c)
Clear Crate inhibit.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 31

Parameters:
¢ crate number (0..)

Returns:
void

Referenced by ccci().

2.41.30 EXTERNAL INLINE void EXPRT cam_inhibit_set (const int c)
Set Crate inhibit.

Parameters:
¢ crate number (0..)

Returns:
void

Referenced by ccci().

2.4.1.31 EXTERNAL INLINE int EXPRT cam_inhibit_test (const int c)
Test Crate Inhibit.

Parameters:
¢ crate number (0..)

Returns:
1 for set, O for cleared

Referenced by ctci().

2.4.1.32 EXTERNAL INLINE int EXPRT cam_init (void)
Initialize CAMAC access.

Returns:
1: success

Referenced by ccinit(), fccinit(), and frontend_init().

2.4.1.33 EXTERNAL INLINE int EXPRT cam_init_rpc (char * host_name,
char x exp_name, char x fe_name, char * client_name, char x rpc_server)

Initialize CAMAC access for rpc calls

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 32

For Reeanatess:only.
host_name Midas host to contact

exp_name Midas experiment to contact
fe_name frontend application name to contact
client_name RPC host name

rpc_server RPC server name

Returns:
1: success

2.4.1.34 EXTERNAL INLINE void EXPRT cam_interrupt_attach (const int c,
const int n, void(x)(void) isr)

Attach service routine to LAM of specific crate and station.

Parameters:
¢ crate number (0..)

n station number

(*isr) Function pointer to attach to the LAM

Returns:
void

Referenced by cclnk().

2.4.1.35 EXTERNAL INLINE void EXPRT cam_interrupt_detach (const int c,
const int n)

Detach service routine from LAM.

Parameters:
¢ crate number (0..)

n station number

Returns:
void

Referenced by cculk().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 33

2.4.1.36 EXTERNAL INLINE void EXPRT cam_interrupt_disable (const int c)

Disables interrupts in specific crate

Parameters:
¢ crate number (0..)

Returns:
void

Referenced by cccd().

2.4.1.37 EXTERNAL INLINE void EXPRT cam_interrupt_enable (const int c)

Enable interrupts in specific crate

Parameters:
¢ crate number (0..)

Returns:
void

Referenced by cccd(), and cergl().

2.4.1.38 EXTERNAL INLINE int EXPRT cam_interrupt_test (const int c)

Test Crate Interrupt.

Parameters:
¢ crate number (0..)

Returns:
1 for set, O for cleared

Referenced by ctcd().

2.4.1.39 EXTERNAL INLINE void EXPRT cam_lam_clear (const int ¢, const
int n)

Clear the LAM register of the crate controller. It doesn’t clear the LAM of the particular
station.

Parameters:
¢ crate number (0..)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 34

n LAM station

Returns:
void

Referenced by cclnk(), ccrgl(), and read_trigger_event().

2.4.1.40 EXTERNAL INLINE void EXPRT cam_lam_disable (const int c, const
int n)

Disable LAM generation for given station to the Crate controller. It doesn’t disable the
LAM of the actual station itself.

Parameters:
¢ crate number (0..)

n LAM station

Returns:
void

2.4.1.41 EXTERNAL INLINE void EXPRT cam_lam_enable (const int ¢, const
int n)

Enable LAM generation for given station to the Crate controller. It doesn’t enable the
LAM of the actual station itself.

Parameters:
¢ crate number (0..)

n LAM station

Returns:
void

Referenced by cclnk(), ccrgl(), and frontend_init().

2.4.1.42 EXTERNAL void cam_lam_read (const int c, DWORD * lam)

Reads in lam the lam pattern of the entire crate.

Parameters:
¢ crate number (0..)

lam LAM pattern of the crate

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 35

Returns:
void

Referenced by ctgl(), and poll_event().

2.4.1.43 EXTERNAL INLINE int EXPRT cam_lam_wait (int x ¢, DWORD x n,
const int millisec)

Wait for a LAM to occur with a certain timeout. Return crate and station if LAM

occurs.

Parameters:
¢ crate number (0..)
n LAM station

millisec If there is no LAM after this timeout, the routine returns

Returns:
1 if LAM occured, O else

2.4.1.44 EXTERNAL INLINE void EXPRT camc (const int ¢, const int n, const
int a, const int f)

CAMAC command (no data).

Parameters:
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)
f function (8..15, 24..31)

Returns:
void

Referenced by ccle(), cclm(), frontend_init(), and read_trigger_event().

2.4.1.45 EXTERNAL INLINE int EXPRT camc_chk (const int ¢)

Crate presence check.

Parameters:
¢ crate number (0..)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.4 Camac Functions (camxxx) 36

Returns:
0:Success, -1:No CAMAC response

2.4.1.46 EXTERNAL INLINE void EXPRT camc_g (const int ¢, const int n,
const int a, const int f, int x q)

CAMAC command with Q response (no data).

Parameters:
¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (8..15, 24..31)

g Q response (0:no Q, 1:Q)

Returns:
void

Referenced by cfsa(), cssa(), ctlm(), and read_trigger_event().

2.4.1.47 EXTERNAL INLINE void EXPRT camc_sa (const int ¢, const int n,
const int a, const int f, const intr)

Scan CAMAC command on sub-address.
Parameters:

¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (8..15, 24..31)

r number of consecutive sub-address to read

Returns:
void

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c 37

2.4.1.48 EXTERNAL INLINE void EXPRT camc_sn (const int ¢, const int n,
const int a, const int f, const int r)

Scan CAMAC command on station.
Parameters:

¢ crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (8..15, 24..31)

r number of consecutive station to read

Returns:
void

2.4.1.49 EXTERNAL INLINE void EXPRT cami (const int ¢, const int n, const
int a, const int f, WORD x d)

Same as cam16i()

2.4.1.50 EXTERNAL INLINE void EXPRT camo (const int c, const int n, const
int a, const int f, WORD d)

Same as cam160()

Referenced by frontend_init(), and read_trigger_event().

2.4.1.51 EXTERNAL INLINE void EXPRT camop ()
Definition at line 744 of file mcstd.h.

25 Themidash & midas.c

Modules

* group Midas Define

* group Midas Macros

 group Midas Error definition

 group Midas Structure Declaration

* group Midas Message Functions (msg_xxx)

* group Midas Common Functions (cm_xxx)

* group Midas Buffer Manager Functions (bm_xxx)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c

38

 group Midas RPC Functions (rpc_xxx)

 group Midas Bank Functions (bk_xxx)

e group Midas History Functions (hs_xxx)

 group Midas Elog Functions (el_xxx)

* group Midas Alarm Functions (al_xxx)

 group Midas Dual Buffer Memory Functions (dm_xxx)
» group Midas Ring Buffer Functions (rb_xxx)

Defines

e #define TAPE_BUFFER_SIZE 0x8000

¢ #define NET_TCP_SIZE 0xFFFF

e #define OPT_TCP_SIZE 8192

e #define NET_UDP_SIZE 8192

¢ #define MAX_EVENT_SIZE 0x400000

¢ #define EVENT_BUFFER_NAME "SYSTEM"

e #define DEFAULT_ODB_SIZE 0x100000

e #define NAME_LENGTH 32

e #define HOST_NAME_LENGTH 256

¢ #define MAX_CLIENTS 64

e #define MAX_EVENT_REQUESTS 10

¢ #define MAX_OPEN_RECORDS 256

e #define MAX_ODB_PATH 256

¢ #define MAX_EXPERIMENT 32

¢ #define BANKLIST_MAX 64

¢ #define STRING_BANKLIST MAX BANKLIST_MAX x* 4
¢ #define DEFAULT_RPC_TIMEOUT 10000

e #define DEFAULT _WATCHDOG_TIMEOUT 10000

o #define CH_BS 8

o #define LAM_SOURCE(c, s) (c<<24 | ((s) & 0xFFFFFF))
e #define LAM_STATION(s) (1<<(s-1))

e #define LAM_SOURCE_CRATE(c) (c>>24)

¢ #define LAM_SOURCE_STATION(s) ((s) & O0xFFFFFF)
¢ #define CNAF Ox1

e #define ANA_CONTINUE 1

Variables

« HNDLE _hKeyClient = 0

2.5.1 Define Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c

2.5.1.1 #define ANA_CONTINUE 1

CAOX sk sttt sk sk s o ok ok sk sk sk sk sk sk sk sk stk s sk sk ok ok ok ok sk sk sk sk sk sk sk st ot s s sk sk ok ok sk ok sk sk sk sk sk sk sk ok s sk sk ok ok ok ok sk ok ok

Definition at line 733 of file midas.h.

2.5.1.2 #define ANA_SKIPO
Definition at line 734 of file midas.h.

2.5.1.3 #define BANKLIST_MAX 64
max # of banks in event

Definition at line 226 of file midas.h.
Referenced by bk_list().

2.5.1.4 #define CH_BS 8
special characters

Definition at line 367 of file midas.h.

2.5.1.5 #define CH_CR 13
Definition at line 369 of file midas.h.

25.1.6 #define CH_DELETE (CH_EXT+2)
Definition at line 375 of file midas.h.

25.1.7 #define CH_DOWN (CH_EXT+7)
Definition at line 380 of file midas.h.

2.5.1.8 #define CH_END (CH_EXT+3)
Definition at line 376 of file midas.h.

2.5.1.9 #define CH_EXT 0x100

Definition at line 371 of file midas.h.

2.5.1.10 #define CH_HOME (CH_EXT+0)
Definition at line 373 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c 40

25.1.11 #define CH_INSERT (CH_EXT+1)
Definition at line 374 of file midas.h.

25.1.12 #define CH_LEFT (CH_EXT+9)
Definition at line 382 of file midas.h.

2.5.1.13 #define CH_PDOWN (CH_EXT+5)
Definition at line 378 of file midas.h.

2.5.1.14 #define CH_PUP (CH_EXT+4)
Definition at line 377 of file midas.h.

2.5.1.15 #define CH_RIGHT (CH_EXT+8)

Definition at line 381 of file midas.h.

25.1.16 #define CH_TAB9
Definition at line 368 of file midas.h.

2.5.1.17 #define CH_UP (CH_EXT+6)
Definition at line 379 of file midas.h.

2.5.1.18 #define CNAF 0x1
CNAF commands
Definition at line 412 of file midas.h.

2.5.1.19 #define CNAF_CRATE_CLEAR 0x102
Definition at line 417 of file midas.h.

25.1.20 #define CNAF_CRATE_ZINIT 0x103
Definition at line 418 of file midas.h.

25.1.21 #define CNAF_INHIBIT_CLEAR 0x101
Definition at line 416 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c 41

2.5.1.22 #define CNAF_INHIBIT_SET 0x100
Definition at line 415 of file midas.h.

2.5.1.23 #define CNAF_nQ 0x2
Definition at line 413 of file midas.h.

25.1.24 #define CNAF_TEST 0x110
Definition at line 419 of file midas.h.

2.5.1.25 #define DATABASE_VERSION 2
Definition at line 41 of file midas.h.

Referenced by db_open_database().

25.1.26 #define DEFAULT_ODB_SIZE 0x100000
online database 1M
Definition at line 217 of file midas.h.

Referenced by cm_connect_experiment(), and main().

2.5.1.27 #define DEFAULT_RPC_TIMEOUT 10000
Timeouts [ms]

Definition at line 234 of file midas.h.

2.5.1.28 #define DEFAULT _WATCHDOG_TIMEOUT 10000
Watchdog
Definition at line 237 of file midas.h.

Referenced by cm_connect_experiment().

2.5.1.29 #define EVENT_BUFFER_NAME "SYSTEM"

buffer name for commands

Definition at line 216 of file midas.h.

2.5.1.30 #define HOST_NAME_LENGTH 256
length of TCP/IP names

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c 42

Definition at line 220 of file midas.h.

Referenced by cm_set_client_info().

25.1.31 #define LAM_SOURCE(C, 5) (c<<24 | ((s) & OXFFFFFF))

Code the LAM crate and LAM station into a bitwise register.

Parameters:
¢ Crate number

s Slot number

Definition at line 390 of file midas.h.

25.1.32 #define LAM_SOURCE_CRATE(c) (c>>24)

Convert the coded LAM crate to Crate number.

Parameters:
C coded crate

Definition at line 402 of file midas.h.
Referenced by poll_event().

2.5.1.33 #define LAM_SOURCE_STATION(S) ((s) & OXFFFFFF)

Convert the coded LAM station to Station number.

Parameters:
s Slot number

Definition at line 408 of file midas.h.

Referenced by poll_event().

2.5.1.34 #define LAM_STATION(s) (1<<(s-1))

Code the Station number bitwise for the LAM source.

Parameters:
s Slot number

Definition at line 396 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c 43

2.5.1.35 #define MAX_CLIENTS 64
client processes per buf/db
Definition at line 221 of file midas.h.

Referenced by bm_close_buffer(), cm_cleanup(), and db_close_database().

2.5.1.36 #define MAX_EVENT_REQUESTS 10
event requests per client
Definition at line 222 of file midas.h.

Referenced by bm_remove_event_request().

2.5.1.37 #define MAX_EVENT_SIZE 0x400000
maximum event size 4MB
Definition at line 215 of file midas.h.

Referenced by bm_send_event(), main(), register_equipment(), rpc_send_event(), and
source_booking().

2.5.1.38 #define MAX_EXPERIMENT 32
number of different exp.
Definition at line 225 of file midas.h.

Referenced by cm_connect_experiment1(), and cm_list_experiments().

2.5.1.39 #define MAX_ODB_PATH 256
length of path in ODB
Definition at line 224 of file midas.h.

2.5.1.40 #define MAX_OPEN_RECORDS 256
number of open DB records

Definition at line 223 of file midas.h.

25.1.41 #define MIDAS_TCP_PORT 1175
Definition at line 230 of file midas.h.

Referenced by cm_list_experiments().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c 44

2.5.1.42 #define MIDAS_VERSION "'2.0.0"

Definition at line 44 of file midas.h.

25.1.43 #define NAME_LENGTH 32
length of names, mult.of 8!
Definition at line 219 of file midas.h.

Referenced by cm_connect_experiment1(), and cm_set_client_info().

2.5.1.44 #define NET_TCP_SIZE OxFFFF
maximum TCP transfer size
Definition at line 211 of file midas.h.

Referenced by rpc_send_event(), and scheduler().

2.5.1.45 #define NET_UDP_SIZE 8192
maximum UDP transfer

Definition at line 213 of file midas.h.

2.5.1.46 #define OPT_TCP_SIZE 8192
optimal TCP buffer size
Definition at line 212 of file midas.h.

2.5.1.47 #define STRING_BANKLIST _MAX BANKLIST _MAX % 4
for bk_list()
Definition at line 227 of file midas.h.

2.5.1.48 #define TAPE_BUFFER_SIZE 0x8000
buffer size for taping data

Definition at line 209 of file midas.h.

2.5.1.49 #define WATCHDOG_INTERVAL 1000
Definition at line 235 of file midas.h.

Referenced by cm_set_client_info(), and cm_set_watchdog_params().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.5 The midas.h & midas.c

45

2.5.2 Variable Documentation

25.2.1 INT _call watchdog=TRUE [static]
Definition at line 1029 of file midas.c.

Referenced by cm_set_watchdog_params().

2.5.2.2 char _client_ name[NAME_LENGTH] [stati c]

Definition at line 1027 of file midas.c.

2523 HNDLE hDB=0 [static]
Definition at line 1026 of file midas.c.

Referenced by cm_set_experiment_database().

25.24 HNDLE hKeyClient=0 [static]
dOX*>k******>k********************>k******>k*************************
Definition at line 1025 of file midas.c.

Referenced by cm_set_experiment_database().

2525 INT _mutex_alarm
Definition at line 1031 of file midas.c.

Referenced by db_close_database().

2.5.2.6 INT _mutex elog
Definition at line 1031 of file midas.c.

Referenced by db_close_database().

2.5.2.7 char _path_name[MAX_STRING_LENGTH] [static]
Definition at line 1028 of file midas.c.

Referenced by cm_get_path(), and cm_set_path().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 46

25.28 INT _watchdog_timeout = DEFAULT WATCHDOG_TIMEOUT
[static]

Definition at line 1030 of file midas.c.

Referenced by cm_set_watchdog_params().

2.6 MidasDefi ne

Defines

e #define STATE_STOPPED 1
e #define STATE_PAUSED 2

¢ #define STATE_ RUNNING 3
¢ #define FORMAT_MIDAS 1
e #define FORMAT_YBOS 2

e #define FORMAT_ASCII 3

¢ #define FORMAT_FIXED 4
¢ #define FORMAT_DUMP 5
e #define FORMAT_HBOOK 6
e #define FORMAT_ROOT 7

e #define GET_ALL (1<<0)

¢ #define GET_SOME (1<<1)
e #define GET_FARM (1<<2)
e #define TID_BYTE 1

¢ #define TID_SBYTE 2

¢ #define TID_CHAR 3

e #define TID_WORD 4

e #define TID_SHORT 5

¢ #define TID_DWORD 6

e #define TID_INT 7

e #define TID_BOOL 8

e #define TID_FLOAT 9

e #define TID_DOUBLE 10

e #define TID_BITFIELD 11

e #define TID_STRING 12

¢ #define TID_ARRAY 13

e #define TID_STRUCT 14

e #define TID_KEY 15

e #define TID_LINK 16

e #define TID_LAST 17

e #define SYNC 0

e #define MODE_READ (1<<0)
e #define RPC_OTIMEOUT 1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define a7

#define WF_WATCH_ME (1<<0)

#define TR_START (1<<0)

#define TR_STOP (1<<1)

#define TR_PAUSE (1<<?2)

#define TR_RESUME (1< <3)

#define EQ_PERIODIC (1<<0)

#define EQ_POLLED (1<<1)

#define EQ_INTERRUPT (1<<?2)

#define EQ_MULTITHREAD (1<<3)

#define EQ_SLOW (1<<4)

#define EQ_MANUAL_TRIG (1<<5)

#define EQ_FRAGMENTED (1<<6)

#define EQ_EB (1<<7)

#define RO_RUNNING (1<<0)

#define RO_STOPPED (1<<1)

#define RO_PAUSED (1<<?2)

#define RO_BOR (1<<3)

#define RO_EOR (1<<4)

#define RO_PAUSE (1<<5)

#define RO_RESUME (1<<6)

#define RO_TRANSITIONS (RO_BOR|RO_EOR|RO_PAUSE|RO_RESUME)
#define RO_ALWAYS (0xFF)

#define RO_ODB (1<<8)

#define MT_ERROR (1<<0)

#define MT_INFO (1<<1)

#define MT_DEBUG (1<<?2)

#define MT_USER (1<<3)

#define MT_LOG (1<<4)

#define MT_TALK (1<<5)

#define MT_CALL (1<<6)

#define MT_ALL OxFF

#define MERROR MT_ERROR, _ FILE_ , _ LINE__
#define MINFO MT_INFO, _ FILE_ , _LINE__
#define MDEBUG MT_DEBUG, _ FILE__, _LINE__
#define MUSER MT_USER, _ FILE_ , _ LINE__
#define MLOG MT_LOG, _ FILE_ , _LINE_
#define MTALK MT_TALK, _ FILE_ , _LINE_
#define MCALL MT_CALL, _ FILE ,_LINE__

L]

2.6.1 Define Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 48

2.6.1.1 #define ASYNC 1
Definition at line 294 of file midas.h.

Referenced by bm_receive_event(), handFlush(), scan_fragment(), scheduler(), and
source_scan().

2.6.1.2 #define EQ_EB (1<<7)
Event run through the event builder

Definition at line 344 of file midas.h.

2.6.1.3 #define EQ_FRAGMENTED (1<<6)
Fragmented Event

Definition at line 343 of file midas.h.

2.6.1.4 #define EQ_INTERRUPT (1<<2)
Interrupt Event
Definition at line 339 of file midas.h.

Referenced by scheduler().

2.6.1.5 #define EQ_MANUAL_TRIG (1<<5)
Manual triggered Event
Definition at line 342 of file midas.h.

2.6.1.6 #define EQ_MULTITHREAD (1<<3)
Multithread Event readout

Definition at line 340 of file midas.h.

Referenced by tr_stop().

2.6.1.7 #define EQ_PERIODIC (1<<0)
Periodic Event

Definition at line 337 of file midas.h.

2.6.1.8 #define EQ_POLLED (1<<1)
Polling Event

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define

49

Definition at line 338 of file midas.h.

Referenced by register_equipment().

2.6.1.9 #define EQ_SLOW (1<<4)
Slow Control Event
Definition at line 341 of file midas.h.

Referenced by scheduler().

2.6.1.10 #define EVENTID_ALL -1
Definition at line 458 of file midas.h.

Referenced by bm_match_event(), and cm_msg_register().

2.6.1.11 #define FORMAT_ASCII 3
ASCII format
Definition at line 258 of file midas.h.

2.6.1.12 #define FORMAT _DUMP 5
Dump (detailed ASCII) format
Definition at line 260 of file midas.h.

2.6.1.13 #define FORMAT_FIXED 4
Fixed length binary records

Definition at line 259 of file midas.h.

2.6.1.14 #define FORMAT_HBOOK 6
CERN hbook (rz) format
Definition at line 261 of file midas.h.

2.6.1.15 #define FORMAT_MIDAS 1
MIDAS banks
Definition at line 256 of file midas.h.

Referenced by source_scan().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define

50

2.6.1.16 #define FORMAT_ROOT 7
CERN ROOT format
Definition at line 262 of file midas.h.

2.6.1.17 #define FORMAT_YBOS 2
YBOS banks
Definition at line 257 of file midas.h.

Referenced by source_scan().

2.6.1.18 #define GET_ALL (1<<0)
get all events (consume)
Definition at line 266 of file midas.h.

Referenced by source_booking().

2.6.1.19 #define GET_FARM (1<<2)

distribute events over several clients (farming)

Definition at line 268 of file midas.h.

2.6.1.20 #define GET_SOME (1<<1)
get as much as possible (sampling)
Definition at line 267 of file midas.h.

Referenced by cm_msg_register().

2.6.1.21 #define MCALL MT_CALL, _ FILE_ , _ LINE__
info message for telephone call

Definition at line 478 of file midas.h.

2.6.1.22 #define MDEBUG MT_DEBUG, _FILE_, LINE__

Definition at line 474 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 51

Referenced by bm_flush_cache(), bm_push_event(), bm_receive_event(), bm_-
send_event(), bm_update_read_pointer(), bm_wait_for_free_space(), bm_wakeup_-
producers(), and cm_transition().

2.6.1.23 #define MERROR MT_ERROR, _FILE_, LINE__

Definition at line 472 of file midas.h.

Referenced by al_trigger_alarm(), analyzer_init(), bm_close_buffer(), bm_copy_-
from_cache(), bm_flush_cache(), bm_open_buffer(), bm_push_event(), bm_receive_-
event(), bm_remove_event_request(), bm_request_event(), bm_send_event(), bm_-
set_cache_size(), bm_skip_event(), bm_validate_client_index(), bm_wait_for_free_-
space(), cm_check_client(), cm_check_deferred_transition(), cm_cleanup(), cm_-
connect_experiment1(), cm_deregister_transition(), cm_get_watchdog_info(), cm_-
list_experiments(), cm_register_deferred_transition(), cm_register_transition(), cm_-
set_client_info(), cm_set_transition_sequence(), cm_shutdown(), cm_transition(),
db_check_record(), db_close_database(), db_copy(), db_copy_xml(), db_create_-
key(), db_create_link(), db_create_record(), db_delete_key1(), db_enum_key(), db_-
find_key(), db_get_data(), db_get_data_index(), db_get_key(), db_get_key_info(),
db_get_key_time(), db_get_record(), db_get_value(), db_load(), db_lock_database(),
db_open_database(), db_open_record(), db_paste(), db_paste_node(), db_protect_-
database(), db_save(), db_save_struct(), db_save_xml(), db_save_xml_key(), db_set_-
data(), db_set_data_index(), db_set_record(), db_set_value(), db_unlock_database(),
dm_buffer_create(), el_submit(), handFlush(), load_fragment(), main(), readout_-
thread(), receive_trigger_event(), register_equipment(), rpc_flush_event(), rpc_-
register_functions(), rpc_send_event(), rpc_set_option(), scan_fragment(), scheduler(),
send_event(), source_booking(), source_scan(), source_unbooking(), tr_start(), tr_-
stop(), and update_odb().

2.6.1.24 #define MINFO MT_INFO, _FILE_, LINE__

Definition at line 473 of file midas.h.

Referenced by bk_list(), bm_validate_client_pointers(), close_buffers(), cm_check_-
client(), cm_cleanup(), cm_connect_experimentl(), cm_disconnect_experiment(),
cm_set_client_info(), cm_shutdown(), cm_transition(), load_fragment(), register_-
equipment(), tr_start(), and ybk_list().

2.6.1.25 #define MLOG MT_LOG, _FILE_, LINE__

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 52

info message which is only logged

Definition at line 476 of file midas.h.

2.6.1.26 #define MODE_ALLOC (1<<7)
Definition at line 302 of file midas.h.

Referenced by db_open_record().

2.6.1.27 #define MODE_DELETE (1<<2)
Definition at line 300 of file midas.h.

Referenced by cm_delete_client_info(), cm_deregister_transition(), cm_register_-
transition(), cm_set_client_info(), and cm_ transition().

2.6.1.28 #define MODE_EXCLUSIVE (1<<3)
Definition at line 301 of file midas.h.

Referenced by cm_cleanup(), and db_open_database().

2.6.1.29 #define MODE_READ (1<<0)
Access modes
Definition at line 298 of file midas.h.

Referenced by analyzer_init(), cm_delete_client_info(), cm_deregister_transition(),
cm_register_deferred_transition(), cm_register_transition(), cm_set_client_info(),
cm_set_transition_sequence(), cm_set_watchdog_params(), cm_transition(), db_-
create_key(), db_open_database(), db_open_record(), and register_equipment().

2.6.1.30 #define MODE_WRITE (1<<1)
Definition at line 299 of file midas.h.

Referenced by cm_cleanup(), cm_delete_client_info(), cm_deregister_transition(),
cm_register_deferred_transition(), cm_register_transition(), cm_set_client_info(),
cm_set_transition_sequence(), cm_set_watchdog_params(), cm_transition(), db_-
create_key(), db_open_database(), and register_equipment().

2.6.1.31 #define MT_ALL OxFF

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define

Definition at line 470 of file midas.h.

Referenced by cm_connect_experiment1(), and main().

2.6.1.32 #define MT_CALL (1<<6)

Definition at line 469 of file midas.h.

2.6.1.33 #define MT_DEBUG (1<<2)

Definition at line 465 of file midas.h.

2.6.1.34 #define MT_ERROR (1<<0)

Definition at line 463 of file midas.h.

2.6.1.35 #define MT_INFO (1<<1)

Definition at line 464 of file midas.h.

2.6.1.36 #define MT_LOG (1<<4)

Definition at line 467 of file midas.h.

2.6.1.37 #define MT_TALK (1<<5)

Definition at line 468 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 54

2.6.1.38 #define MT_USER (1<<3)

Definition at line 466 of file midas.h.

2.6.1.39 #define MTALK MT_TALK, _ FILE__, _ LINE__
info message for speech system
Definition at line 477 of file midas.h.

Referenced by scan_fragment(), and scheduler().

2.6.1.40 #define MUSER MT_USER, _ FILE_ , _LINE__
produced by interactive user

Definition at line 475 of file midas.h.

2.6.1.41 #define RO_ALWAYS (0xFF)
Always (independent of the run status)

Definition at line 358 of file midas.h.

2.6.1.42 #define RO_BOR (1<<3)
At the Begin of run
Definition at line 352 of file midas.h.

2.6.1.43 #define RO_EOR (1<<4)
At the End of run
Definition at line 353 of file midas.h.

2.6.1.44 #define RO_ODB (1<<8)
Submit data to ODB only
Definition at line 360 of file midas.h.

Referenced by scheduler().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 55

2.6.1.45 #define RO_PAUSE (1<<5)
Before pausing the run

Definition at line 354 of file midas.h.

2.6.1.46 #define RO_PAUSED (1<<2)

m

Definition at line 351 of file midas.h.

2.6.1.47 #define RO_RESUME (1<<6)
Before resuming the run

Definition at line 355 of file midas.h.

2.6.1.48 #define RO_RUNNING (1<<0)
While running

Definition at line 349 of file midas.h.

2.6.1.49 #define RO_STOPPED (1<<1)
Before stopping the run
Definition at line 350 of file midas.h.

2.6.1.50 #define RO_TRANSITIONS (RO_BOR|RO_EOR|RO_PAUSE|RO -
RESUME)

At all transitions

Definition at line 357 of file midas.h.

2.6.1.51 #define RPC_CLIENT_HANDLE 9
Definition at line 314 of file midas.h.

Referenced by cm_get_experiment_database(), and cm_set_client_info().

2.6.1.52 #define RPC_CONVERT_FLAGS 7
Definition at line 312 of file midas.h.

Referenced by bm_receive_event(), db_get_record(), db_set_record(), and db_-
update_record().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 56

2.6.1.53 #define RPC_FTCP 1
Definition at line 320 of file midas.h.

Referenced by cm_transition(), db_send_changed_records(), and scheduler().

2.6.1.54 #define RPC_NODELAY 12
Definition at line 317 of file midas.h.

Referenced by rpc_set_option().

2.6.1.55 #define RPC_OCONVERT_FLAG 3
Definition at line 308 of file midas.h.

2.6.1.56 #define RPC_ODB_HANDLE 8
Definition at line 313 of file midas.h.

Referenced by cm_get_experiment_database(), and cm_set_client_info().

2.6.1.57 #define RPC_OHW TYPE 4
Definition at line 309 of file midas.h.

Referenced by cm_connect_experiment1().

2.6.1.58 #define RPC_OSERVER_NAME 6

Definition at line 311 of file midas.h.

2.6.1.59 #define RPC_OSERVER_TYPE 5
Definition at line 310 of file midas.h.

Referenced by bm_check_buffers(), bm_close_buffer(), bm_empty_buffers(), bm_-
open_buffer(), bm_receive_event(), cm_disconnect_experiment(), cm_set_watchdog_-
params(), db_close_database(), db_get_record(), db_open_database(), and db_set_-
record().

2.6.1.60 #define RPC_OTIMEOUT 1
RPC options
Definition at line 306 of file midas.h.

Referenced by bm_receive_event(), cm_transition(), main(), and rpc_set_option().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 57

2.6.1.61 #define RPC_OTRANSPORT 2
Definition at line 307 of file midas.h.

Referenced by cm_transition(), db_send_changed_records(), rpc_set_option(), sched-
uler(), and update_odb().

2.6.1.62 #define RPC_SEND_SOCK 10
Definition at line 315 of file midas.h.

2.6.1.63 #define RPC_TCP O
Definition at line 319 of file midas.h.

Referenced by cm_transition(), db_send_changed_records(), scheduler(), and update_-
odb().

2.6.1.64 #define RPC_WATCHDOG_TIMEOUT 11
Definition at line 316 of file midas.h.

Referenced by cm_set_watchdog_params().

2.6.1.65 #define STATE_PAUSED 2
MIDAS run paused
Definition at line 251 of file midas.h.

Referenced by scan_fragment(), and scheduler().

2.6.1.66 #define STATE_RUNNING 3
MIDAS run running
Definition at line 252 of file midas.h.

Referenced by display(), scan_fragment(), and scheduler().

2.6.1.67 #define STATE_STOPPED 1
MIDAS run stopped
Definition at line 250 of file midas.h.

Referenced by display(), scan_fragment(), and scheduler().

2.6.1.68 #define SYNC 0

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 58

Synchronous / Asynchronous flags
Definition at line 293 of file midas.h.

Referenced by close_buffers(), cm_check_deferred_transition(), cm_msg(), cm_-
msgl(), receive_trigger_event(), scheduler(), send_event(), source_scan(), and tr_-
stop().

2.6.1.69 #define TID_ARRAY 13
array with unknown contents

Definition at line 285 of file midas.h.

2.6.1.70 #define TID_BITFIELD 11
32 Bits Bitfield 0 111... (32)

Definition at line 283 of file midas.h.
Referenced by db_sprintf().

2.6.1.71 #define TID_BOOL 8
four bytes bool 0 1
Definition at line 280 of file midas.h.

Referenced by al_trigger_alarm(), ana_end_of_run(), bk_swap(), db_sprintf(), sched-
uler(), and tr_start().

2.6.1.72 #define TID BYTE 1
unsigned byte 0 255
Definition at line 273 of file midas.h.

Referenced by db_sprintf().

2.6.1.73 #define TID_CHAR 3
single character 0 255

Definition at line 275 of file midas.h.
Referenced by db_sprintf().

2.6.1.74 #define TID_DOUBLE 10

8 Byte float format

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 59

Definition at line 282 of file midas.h.

Referenced by ana_end_of_run(), bk_swap(), db_sprintf(), register_equipment(), and
scaler_accum().

2.6.1.75 #define TID_DWORD 6
four bytes 0 2"32-1
Definition at line 278 of file midas.h.

Referenced by bk_swap(), bm_convert_event_header(), bm_open_buffer(), cm_-
transition(), db_sprintf(), db_update_record(), eb_user(), and read_scaler_event().

2.6.1.76 #define TID_FLOAT 9

4 Byte float format

Definition at line 281 of file midas.h.

Referenced by adc_calib(), bk_swap(), and db_sprintf().

2.6.1.77 #define TID_INT 7
signed dword -2"31 231-1
Definition at line 279 of file midas.h.

Referenced by al_trigger_alarm(), bk_swap(), cm_connect_client(), cm_connect_-
experiment1(), cm_delete_client_info(), cm_register_deferred_transition(), cm_-
register_transition(), cm_set_client_info(), cm_set_transition_sequence(), cm_set_-
watchdog_params(), cm_shutdown(), cm_transition(), db_sprintf(), el_submit(),
load_fragment(), main(), register_equipment(), scheduler(), and tr_start().

2.6.1.78 #define TID_KEY 15
key in online database
Definition at line 287 of file midas.h.

Referenced by db_create_record(), db_delete_key1(), db_paste_node(), and register_-
equipment().

2.6.1.79 #define TID_LAST 17
end of TID list indicator
Definition at line 289 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 60

2.6.1.80 #define TID_LINK 16
link in online database
Definition at line 288 of file midas.h.

Referenced by db_create_key(), db_create_link(), db_delete_key1(), db_set_value(),
and db_sprintf().

2.6.1.81 #define TID_SBYTE 2
signed byte -128 127
Definition at line 274 of file midas.h.

Referenced by db_sprintf().

2.6.1.82 #define TID_SHORT 5
signed word -32768 32767
Definition at line 277 of file midas.h.

Referenced by bk_swap(), bm_convert_event_header(), and db_sprintf().

2.6.1.83 #define TID_STRING 12
zero terminated string
Definition at line 284 of file midas.h.

Referenced by al_trigger_alarm(), ana_end_of _run(), cm_check_client(), cm_-
connect_client(), cm_connect_experimentl(), cm_exist(), cm_get_client_info(),
cm_msg_log(), cm_msg_logl(), cm_msg_retrieve(), cm_set_client_info(), cm_-
shutdown(), cm_transition(), db_check_record(), db_copy(), db_create_key(),
db_get_value(), db_paste(), db_paste_node(), db_save_xml_key(), db_set_data_-
index(), db_set_value(), db_sprintf(), el_submit(), load_fragment(), logger_root(),
tr_start(), and update_odb().

2.6.1.84 #define TID_STRUCT 14
structure with fixed length
Definition at line 286 of file midas.h.

Referenced by adc_summing(), and bk_close().

2.6.1.85 #define TID_WORD 4
two bytes 0 65535

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.6 Midas Define 61

Definition at line 276 of file midas.h.

Referenced by bk_swap(), db_sprintf(), load_fragment(), read_trigger_event(), and
register_equipment().

2.6.1.86 #define TR_DEFERRED (1<<12)
Definition at line 333 of file midas.h.

Referenced by cm_check_deferred_transition().

2.6.1.87 #define TR_PAUSE (1<<2)
Pause transition
Definition at line 331 of file midas.h.

Referenced by cm_deregister_transition(), cm_register_transition(), cm_set_-
transition_sequence(), cm_transition(), main(), send_all_periodic_events(), and
tr_pause().

2.6.1.88 #define TR_RESUME (1<<3)
Resume transition
Definition at line 332 of file midas.h.

Referenced by main(), send_all_periodic_events(), and tr_resume().

2.6.1.89 #define TR_START (1<<0)
Start transition
Definition at line 329 of file midas.h.

Referenced by cm_deregister_transition(), cm_register_transition(), cm_set_-
transition_sequence(), cm_transition(), main(), scheduler(), send_all_periodic_-
events(), and tr_start().

2.6.1.90 #define TR_STOP (1<<1)
Stop transition
Definition at line 330 of file midas.h.

Referenced by cm_deregister_transition(), cm_register_transition(), cm_set_-
transition_sequence(), cm_transition(), main(), scan_fragment(), scheduler(), send_-
all_periodic_events(), and tr_stop().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.7 Midas Macros 62

2.6.1.91 #define TRIGGER_ALL -1
Definition at line 459 of file midas.h.

Referenced by bm_match_event(), cm_msg_register(), and source_booking().

2.6.1.92 #define WF_CALL_WD (1<<1)
Definition at line 325 of file midas.h.

2.6.1.93 #define WF_WATCH_ME (1<<0)
Watchdog flags
Definition at line 324 of file midas.h.

2.7 MidasMacros
Defines

* #define MAX(a, b) (((a) > (b)) ? (a) : (b))

* #define MIN(a, b) (((a) < (b)) ? (a) : (b))

e #define ALIGN8(x) (x)+7) & ~7)

* #define VALIGN(adr, align) (((POINTER_T) (adr)+align-1) & ~(align-1))

2.7.1 Define Documentation

2.7.1.1 #define ALIGNS(X) ((x)*+7) & ~7)
Align macro for data alignment on 8-byte boundary
Definition at line 443 of file midas.h.

Referenced by bk_close(), bk_find(), bk_iterate(), bk_locate(), bk_swap(), bm_copy_-
from_cache(), bm_dispatch_from_cache(), bm_flush_cache(), bm_push_event(), bm_-
receive_event(), bm_send_event(), bm_wait_for_free_space(), db_open_database(),
and rpc_send_event().

2.7.1.2 #define MAX(a, b) (((a) > (b)) ? (a) : (b))
MAX
Definition at line 430 of file midas.h.

Referenced by cm_execute(), and scheduler().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.8 Midas Error definition 63

2.7.1.3 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
MIN
Definition at line 436 of file midas.h.

Referenced by update_odb().

2.7.1.4 #define VALIGN(adr, align) (((POINTER_T) (adr)+align-1) & ~(align-
1)

Align macro for variable data alignment
Definition at line 447 of file midas.h.
Referenced by db_get_record_size(), and update_odb().

2.8 MidasError defi nition

Modules

* group Status and error codes

* group Buffer Manager error codes

* group Online Database error codes

* group System Services error code

» group Remote Procedure Calls error codes
 group Other errors

2.9 Midas Structure Declaration

Modules

* group Buffer Section

» group Equipment related

* group Bank related
 group Analyzer related
 group History related

* group ODB runinfo related
e group Alarm related

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.10 Status and error codes 64

2.10 Statusand error codes

Defines

e #define SUCCESS 1

e #define CM_SUCCESS 1

¢ #define CM_SET_ERROR 102

e #define CM_NO_CLIENT 103

¢ #define CM_DB_ERROR 104

¢ #define CM_UNDEF_EXP 105

¢ #define CM_VERSION_MISMATCH 106

¢ #define CM_SHUTDOWN 107

¢ #define CM_WRONG_PASSWORD 108

¢ #define CM_UNDEF_ENVIRON 109

¢ #define CM_DEFERRED_TRANSITION 110
e #define CM_TRANSITION_IN_PROGRESS 111
e #define CM_TIMEOUT 112

e #define CM_INVALID_TRANSITION 113

e #define CM_TOO_MANY_REQUESTS 114

2.10.1 Define Documentation

2.10.1.1 #define CM_DB_ERROR 104
db access error

Definition at line 498 of file midas.h.

2.10.1.2 #define CM_DEFERRED_TRANSITION 110

Definition at line 504 of file midas.h.

2.10.1.3 #define CM_INVALID_TRANSITION 113

Definition at line 507 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.10 Status and error codes

65

2.10.1.4 #define CM_NO_CLIENT 103
nobody
Definition at line 497 of file midas.h.

2.10.1.5 #define CM_SET_ERROR 102
set

Definition at line 496 of file midas.h.

2.10.1.6 #define CM_SHUTDOWN 107

Definition at line 501 of file midas.h.

2.10.1.7 #define CM_SUCCESS 1
Same
Definition at line 495 of file midas.h.

Referenced by main().

2.10.1.8 #define CM_TIMEOUT 112

Definition at line 506 of file midas.h.

2.10.1.9 #define CM_TOO_MANY_REQUESTS 114

Definition at line 508 of file midas.h.

2.10.1.10 #define CM_TRANSITION_IN_PROGRESS 111

Definition at line 505 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.11 Buffer Manager error codes 66

2.10.1.11 #define CM_UNDEF_ENVIRON 109

Definition at line 503 of file midas.h.

2.10.1.12 #define CM_UNDEF_EXP 105

Definition at line 499 of file midas.h.

2.10.1.13 #define CM_VERSION_MISMATCH 106

Definition at line 500 of file midas.h.

2.10.1.14 #define CM_WRONG_PASSWORD 108

Definition at line 502 of file midas.h.

2.10.1.15 #define SUCCESS 1
Success
Definition at line 494 of file midas.h.

Referenced by bm_open_buffer(), cm_transition(), el_submit(), register_equipment(),
and scheduler().

2.11 Buffer Manager error codes

Defines

* #define BM_SUCCESS 1

* #define BM_CREATED 202

* #define BM_NO_MEMORY 203

* #define BM_INVALID_NAME 204

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.11 Buffer Manager error codes 67

e #define BM_INVALID_HANDLE 205
¢ #define BM_NO_SLOT 206

e #define BM_NO_MUTEX 207

¢ #define BM_NOT_FOUND 208

o #define BM_ASYNC_RETURN 209

e #define BM_TRUNCATED 210

e #define BM_MULTIPLE_HOSTS 211
e #define BM_MEMSIZE_MISMATCH 212
e #define BM_CONFLICT 213

e #define BM_EXIT 214

o #define BM_INVALID_PARAM 215

e #define BM_MORE_EVENTS 216

e #define BM_INVALID_MIXING 217
e #define BM_NO_SHM 218

2.11.1 Define Documentation

2.11.1.1 #define BM_ASYNC_RETURN 209

Definition at line 524 of file midas.h.

Referenced by scan_fragment(), and source_scan().

2.11.1.2 #define BM_CONFLICT 213

Definition at line 528 of file midas.h.

2.11.1.3 #define BM_CREATED 202

Definition at line 517 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.11 Buffer Manager error codes 68

2.11.1.4 #define BM_EXIT 214

Definition at line 529 of file midas.h.

2.11.1.5 #define BM_INVALID_HANDLE 205

Definition at line 520 of file midas.h.

2.11.1.6 #define BM_INVALID_MIXING 217

Definition at line 532 of file midas.h.

2.11.1.7 #define BM_INVALID_NAME 204

Definition at line 519 of file midas.h.

2.11.1.8 #define BM_INVALID_PARAM 215

Definition at line 530 of file midas.h.

2.11.1.9 #define BM_MEMSIZE_MISMATCH 212

Definition at line 527 of file midas.h.

2.11.1.10 #define BM_MORE_EVENTS 216

Definition at line 531 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.11 Buffer Manager error codes 69

2.11.1.11 #define BM_MULTIPLE_HOSTS 211

Definition at line 526 of file midas.h.

2.11.1.12 #define BM_NO_MEMORY 203

Definition at line 518 of file midas.h.

2.11.1.13 #define BM_NO_MUTEX 207

Definition at line 522 of file midas.h.

2.11.1.14 #define BM_NO_SHM 218

Definition at line 533 of file midas.h.

2.11.1.15 #define BM_NO_SLOT 206

Definition at line 521 of file midas.h.

2.11.1.16 #define BM_NOT_FOUND 208

Definition at line 523 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.12 Online Database error codes 70

2.11.1.17 #define BM_SUCCESS 1

Definition at line 516 of file midas.h.

Referenced by cm_msg(), cm_msgl(), cm_msg_register(), register_equipment(), and
source_scan().

2.11.1.18 #define BM_TRUNCATED 210

Definition at line 525 of file midas.h.

2.12 Online Database error codes

Defines

e #define DB_SUCCESS 1

¢ #define DB_CREATED 302

e #define DB_NO_MEMORY 303

¢ #define DB_INVALID_NAME 304

e #define DB_INVALID_HANDLE 305

e #define DB_NO_SLOT 306

e #define DB_NO_MUTEX 307

¢ #define DB_MEMSIZE_MISMATCH 308
e #define DB_INVALID_PARAM 309

e #define DB_FULL 310

e #define DB_KEY_EXIST 311

e #define DB_NO_KEY 312

¢ #define DB_KEY_CREATED 313

e #define DB_TRUNCATED 314

¢ #define DB_TYPE_MISMATCH 315

e #define DB_NO_MORE_SUBKEYS 316
¢ #define DB_FILE_ERROR 317

e #define DB_NO_ACCESS 318

e #define DB_STRUCT_SIZE_MISMATCH 319
e #define DB_OPEN_RECORD 320

e #define DB_OUT_OF_RANGE 321

¢ #define DB_INVALID_LINK 322

e #define DB_CORRUPTED 323

¢ #define DB_STRUCT_MISMATCH 324
e #define DB_TIMEOUT 325

¢ #define DB_VERSION_MISMATCH 326

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.12 Online Database error codes 71

2.12.1 Define Documentation

2.12.1.1 #define DB_CORRUPTED 323

Definition at line 562 of file midas.h.

2.12.1.2 #define DB_CREATED 302

Definition at line 541 of file midas.h.

2.12.1.3 #define DB_FILE_ERROR 317

Definition at line 556 of file midas.h.

2.12.1.4 #define DB_FULL 310

Definition at line 549 of file midas.h.

2.12.15 #define DB_INVALID_HANDLE 305

Definition at line 544 of file midas.h.

2.12.1.6 #define DB_INVALID_LINK 322

Definition at line 561 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.12 Online Database error codes 72

2.12.1.7 #define DB_INVALID_NAME 304

Definition at line 543 of file midas.h.

2.12.1.8 #define DB_INVALID_PARAM 309

Definition at line 548 of file midas.h.

2.12.1.9 #define DB_KEY_CREATED 313

Definition at line 552 of file midas.h.

2.12.1.10 #define DB_KEY_EXIST 311

Definition at line 550 of file midas.h.

2.12.1.11 #define DB_MEMSIZE_MISMATCH 308

Definition at line 547 of file midas.h.

2.12.1.12 #define DB_NO_ACCESS 318

Definition at line 557 of file midas.h.

2.12.1.13 #define DB_NO_KEY 312

Definition at line 551 of file midas.h.

Referenced by register_equipment().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.12 Online Database error codes 73

2.12.1.14 #define DB_NO_MEMORY 303

Definition at line 542 of file midas.h.

2.12.1.15 #define DB_NO_MORE_SUBKEYS 316

Definition at line 555 of file midas.h.

2.12.1.16 #define DB_NO_MUTEX 307

Definition at line 546 of file midas.h.

2.12.1.17 #define DB_NO_SLOT 306

Definition at line 545 of file midas.h.

2.12.1.18 #define DB_OPEN_RECORD 320

Definition at line 559 of file midas.h.

2.12.1.19 #define DB_OUT_OF_RANGE 321

Definition at line 560 of file midas.h.

2.12.1.20 #define DB_STRUCT_MISMATCH 324

Definition at line 563 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.12 Online Database error codes 74

2.12.1.21 #define DB_STRUCT_SIZE_MISMATCH 319

Definition at line 558 of file midas.h.

2.12.1.22 #define DB_SUCCESS 1

Definition at line 540 of file midas.h.

Referenced by al_trigger_alarm(), cm_connect_experiment1(), cm_shutdown(), cm_-
transition(), db_check_record(), db_delete_key1(), db_paste_node(), readout_thread(),
and tr_start().

2.12.1.23 #define DB_TIMEOUT 325

Definition at line 564 of file midas.h.

2.12.1.24 #define DB_TRUNCATED 314

Definition at line 553 of file midas.h.

2.12.1.25 #define DB_TYPE_MISMATCH 315

Definition at line 554 of file midas.h.

2.12.1.26 #define DB_VERSION_MISMATCH 326

Definition at line 565 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.13 System Services error code 75

2.13 System Serviceserror code
Defines

e #define SS_SUCCESS 1

e #define SS_CREATED 402

e #define SS_NO_MEMORY 403

e #define SS_INVALID_NAME 404

¢ #define SS_INVALID_HANDLE 405
e #define SS_INVALID_ADDRESS 406
e #define SS_FILE_ERROR 407

e #define SS_NO_MUTEX 408

¢ #define SS_NO_PROCESS 409

e #define SS_NO_THREAD 410

e #define SS_SOCKET_ERROR 411

e #define SS_TIMEOUT 412

¢ #define SS_SERVER_RECYV 413

e #define SS_CLIENT_RECV 414

e #define SS_ABORT 415

o #define SS_EXIT 416

e #define SS_NO_TAPE 417

e #define SS_DEV_BUSY 418

e #define SS_TIO_ERROR 419

e #define SS_TAPE_ERROR 420

¢ #define SS_NO_DRIVER 421

e #define SS_END_OF_TAPE 422

e #define SS_END_OF_FILE 423

e #define SS_FILE_EXISTS 424

e #define SS_NO_SPACE 425

e #define SS_INVALID_FORMAT 426
e #define SS_NO_ROOT 427

e #define SS_SIZE_MISMATCH 428

2.13.1 Define Documentation

2.13.1.1 #define SS_ABORT 415

Definition at line 586 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.13 System Services error code 76

2.13.1.2 #define SS_CLIENT_RECV 414

Definition at line 585 of file midas.h.

2.13.1.3 #define SS_CREATED 402

Definition at line 573 of file midas.h.

Referenced by bm_open_buffer(), cm_connect_experiment1(), device_driver(), and
dm_buffer_create().

2.13.1.4 #define SS_DEV_BUSY 418

Definition at line 589 of file midas.h.

2.13.1.5 #define SS_END_OF_FILE 423

Definition at line 594 of file midas.h.

2.13.1.6 #define SS_END_OF_TAPE 422

Definition at line 593 of file midas.h.

2.13.1.7 #define SS_EXIT 416

Definition at line 587 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.13 System Services error code 77

2.13.1.8 #define SS_FILE_ERROR 407

Definition at line 578 of file midas.h.

2.13.1.9 #define SS_FILE_EXISTS 424

Definition at line 595 of file midas.h.

2.13.1.10 #define SS_INVALID_ADDRESS 406

Definition at line 577 of file midas.h.

2.13.1.11 #define SS_INVALID_FORMAT 426

Definition at line 597 of file midas.h.

2.13.1.12 #define SS_INVALID_HANDLE 405

Definition at line 576 of file midas.h.

2.13.1.13 #define SS_INVALID_NAME 404

Definition at line 575 of file midas.h.

2.13.1.14 #define SS_IO_ERROR 419

Definition at line 590 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.13 System Services error code 78

2.13.1.15 #define SS_NO_DRIVER 421

Definition at line 592 of file midas.h.

2.13.1.16 #define SS_NO_MEMORY 403

Definition at line 574 of file midas.h.

Referenced by db_open_database().

2.13.1.17 #define SS_NO_MUTEX 408

Definition at line 579 of file midas.h.

2.13.1.18 #define SS_NO_PROCESS 409

Definition at line 580 of file midas.h.

2.13.1.19 #define SS_NO_ROOQOT 427

Definition at line 598 of file midas.h.

2.13.1.20 #define SS_NO_SPACE 425

Definition at line 596 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.13 System Services error code

79

2.13.1.21 #define SS_NO_TAPE 417

Definition at line 588 of file midas.h.

2.13.1.22 #define SS_NO_THREAD 410

Definition at line 581 of file midas.h.

2.13.1.23 #define SS_SERVER_RECYV 413

Definition at line 584 of file midas.h.

2.13.1.24 #define SS_SIZE_MISMATCH 428

Definition at line 599 of file midas.h.

2.13.1.25 #define SS_SOCKET_ERROR 411

Definition at line 582 of file midas.h.

2.13.1.26 #define SS_SUCCESS 1

Definition at line 572 of file midas.h.
Referenced by bm_open_buffer(), db_open_database(), and ss_thread_kill().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.14 Remote Procedure Calls error codes

80

2.13.1.27 #define SS_TAPE_ERROR 420

Definition at line 591 of file midas.h.

2.13.1.28 #define SS_TIMEOUT 412

Definition at line 583 of file midas.h.

2.14 Remote Procedure Callserror codes

Defines

* #define RPC_SUCCESS 1

* #define RPC_ABORT SS_ABORT

* #define RPC_NO_CONNECTION 502
* #define RPC_NET_ERROR 503

* #define RPC_TIMEOUT 504

* #define RPC_EXCEED_BUFFER 505
* #define RPC_NOT_REGISTERED 506
¢ #define RPC_CONNCLOSED 507

¢ #define RPC_INVALID_ID 508

¢ #define RPC_SHUTDOWN 509

¢ #define RPC_NO_MEMORY 510

¢ #define RPC_DOUBLE_DEFINED 511

2.14.1 Define Documentation

2.14.1.1 #define RPC_ABORT SS_ABORT

Definition at line 607 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.14 Remote Procedure Calls error codes 81

2.14.1.2 #define RPC_CONNCLOSED 507

Definition at line 613 of file midas.h.

2.14.1.3 #define RPC_DOUBLE_DEFINED 511

Definition at line 617 of file midas.h.

2.14.1.4 #define RPC_EXCEED_BUFFER 505

Definition at line 611 of file midas.h.

2.14.15 #define RPC_INVALID_ID 508

Definition at line 614 of file midas.h.

2.14.1.6 #define RPC_NET_ERROR 503

Definition at line 609 of file midas.h.

2.14.1.7 #define RPC_NO_CONNECTION 502

Definition at line 608 of file midas.h.

2.14.1.8 #define RPC_NO_MEMORY 510

Definition at line 616 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors 82

2.14.1.9 #define RPC_NOT_REGISTERED 506

Definition at line 612 of file midas.h.

2.141.10 #define RPC_SHUTDOWN 509

Definition at line 615 of file midas.h.

Referenced by scan_fragment(), and scheduler().

2.14.1.11 #define RPC_SUCCESS 1

Definition at line 606 of file midas.h.

2.14.1.12 #define RPC_TIMEOUT 504

Definition at line 610 of file midas.h.

2.15 Other errors

Defines

e #define FE_SUCCESS 1

* #define FE_ERR_ODB 602
 #define FE_ERR_HW 603

¢ #define FE_ERR_DISABLED 604
* #define FE_ERR_DRIVER 605

e #define HS_SUCCESS 1

* #define HS_FILE_ERROR 702

* #define HS_NO_MEMORY 703

* #define HS_TRUNCATED 704

* #define HS_WRONG_INDEX 705
* #define HS_UNDEFINED_EVENT 706

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors 83

e #define HS_UNDEFINED_VAR 707

o #define FTP_SUCCESS 1

e #define FTP_NET_ERROR 802

¢ #define FTP_FILE_ERROR 803

e #define FTP_RESPONSE_ERROR 804

e #define FTP_INVALID_ARG 805

e #define EL_SUCCESS 1

e #define EL_FILE_ERROR 902

e #define EL_NO_MESSAGE 903

¢ #define EL_TRUNCATED 904

e #define EL_FIRST_MSG 905

e #define EL_LAST_MSG 906

e #define AL_SUCCESS 1

e #define AL_INVALID_NAME 1002

¢ #define AL_ERROR_ODB 1003

e #define AL_RESET 1004

e #define CMD_INIT 1

e #define CMD_WRITE 100

e #define CMD_INTERRUPT_ENABLE 100
e #define BD_GETSC(s, z, p, t) info — bd(CMD_GETS, info — bd_info, s, z, p, t)

2.15.1 Define Documentation

2.15.1.1 #define AL_ERROR_ODB 1003

Definition at line 661 of file midas.h.

2.15.1.2 #define AL_INVALID_NAME 1002

Definition at line 660 of file midas.h.

2.15.1.3 #define AL_RESET 1004

Definition at line 662 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors 84

2.15.1.4 #define AL_SUCCESS 1

Definition at line 659 of file midas.h.

2.15.1.5 #define BD_GETS(, z, p, t) info — bd(CMD_GETS, info — bd_info, s,
z,pt)

macros for bus driver access

Definition at line 721 of file midas.h.

2.15.1.6 #define BD_PUTS(s) info — bd(CMD_PUTS, info — bd_info, s)
Definition at line 723 of file midas.h.

2.15.1.7 #define BD_READS(s, z, p, t) info — bd(CMD_READ, info — bd_info,
S, Z,p, t)

Definition at line 722 of file midas.h.

2.15.1.8 #define BD_WRITES(s) info — bd(CMD_WRITE, info — bd_info, s)

Definition at line 724 of file midas.h.

2.15.1.9 #define CMD_DEBUG 104
Definition at line 709 of file midas.h.

2.15.1.10 #define CMD_DISABLE_COMMAND (1<<15)
Definition at line 701 of file midas.h.

2.15.1.11 #define CMD_ENABLE_COMMAND (1<<14)
Definition at line 700 of file midas.h.

2.15.1.12 #define CMD_EXIT 2
Definition at line 667 of file midas.h.

Referenced by device_driver(), and main().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors 85

2.15.1.13 #define CMD_GET CMD_GET_FIRST
Definition at line 687 of file midas.h.

2.15.1.14 #define CMD_GET_CURRENT CMD_GET FIRST+1
Definition at line 688 of file midas.h.

2.15.1.15 #define CMD_GET_CURRENT_LIMIT CMD_GET_DIRECT+2
Definition at line 694 of file midas.h.

2.15.1.16 #define CMD_GET_DEMAND CMD_GET_DIRECT
Definition at line 692 of file midas.h.

Referenced by device_driver().

2.15.1.17 #define CMD_GET_DIRECT CMD_GET_LAST+1
Definition at line 691 of file midas.h.

2.15.1.18 #define CMD_GET_DIRECT_LAST CMD_GET _DIRECT+5
Definition at line 698 of file midas.h.

2.15.1.19 #define CMD_GET_FIRST CMD_SET LAST+1
Definition at line 686 of file midas.h.

Referenced by device_driver().

2.15.1.20 #define CMD_GET_LABEL 9
Definition at line 674 of file midas.h.

Referenced by device_driver().

2.15.1.21 #define CMD_GET_LAST CMD_GET_FIRST+1
Definition at line 689 of file midas.h.

2.15.1.22 #define CMD_GET_RAMPDOWN CMD_GET _DIRECT+4
Definition at line 696 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors 86

2.15.1.23 #define CMD_GET_RAMPUP CMD_GET _DIRECT+3
Definition at line 695 of file midas.h.

2.15.1.24 #define CMD_GET_THRESHOLD 6
Definition at line 671 of file midas.h.

2.15.1.25 #define CMD_GET_THRESHOLD_CURRENT 7
Definition at line 672 of file midas.h.

2.15.1.26 #define CMD_GET_TRIP_TIME CMD_GET_DIRECT+5
Definition at line 697 of file midas.h.

2.15.1.27 #define CMD_GET_VOLTAGE_LIMIT CMD_GET _DIRECT+1
Definition at line 693 of file midas.h.

2.15.1.28 #define CMD_GETS 103
Definition at line 708 of file midas.h.

2.15.1.29 #define CMD_IDLE5
Definition at line 670 of file midas.h.

Referenced by scheduler().

2.15.1.30 #define CMD_INIT 1
Slow control device driver commands
Definition at line 666 of file midas.h.

Referenced by device_driver(), and register_equipment().

2.15.1.31 #define CMD_INTERRUPT_ATTACH 102
Definition at line 716 of file midas.h.

Referenced by interrupt_configure(), and register_equipment().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors

87

2.15.1.32 #define CMD_INTERRUPT_DETACH 103
Definition at line 717 of file midas.h.

Referenced by interrupt_configure(), and main().

2.15.1.33 #define CMD_INTERRUPT_DISABLE 101
Definition at line 715 of file midas.h.

Referenced by interrupt_configure(), main(), and readout_enable().

2.15.1.34 #define CMD_INTERRUPT_ENABLE 100
Commands for interrupt events
Definition at line 714 of file midas.h.

Referenced by interrupt_configure(), and readout_enable().

2.15.1.35 #define CMD_MISC_LAST 9
Definition at line 675 of file midas.h.

2.15.1.36 #define CMD_NAME 105
Definition at line 710 of file midas.h.

2.15.1.37 #define CMD_PUTS 102
Definition at line 707 of file midas.h.

2.15.1.38 #define CMD_READ 101
Definition at line 706 of file midas.h.

2.15.1.39 #define CMD_SET CMD_SET_FIRST
Definition at line 678 of file midas.h.

2.15.1.40 #define CMD_SET_CURRENT_LIMIT CMD_SET_FIRST+2
Definition at line 680 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors 88

2.15.1.41 #define CMD_SET _FIRST CMD_MISC_LAST+1
Definition at line 677 of file midas.h.

Referenced by device_driver().

2.15.1.42 #define CMD_SET LABEL 8
Definition at line 673 of file midas.h.

Referenced by device_driver().

2.15.1.43 #define CMD_SET _LAST CMD_SET _FIRST+5
Definition at line 684 of file midas.h.

2.15.1.44 #define CMD_SET_RAMPDOWN CMD_SET_FIRST+4
Definition at line 682 of file midas.h.

2.15.1.45 #define CMD_SET_RAMPUP CMD_SET_FIRST+3
Definition at line 681 of file midas.h.

2.15.1.46 #define CMD_SET _TRIP_TIME CMD_SET_FIRST+5
Definition at line 683 of file midas.h.

2.15.1.47 #define CMD_SET_VOLTAGE_LIMIT CMD_SET_FIRST+1
Definition at line 679 of file midas.h.

2.15.1.48 #define CMD_START 3
Definition at line 668 of file midas.h.

Referenced by device_driver(), and register_equipment().

2.15.1.49 #define CMD_STOP 4
Definition at line 669 of file midas.h.

Referenced by device_driver(), and main().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors 89

2.15.1.50 #define CMD_WRITE 100

Slow control bus driver commands

Definition at line 705 of file midas.h.

2.15.1.51 #define EL_FILE_ERROR 902

Definition at line 651 of file midas.h.

2.15.1.52 #define EL_FIRST_MSG 905

Definition at line 654 of file midas.h.

2.15.1.53 #define EL_LAST_MSG 906

Definition at line 655 of file midas.h.

2.15.1.54 #define EL_NO_MESSAGE 903

Definition at line 652 of file midas.h.

2.15.1.55 #define EL_SUCCESS 1

Definition at line 650 of file midas.h.

2.15.1.56 #define EL_TRUNCATED 904

Definition at line 653 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors

90

2.15.1.57 #define FE_ERR_DISABLED 604

Definition at line 627 of file midas.h.

2.15.1.58 #define FE_ERR_DRIVER 605

Definition at line 628 of file midas.h.

2.15.1.59 #define FE_LERR_HW 603

Definition at line 626 of file midas.h.

2.15.1.60 #define FE_ERR_ODB 602

Definition at line 625 of file midas.h.

2.15.1.61 #define FE_SUCCESS 1

Definition at line 624 of file midas.h.

Referenced by device_driver(), and register_equipment().

2.15.1.62 #define FTP_FILE_ERROR 803

Definition at line 644 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.15 Other errors 91

2.15.1.63 #define FTP_INVALID_ARG 805

Definition at line 646 of file midas.h.

2.15.1.64 #define FTP_NET_ERROR 802

Definition at line 643 of file midas.h.

2.15.1.65 #define FTP_RESPONSE_ERROR 804

Definition at line 645 of file midas.h.

2.15.1.66 #define FTP_SUCCESS 1

Definition at line 642 of file midas.h.

2.15.1.67 #define HS_FILE_ERROR 702

Definition at line 633 of file midas.h.

2.15.1.68 #define HS_NO_MEMORY 703

Definition at line 634 of file midas.h.

2.15.1.69 #define HS_SUCCESS 1

Definition at line 632 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.16 Buffer Section 92

2.15.1.70 #define HS_TRUNCATED 704

Definition at line 635 of file midas.h.

2.15.1.71 #define HS_UNDEFINED_EVENT 706

Definition at line 637 of file midas.h.

2.15.1.72 #define HS_UNDEFINED_VAR 707

Definition at line 638 of file midas.h.

2.15.1.73 #define HS_WRONG_INDEX 705

Definition at line 636 of file midas.h.

2.16 Buffer Section

Data Structures

e struct EVENT_HEADER
e struct EVENT_REQUEST
e struct BUFFER_CLIENT
« struct BUFFER_HEADER
e struct BUFFER

e struct KEY

e struct KEYLIST

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.16 Buffer Section 93

Defines

* #define TRIGGER_MASK(e) (((EVENT_HEADER x) e)-1) — trigger_mask)

e #define EVENT _ID(e) ((EVENT_HEADER x) e)-1) — event_id)

o #define SERIAL_NUMBER(e) (((EVENT_HEADER x) e)-1) — serial_-
number)

* #define TIME_STAMP(e) (((EVENT_HEADER x) e)-1) — time_stamp)

e #define EVENTID_BOR ((short int) 0x8000)

e #define EVENTID_EOR ((short int) 0x8001)

e #define EVENTID_MESSAGE ((short int) 0x8002)

* #define EVENTID_FRAGI ((unsigned short) 0xC000)

o #define MIDAS_MAGIC 0x494d

2.16.1 Define Documentation

2.16.1.1 #define EVENT_ID(e) (((EVENT_HEADER x) e)-1) — event_id)
EVENT_ID Extract or set the event ID field pointed by the argument..

Parameters:
e pointer to the midas event (pevent)

Definition at line 769 of file midas.h.

2.16.1.2 #define EVENT_SOURCE(e, 0) (x (INTx) (e+0))
Definition at line 784 of file midas.h.

2.16.1.3 #define EVENTID_BOR ((short int) 0x8000)
Begin-of-run

Definition at line 788 of file midas.h.

2.16.1.4 #define EVENTID_EOR ((short int) 0x8001)
End-of-run

Definition at line 789 of file midas.h.

2.16.1.5 #define EVENTID_FRAG ((unsigned short) 0xD000)
Definition at line 795 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.16 Buffer Section 94

2.16.1.6 #define EVENTID_FRAGL1 ((unsigned short) 0xC000)
fragmented events
Definition at line 794 of file midas.h.

Referenced by bm_dispatch_event(), and bm_match_event().

2.16.1.7 #define EVENTID_MESSAGE ((short int) 0x8002)
Message events
Definition at line 790 of file midas.h.

Referenced by cm_msg(), and cm_msg1().

2.16.1.8 #define MIDAS_MAGIC 0x494d
5MI’
Definition at line 799 of file midas.h.

2.16.1.9 #define SERIAL_NUMBER(e) ((((EVENT_HEADER x) e)-1) —
serial_number)

SERIAL_NUMBER Extract or set/reset the serial number field pointed by the argu-
ment.

Parameters:
e pointer to the midas event (pevent)

Definition at line 776 of file midas.h.

2.16.1.10 #define TIME_STAMP(e) ((((EVENT_HEADER x) e)-1) — time_-
stamp)

TIME_STAMP Extract or set/reset the time stamp field pointed by the argument.

Parameters:
e pointer to the midas event (pevent)

Definition at line 783 of file midas.h.

2.16.1.11 #define TRIGGER_MASK(e) ((((EVENT_HEADER x) e)-1) —
trigger_mask)

TRIGGER_MASK Extract or set the trigger mask field pointed by the argument.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.17 Equipment related

95

Parameters:
e pointer to the midas event (pevent)

Definition at line 762 of file midas.h.

2.17 Equipment related

Data Structures

o struct BUS_DRIVER

e struct DD_MT_CHANNEL

e struct DD_MT_BUFFER

¢ struct DEVICE_DRIVER

¢ struct EQUIPMENT_INFO

e struct EQUIPMENT_STATS
e struct eqpmnt

Defines

* #define DF_INPUT (1<<0)

* #define DF_OUTPUT (1<<1)

* #define DF_PRIO_DEVICE (1<<2)
* #define DF_READ_ONLY (1<<3)

2.17.1 Define Documentation

2.17.1.1 #define DF_ HW_RAMP (1<<5)
Definition at line 907 of file midas.h.

2.17.1.2 #define DF_INPUT (1<<0)
channel is input

Definition at line 902 of file midas.h.

2.17.1.3 #define DF_MULTITHREAD (1<<4)
Definition at line 906 of file midas.h.

Referenced by device_driver().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.18 Bank related 96

2.17.1.4 #define DF_OUTPUT (1<<1)

channel is output

Definition at line 903 of file midas.h.

2.17.15 #define DF_PRIO_DEVICE (1<<2)
get demand values from device instead of ODB

Definition at line 904 of file midas.h.

2.17.1.6 #define DF_READ_ONLY (1<<3)

never write demand values to device

Definition at line 905 of file midas.h.

2.17.2 Typedef Documentation

2.17.2.1 typedef struct egqpmnt EQUIPMENT

Referenced by close_buffers(), receive_trigger_event(), scan_fragment(), scheduler(),
send_event(), and tr_stop().

2.17.2.2 typedef struct egpmntx PEQUIPMENT
Definition at line 966 of file midas.h.

2.17.3 Function Documentation

2.17.3.1 INT device_driver (DEVICE_DRIVER x device_driver, INT cmd, ...)
Definition at line 372 of file mfe.c.

Referenced by device_driver(), and sc_thread().

2.18 Bank related

Data Structures

¢ struct BANK_HEADER

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.19 Analyzer related 97

* struct BANK

e struct BANK32
 struct TAG

o struct BANK_LIST

Defines

* #define BANK_FORMAT_VERSION 1
¢ #define BANK_FORMAT_32BIT (1<<4)

2.18.1 Define Documentation

2.18.1.1 #define BANK_FORMAT_32BIT (1<<4)

Definition at line 1001 of file midas.h.

2.18.1.2 #define BANK_FORMAT_VERSION 1

Definition at line 1000 of file midas.h.
Referenced by bk_init32().

219 Analyzer related

Data Structures

o struct ANA_MODULE

e struct AR_INFO

e struct AR_STATS

e struct ANALYZE_REQUEST
e struct ANA_OUTPUT_INFO
e struct ANA_TEST

2.19.1 Define Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.20 History related 98

2.19.1.1 #define ANA_OUTPUT_INFO_STR *\Filename = STRING : [256]
run%05d.asc\n\RWNT = BOOL : 0\n\Histo Dump = BOOL : 0\n\Histo Dump
Filename = STRING : [256] his%605d.rz\n\Clear histos = BOOL : 1\n\ Last Histo
Filename = STRING : [256] last.rz\n\Events to ODB =BOOL : 1\n\Global Mem-
ory Name = STRING : [8] ONLN\n\"

Definition at line 1114 of file midas.h.

2.19.1.2 #define DEF_TEST(t) extern ANA_TEST t;
Definition at line 1141 of file midas.h.

2.19.1.3 #define SET_TEST(t, v) { if ('t.registered) test_register(&t); t.value =
v); }
Definition at line 1135 of file midas.h.

Referenced by adc_summing().

2.19.1.4 #define TEST(t) (t.value)
Definition at line 1136 of file midas.h.

2.20 History related

Data Structures

e struct HIST_RECORD

e struct DEF_RECORD

e struct INDEX_RECORD
e struct HISTORY

2.20.1 Define Documentation

2.20.1.1 #define RT_DATA (x((DWORD x) ""HSDA™))
Definition at line 1152 of file midas.h.

2.20.1.2 #define RT_DEF (x((DWORD %) ""HSDF™))
Definition at line 1153 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.21 ODB runinfo related 99

2.21 ODB runinforeated

Data Structures

¢ struct RUNINFO

2.21.1 Define Documentation

2.21.1.1 #define RUNINFO_STR(_name)
Value:

char *_name[] = {\

L1\

"State = INT : 1",\

"Online Mode = INT : 1",\

"Run number = INT : 0",\

"Transition in progress = INT : 0",\

"Requested transition = INT : 0",\

"Start time = STRING : [32] Tue Sep 09 15:04:42 1997",\
""Start time binary = DWORD : 0",\

"Stop time = STRING : [32] Tue Sep 09 15:04:42 1997",\
""Stop time binary = DWORD : 0",\

SN

NULL }

Definition at line 1210 of file midas.h.

Referenced by analyzer_init(), and cm_connect_experiment1().

2.22 Alarmrelated
2.22.1 Detailed Description

Alarm structure.

Data Structures

¢ struct PROGRAM_INFO
¢ struct ALARM_CLASS
e struct ALARM

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.22 Alarm related

100

Defines

 #define AT_INTERNAL 1

* #define AT_PROGRAM 2

* #define AT_EVALUATED 3
* #define AT_PERIODIC 4

* #define AT_LAST 4

2.22.2 Define Documentation

2.22.2.1 #define ALARM_CLASS_STR(_name)

Value:

char *_name[] = {\

"L-17.\

"Write system message = BOOL : y",\
"Write Elog message = BOOL : n",\
"'System message interval = INT : 60",\
"'System message last = DWORD : 0",\
"Execute command = STRING : [256] *,\
"Execute interval = INT : 0",\

"Execute last = DWORD : 0",\

"Stop run = BOOL : n",\

"Display BGColor = STRING : [32] red",\
"Display FGColor = STRING : [32] black",\
e\

NULL }

Definition at line 1282 of file midas.h.

2.22.2.2 #define ALARM_ODB_STR(_name)

Value:

char *_name[] = {\

"L-17.\

"Active = BOOL : n",\

"Triggered = INT : 0",\

"Type = INT : 3",\

"Check interval = INT - 60",\

""Checked last = DWORD : 0",\

“Time triggered first = STRING : [32] ",\

"Time triggered last = STRING : [32] ",\

"Condition = STRING : [256] /Runinfo/Run number > 100",\
"Alarm Class = STRING : [32] Alarm”,\

"Alarm Message = STRING : [80] Run number became too large",\
e\

NULL }

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.22 Alarm related 101

Definition at line 1312 of file midas.h.

Referenced by al_trigger_alarm().

2.22.2.3 #define ALARM_PERIODIC_STR(_name)

Value:

char *_name[] = {\

L1700\

"Active = BOOL : n",\

"Triggered = INT : 0",\

"Type = INT : 4",\

"Check interval = INT : 28800",\

""Checked last = DWORD : 0",\

"Time triggered first = STRING : [32] ".,\
"Time triggered last = STRING : [32] ",\
"Condition = STRING : [256] ",\

“Alarm Class = STRING : [32] Warning",\
"Alarm Message = STRING : [80] Please do your shift checks",\
e\

NULL }

Definition at line 1327 of file midas.h.

2.22.2.4 #define AT_EVALUATED 3

Definition at line 1249 of file midas.h.

Referenced by al_trigger_alarm().

2.22.25 #define AT_INTERNAL 1

Definition at line 1247 of file midas.h.

2.22.2.6 #define AT_LAST 4

Definition at line 1251 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.23 The ybos.h & ybos.c

102

2.22.2.7 #define AT_PERIODIC 4

Definition at line 1250 of file midas.h.

2.22.2.8 #define AT_PROGRAM 2

Definition at line 1248 of file midas.h.

2.22.2.9 #define PROGRAM_INFO_STR(_name)

Value:

char *_name[] = {\

"L-10N

"Required = BOOL : n",\

"Watchdog timeout = INT : 10000",\
"Check interval = DWORD : 180000",\
"Start command = STRING : [256] ",\
"Auto start = BOOL : n",\

"Auto stop = BOOL : n",\

"Auto restart = BOOL : n",\

“Alarm class = STRING : [32] ",\
"First failed = DWORD : 0",\

RN

NULL }

Definition at line 1253 of file midas.h.

Referenced by cm_set_client_info().

2.23 Theybosh & ybos.c

Modules

 group YBOS Define

 group YBOS error code

* group YBOS Macros

* group YBOS Bank Functions (ybk_xxx)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.24 YBOS Define 103

2.24 YBOSDefi ne

Defines

¢ #define YBOS_PHYREC_SIZE 8192

¢ #define YBOS_BUFFER_SIZE 3x(YBOS_PHYREC_SIZE<<2) + MAX_-
EVENT_SIZE + 128

¢ #define YB_BANKLIST_MAX 32

e #define YB_STRING_BANKLIST_MAX YB_BANKLIST_MAX x* 4

¢ #define H_BLOCK_SIZE 0

e #define H_ BLOCK_NUM 1

e #define H_ HEAD_LEN 2

e #define H_START 3

e #define D_RECORD 1

¢ #define D_HEADER 2

e #define D_EVTLEN 3

e #define YB_COMPLETE 1

e #define YB_INCOMPLETE 2

e #define YB_NO_RECOVER -1

e #define YB_NO_RUN 0

e #define YB_ADD_RUN 1

e #define DSP_RAW 1

¢ #define DSP_RAW_SINGLE 2

¢ #define DSP_BANK 3

e #define DSP_BANK_SINGLE 4

¢ #define DSP_UNK 0

¢ #define DSP_DEC 1

e #define DSP_HEX 2

o #define DSP_ASC 3

e #define I2_BKTYPE 1

o #define A1_BKTYPE 2

e #define I[4_BKTYPE 3

¢ #define F4_BKTYPE 4

¢ #define DS_BKTYPE 5

e #define I1_BKTYPE 8

e #define MAX_BKTYPE I1_BKTYPE+1

2.24.1 Define Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.24 YBOS Define

104

2.24.1.1 #define Al_BKTYPE 2
ASCII 1 byte
Definition at line 278 of file ybos.h.

2.24.1.2 #define D8 BKTYPE 5
Double 8 bytes
Definition at line 281 of file ybos.h.

2.24.1.3 #define D_EVTLEN 3
YBOS
Definition at line 109 of file ybos.h.

2.24.1.4 #define D_HEADER 2
YBOS
Definition at line 108 of file ybos.h.

2.24.15 #define D_RECORD 1
YBOS
Definition at line 107 of file ybos.h.

2.24.1.6 #define DSP_ASC 3
Display data in ASCII format
Definition at line 131 of file ybos.h.

2.24.1.7 #define DSP_BANK 3
Display data in bank format
Definition at line 123 of file ybos.h.

2.24.1.8 #define DSP_BANK_SINGLE 4
Display only requested data in bank format
Definition at line 124 of file ybos.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.24 YBOS Define

105

2.24.1.9 #define DSP_DEC 1
Display data in decimal format

Definition at line 129 of file ybos.h.

2.24.1.10 #define DSP_HEX 2
Display data in headecimal format

Definition at line 130 of file ybos.h.

2.24.1.11 #define DSP_RAW 1
Display raw data
Definition at line 121 of file ybos.h.

2.24.1.12 #define DSP_RAW_SINGLE 2

Display raw data (no single mode)

Definition at line 122 of file ybos.h.

2.24.1.13 #define DSP_UNK 0

Display format unknown

Definition at line 128 of file ybos.h.

2.24.1.14 #define F4_BKTYPE 4
Float 4 bytes
Definition at line 280 of file ybos.h.

2.24.1.15 #define H_BLOCK_NUM 1
YBOS
Definition at line 101 of file ybos.h.

2.24.1.16 #define H_BLOCK_SIZE 0
YBOS
Definition at line 100 of file ybos.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.24 YBOS Define 106

2.24.1.17 #define H_HEAD_LEN 2
YBOS
Definition at line 102 of file ybos.h.

2.24.1.18 #define H_START 3
YBOS
Definition at line 103 of file ybos.h.

2.24.1.19 #define 11_BKTYPE 8
Signed Integer 1 byte

Definition at line 282 of file ybos.h.
Referenced by update_odb().

2.24.1.20 #define 12_BKTYPE 1
Signed Integer 2 bytes
Definition at line 277 of file ybos.h.

2.24.1.21 #define 14_BKTYPE 3
Signed Interger 4bytes
Definition at line 279 of file ybos.h.

2.24.1.22 #define MAX_BKTYPE I11_BKTYPE+1
delimiter

Definition at line 283 of file ybos.h.

2.24.1.23 #define YB_ADD_RUN 1
YBOS
Definition at line 117 of file ybos.h.

2.24.1.24 #define YB_BANKLIST_MAX 32

maximum number of banks to be found by the ybk_list() or bk_list()
Definition at line 69 of file ybos.h.

Referenced by ybk_list().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.24 YBOS Define 107

2.24.1.25 #define YB_COMPLETE 1
YBOS
Definition at line 113 of file ybos.h.

2.24.1.26 #define YB_INCOMPLETE 2
YBOS
Definition at line 114 of file ybos.h.

2.24.1.27 #define YB_NO_RECOVER -1
YBOS
Definition at line 115 of file ybos.h.

2.24.1.28 #define YB_NO_RUN 0
YBOS
Definition at line 116 of file ybos.h.

2.24.1.29 #define YB_STRING_BANKLIST_MAX YB_BANKLIST_MAX x 4

to be used for xbk_list()
Definition at line 71 of file ybos.h.

2.24.1.30 #define YBOS_BUFFER_SIZE 3x(YBOS PHYREC SIZE<<2) +
MAX_EVENT SIZE + 128

in BYTES
Definition at line 67 of file ybos.h.

2.24.1.31 #define YBOS_HEADER_LENGTH 4
Definition at line 66 of file ybos.h.

2.24.1.32 #define YBOS_PHYREC_SIZE 8192
Ix4
Definition at line 64 of file ybos.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.25 YBOS Macros 108

2.25 YBOSMacros

Defines

* #define SWAP_D2WORD(_d2w)

* #define EVID_TRINAT

* #define YBOS_EVID_BANK(__a, b
o #define MIDAS_EVID_BANK(__a,_ b

c,_d, e

d,__e)

PR—

C

[J—

EJ—

—

2.25.1 Define Documentation

2.25.1.1 #define EVID_TRINAT

As soon as the Midas header is striped out from the event, the YBOS remaining data
has lost the event synchonization unless included by the user. It is therefore necessary
to have a YBOS bank duplicating this information usually done in the FE by creating
a "EVID" bank filled with the Midas info and other user information.

Unfortunately the format of this EVID is flexible and I couldn’t force user to use a
default structure. For this reason, I'm introducing a preprocessor flag for selecting
such format.

Omitting the declaration of the pre-processor flag the EVID_TRINAT is taken by de-
fault see Midas build options and operation considerations.

Special macros are avaialbe to retrieve this information based on the EVID content and
the type of EVID structure.

The Macro parameter should point to the first data of the EVID bank.

// check if EVID is present if so display its content
if ((status = ybk_find (pybos, "EVID", &bklen, &bktyp, (void *)&pybk)) == YB_SUCCESS)
{

pdata = (DWORD *)((YBOS_BANK_HEADER *)pybk + 1);

pevent->event_id YBOS_EVID_EVENT_I1D(pdata);

pevent->trigger_mask YBOS_EVID_TRIGGER_MASK(pdata) ;

pevent->serial_number = YBOS_EVID_SERIAL(pdata);

pevent->time_stamp YBOS_EVID_TIME(pdata);

pevent->data_size pybk->length;

The current type of EVID bank are:

» [EVID_TRINAT] Specific for Trinat experiment.

ybk_create((DWORD *)pevent, "EVID", 14_BKTYPE, (DWORD *)(&pbkdat));

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.25 YBOS Macros 109

*((WORD *)pbkdat) = EVENT_ID(pevent); ((WORD *)pbkdat)++;
*((WORD *)pbkdat) = TRIGGER_MASK(pevent); ((WORD *)pbkdat)++;

*(pbkdat)++ = SERIAL_NUMBER(pevent);
*(pbkdat)++ = TIME_STAMP(pevent);
*(pbkdat)++ = gbl_run_number; // run number

* [EVID_TWIST] Specific to Twist Experiment (Triumf).

ybk_create((DWORD *)pevent, "EVID", 14_BKTYPE, &pbkdat);
*((WORD *)pbkdat) = EVENT_ID(pevent); ((WORD *)pbkdat)++;
*((WORD *)pbkdat) = TRIGGER_MASK(pevent); ((WORD *)pbkdat)++;

*(pbkdat)++ = SERIAL_NUMBER(pevent);

*(pbkdat)++ = TIME_STAMP(pevent);

*(pbkdat)++ = gbl_run_number; // run number
*(pbkdat)++ = *((DWORD *)frontend_name); // frontend name

ybk_close((DWORD *)pevent, pbkdat);

Definition at line 211 of file ybos.h.

2.25.1.2 #define MIDAS_EVID_BANK(_a, b, _¢,_d,_e)
Value:

0N
DWORD * pbuf;\
bk_create(__a, "EVID", TID_DWORD, &pbuf);\

*(pbuf)++ = (DWORD)__ b;\
*(pbuf)++ = (DWORD) _c;\
*(pbuf)++ = (DWORD)__d;\
*(pbuf)++ = (DWORD)ss_millitime();\
*(pbuf)++ = (DWORD)__e;\
bk_close(__a, pbuf);\

}

pevt Evt# id/msk serial run#
Definition at line 255 of file ybos.h.

2.25.1.3 #define SWAP_D2WORD(_d2w)

Value:

0N
WORD _tmp2; \
_tmp2 = *((WORD *)(_d2w)); \
*((WORD *)(_d2w)) = *(((WORD *)(_d2w))+1); \
*(((WORD *)(_d2w))+1) = _tmp2; \

}

word swap (I14=121122 -> [4=122121
Definition at line 144 of file ybos.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.26 YBOS error code 110

2.25.1.4 #define YBOS_EVID_BANK(_a, _b, ¢, _d,_e)

Value:

RN
DWORD * pbuf;\
ybk_create(__a, "EVID", 14_BKTYPE, &pbuf);\

*(pbuf)++ = (DWORD)__ b;\
*(pbuf)++ = (DWORD)__c;\
*(pbuf)++ = (DWORD) _d;\
*(pbuf)++ = (DWORD)ss_millitime(;\
*(pbuf)++ = (DWORD) _e;\

ybk_close(__a, pbuf);\

pevt Evt# id/msk serial run#
Definition at line 241 of file ybos.h.

2.25.1.5 #define YBOS_EVID_EVENT_ID(e) *((WORD x)(e)+1)
Definition at line 215 of file ybos.h.

2.25.1.6 #define YBOS_EVID_EVENT_NB(e) «((DWORD x)(e)+1)
Definition at line 220 of file ybos.h.

2.25.1.7 #define YBOS_EVID_RUN_NUMBER(e) *((DWORD x)(e)+3)
Definition at line 219 of file ybos.h.

2.25.1.8 #define YBOS_EVID_SERIAL(e) «((DWORD x)(e)+1)
Definition at line 217 of file ybos.h.

2.25.1.9 #define YBOS_EVID_TIME(e) x((DWORD x)(e)+2)
Definition at line 218 of file ybos.h.

2.25.1.10 #define YBOS_EVID_TRIGGER_MASK(e) «((WORD x)(e)+0)
Definition at line 216 of file ybos.h.

2.26 YBOSerror code

Defines

* #define YB_SUCCESS 1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.26 YBOS error code 111

e #define YB_EVENT_NOT_SWAPPED 2
e #define YB_DONE 2

#define YB_WRONG_BANK_TYPE -100
#define YB_BANK_NOT_FOUND -101
#define YB_SWAP_ERROR -102

#define YB_NOMORE_SLOT -103
#define YB_UNKNOWN_FORMAT -104

2.26.1 Define Documentation

2.26.1.1 #define YB_BANK_NOT_FOUND -101
Bank not found

Definition at line 85 of file ybos.h.

2.26.1.2 #define YB_DONE 2
Operation complete

Definition at line 83 of file ybos.h.

2.26.1.3 #define YB_EVENT_NOT_SWAPPED 2
Not swapped
Definition at line 82 of file ybos.h.

2.26.1.4 #define YB_NOMORE_SLOT -103
No more space for fragment

Definition at line 87 of file ybos.h.

2.26.1.5 #define YB_SUCCESS 1
Ok
Definition at line 81 of file ybos.h.

2.26.1.6 #define YB_SWAP_ERROR -102
Error swapping

Definition at line 86 of file ybos.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.27 YBOS Bank Functions (ybk_xxx) 112

2.26.1.7 #define YB_UNKNOWN_FORMAT -104
Unknown format (see YBOS format)

Definition at line 88 of file ybos.h.

2.26.1.8 #define YB_WRONG_BANK_TYPE -100
Wrong bank type (see YBOS Bank Types)
Definition at line 84 of file ybos.h.

2.27 YBOSBank Functions (ybk xxx)

Functions

* void ybk_init (DWORD xplrl)

* void ybk_create (DWORD xplrl, char xbkname, DWORD bktype, void *pbkdat)

* INT ybk_close (DWORD sxplrl, void xpbkdat)

* INT ybk_size (DWORD xplrl)

o INT ybk_list (DWORD splrl, char *bklist)

* INT ybk_find (DWORD splrl, char xbkname, DWORD xbklen, DWORD
xbktype, void #xpbk)

* INT ybk_locate (DWORD xplrl, char xbkname, void xpdata)

* INT ybk_iterate (DWORD x*plrl, YBOS_BANK_HEADER xxpybkh, void
xxpdata)

2.27.1 Function Documentation

2.27.1.1 INT ybk_close (DWORD = plrl, void * pbkdat)
Close the YBOS bank previously created by ybk_create().

The data pointer pdata must be obtained by ybk_create() and used as an address to fill
a bank. It is incremented with every value written to the bank and finally points to a
location just after the last byte of the bank. It is then passed to ybk_close() to finish the
bank creation. YBOS is a 4 bytes bank aligned structure. Padding is performed at the
closing of the bank with values of 0x0f or/and 0x0ffb. See YBOS bank examples.

Parameters:
plrl pointer to current composed event.

pbkdat pointer to the current data.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.27 YBOS Bank Functions (ybk_xxx) 113

Returns:
number number of bytes contained in bank.

Definition at line 387 of file ybos.c.

2.27.1.2 void ybk_create (DWORD x plrl, char * bkname, DWORD bktype, void
* pbkdat)

Define the following memory area to be a YBOS bank with the given attribute. See
YBOS bank examples.

Before banks can be created in an event, ybk_init(). has to be called first. YBOS does
not support mixed bank type. i.e: all the data are expected to be of the same type.
YBOS is a 4 bytes bank aligned structure. Padding is performed at the closing of the
bank (see ybk_close) with values of 0xOf or/and 0xOffb. See YBOS bank examples.

Parameters:
plrl pointer to the first DWORD of the event area.

bkname name to be assigned to the breated bank (max 4 char)
bktype YBOS Bank Types of the values for the entire created bank.
pbkdat return pointer to the first empty data location.

Returns:
void

Definition at line 274 of file ybos.c.

2.27.1.3 INT ybk_find (DWORD =x plrl, char % bkname, DWORD x bklen,
DWORD x bktype, void xx pbk)

Find the requested bank and return the infirmation if the bank as well as the pointer to
the top of the data section.

Parameters:
plrl pointer to the area of event.

bkname name of the bank to be located.

bklen returned length in 4bytes unit of the bank.
bktype returned bank type.

pbk pointer to the first data of the found bank.

Returns:
YB_SUCCESS, YB_BANK_NOT_FOUND, YB_WRONG_BANK_TYPE

Definition at line 481 of file ybos.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.27 YBOS Bank Functions (ybk_xxx) 114

2.27.1.4 void ybk_init (DWORD x plrl)
Initializes an event for YBOS banks structure.
Before banks can be created in an event, ybk_init() has to be called first. See

YBOS bank examples.

Parameters:
plrl pointer to the first DWORD of the event area of event

Returns:
void

Definition at line 244 of file ybos.c.

2.27.1.5 INT ybk_iterate (DWORD x plrl, YBOS_BANK_HEADER xx pybkh,
void sx pdata)

Returns the bank header pointer and data pointer of the given bank name.

Parameters:
plrl pointer to the area of event.

pybkh pointer to the YBOS bank header.
pdata pointer to the first data of the current bank.

Returns:
data length in 4 bytes unit. return -1 if no more bank found.

Definition at line 567 of file ybos.c.
Referenced by update_odb().

2.27.1.6 INT ybk_list (DWORD = plrl, char bklist)
Returns the size in bytes of the event composed of YBOS bank(s).

The bk_list() has to be a predefined string of max size of YB_STRING_BANKLIST_-
MAX.

Parameters:
plrl pointer to the area of event

bklist Filled character string of the YBOS bank names found in the event.

Returns:
number of banks found in this event.

Definition at line 432 of file ybos.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 115

2.27.1.7 INT ybk_locate (DWORD x plrl, char x bkname, void x pdata)
Locate the requested bank and return the pointer to the top of the data section.

Parameters:
plrl pointer to the area of event

bkname name of the bank to be located.
pdata pointer to the first data of the located bank.

Returns:
Number of DWORD in bank or YB_BANK NOT_FOUND, YB_WRONG_-
BANK_TYPE (<0)

Definition at line 528 of file ybos.c.

2.27.1.8 INT ybk_size (DWORD = plrl)

Returns the size in bytes of the event composed of YBOS bank(s).

Parameters:
plrl pointer to the area of event

Returns:
number of bytes contained in data area of the event

Definition at line 417 of file ybos.c.

2.28 Midas Common Functions (cm_xxx)

Data Structures

e struct TR_CLIENT

Functions

e INT cm_synchronize (DWORD =xseconds)
e INT cm_asctime (char xstr, INT buf_size)
e INT cm_time (DWORD xtime)

* char * cm_get_version ()

* int cm_get_revision ()

* INT cm_set_path (char *path)

e INT cm_get_path (char *path)

e INT cm_scan_experiments (void)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 116

e INT cm_delete_client_info (HNDLE hDB, INT pid)

e INT cm_check_client (HNDLE hDB, HNDLE hKeyClient)

¢ INT cm_set _client_info (HNDLE hDB, HNDLE xhKeyClient, char
xhost_name, char xclient_name, INT hw_type, char xpassword, DWORD
watchdog_timeout)

¢ INT cm_get_client_info (char *client_name)

¢ INT cm_get_environment (char xhost_name, int host_name_size, char
*eXp_name, int exp_name_size)

* INT cm_connect_experiment (char xhost_name, char xexp_name, char *client_-
name, void(xfunc)(char %))

¢ INT cm_connect_experimentl (char xhost_name, char sxexp_name, char
xclient_name, void(xfunc)(char x), INT odb_size, DWORD watchdog_timeout)

e INT cm_list_experiments (char xhost_name, char exp_name[MAX_-
EXPERIMENT][NAME_LENGTH])

¢ INT cm_select_experiment (char xhost_name, char xexp_name)

e INT cm_connect_client (char *client_name, HNDLE xhConn)

e INT cm_disconnect_client (HNDLE hConn, BOOL bShutdown)

e INT cm_disconnect_experiment (void)

* INT cm_set_experiment_database (HNDLE hDB, HNDLE hKeyClient)

e INT cm_get_experiment_database (HNDLE xhDB, HNDLE xhKeyClient)

e int bm_validate_client_index (const BUFFER xbuf)

e INT cm_set_watchdog_params (BOOL call_watchdog, DWORD timeout)

o INT cm_get_watchdog_params (BOOL x*call_watchdog, DWORD xtimeout)

e INT cm_get_watchdog_info (HNDLE hDB, char x*client_name, DWORD
xtimeout, DWORD xlast)

e INT cm_register_transition (INT transition, INT(xfunc)(INT, char x), INT
sequence_number)

e INT cm_set_transition_sequence (INT transition, INT sequence_number)

¢ INT cm_register_deferred_transition (INT transition, BOOL(xfunc)(INT,
BOOL))

e INT cm_check_deferred_transition ()

¢ INT cm_transition (INT transition, INT run_number, char xperror, INT strsize,
INT async_flag, INT debug_flag)

o INT cm_yield (INT millisec)

e INT cm_execute (char xcommand, char *result, INT bufsize)

* INT cm_shutdown (char *xname, BOOL bUnique)

* INT cm_exist (char xname, BOOL bUnique)

* INT cm_cleanup (char *client_name, BOOL ignore_timeout)

2.28.1 Function Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 117

2.28.1.1 int bm_validate_client_index (const BUFFER x buf) [stati c]
AOX ok sk stk sk ok sk st s ok sk sk s skook ok st o skok sk ok s ok ok sk o sk ok sk st oskok sk ok sk ok sk o sk ok sk sk ok ok sk ok ok ok ok ook ok ok ok ok
Definition at line 2298 of file midas.c.

Referenced by bm_close_buffer(), bm_empty_buffers(), bm_flush_cache(), bm_-
push_event(), bm_receive_event(), bm_remove_event_request(), bm_send_event(),
bm_skip_event(), bm_wait_for_free_space(), cm_cleanup(), and cm_set_watchdog_-
params().

2.28.1.2 INT cm_asctime (char = str, INT buf_size)

Get time from MIDAS server and set local time.

Parameters:
Str return time string

buf size Maximum size of str

Returns:
CM_SUCCESS

Definition at line 984 of file midas.c.

Referenced by al_trigger_alarm(), and cm_transition().

2.28.1.3 INT cm_check client (HNDLE hDB, HNDLE hKeyClient)

Check if a client with a /system/client/xxx entry has a valid entry in the ODB client
table. If not, remove that client from the /system/client tree.

Parameters:
hDB Handle to online database

hKeyClient Handle to client key

Returns:
CM_SUCCESS, CM_NO_CLIENT
Definition at line 1261 of file midas.c.

Referenced by cm_set_client_info().

2.28.1.4 INT cm_check_deferred_transition ()

Check for any deferred transition. If a deferred transition handler has been registered
via the cm_register_deferred_transition function, this routine should be called regu-
larly. It checks if a transition request is pending. If so, it calld the registered handler if
the transition should be done and then actually does the transition.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 118

Returns:
CM_SUCCESS, <error> Error from cm_transition()

Definition at line 2902 of file midas.c.

Referenced by scheduler().

2.28.1.5 INT cm_cleanup (char x client_name, BOOL ignore_timeout)
Remove hanging clients independent of their watchdog timeout.

Since this function does not obey the client watchdog timeout, it should be only called
to remove clients which have their watchdog checking turned off or which are known
to be dead. The normal client removement is done via cm_watchdog().

Currently (Sept. 02) there are two applications for that:

1. The ODBEdit command "cleanup", which can be used to remove clients which
have their watchdog checking off, like the analyzer started with the "-d" flag for
a debugging session.

2. The frontend init code to remove previous frontends. This can be helpful if a
frontend dies. Normally, one would have to wait 60 sec. for a crashed frontend
to be removed. Only then one can start again the frontend. Since the frontend
init code contains a call to cm_cleanup(<frontend_name>), one can restart a
frontend immediately.

Added ignore_timeout on Nov.03. A logger might have an increased tiemout of up to
60 sec. because of tape operations. If ignore_timeout is FALSE, the logger is then not
killed if its inactivity is less than 60 sec., while in the previous implementation it was
always killed after 2+ WATCHDOG_INTERVAL.

Parameters:
client_name Client name, if zero check all clients

ignore_timeout If TRUE, ignore a possible increased timeout defined by each
client.

Returns:
CM_SUCCESS

Definition at line 4525 of file midas.c.

Referenced by main().

2.28.1.6 INT cm_connect_client (char * client_name, HNDLE x hConn)

Connect to a MIDAS client of the current experiment

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 119

For Reeanatess:only.
client_name Name of client to connect to. This name is set by the other client
via the cm_connect_experiment call.

hConn Connection handle

Returns:
CM_SUCCESS, CM_NO_CLIENT

Definition at line 2023 of file midas.c.

2.28.1.7 INT cm_connect_experiment (char x host_name, char x exp_name, char
x client_name, void(x)(char «) func)

This function connects to an existing MIDAS experiment. This must be the first call in
a MIDAS application. It opens three TCP connection to the remote host (one for RPC
calls, one to send events and one for hot-link notifications from the remote host) and
writes client information into the ODB under /System/Clients.

Attention:

All MIDAS applications should evaluate the MIDAS_SERVER_HOST and
MIDAS_EXPT_NAME environment variables as defaults to the host name and
experiment name (see Environment variables). For that purpose, the function
cm_get_environment() should be called prior to cm_connect_experiment(). If
command line parameters -h and -e are used, the evaluation should be done
between cm_get_environment() and cm_connect_experiment(). The function
cm_disconnect_experiment() must be called before a MIDAS application exits.

#include <stdio.h>
#include <midas.h>
main(int argc, char *argv[])
{
INT status, i;
char host_name[256],exp_name[32];

// get default values from environment
cm_get_environment(host_name, exp_name);

// parse command line parameters
for (i=1 ; i<argc ; i++t)

{
it (argv[i][0] == *-7)
{

if (i+l >= argc || argv[i+1][0] == *-7)
goto usage;

it (argv[i][1] == "e”)
strcpy(exp_name, argv[++il);

else if (argv[i]l[1l] == °h”)
strcpy(host_name, argv[++i]);
else
{
usage:

printf("'usage: test [-h Hostname] [-e Experiment]\n\n');

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 120

return 1;
}
}
3
status = cm_connect_experiment(host_name, exp_name, "Test", NULL);
if (status != CM_SUCCESS)
return 1;

...do operations...
cm_disconnect_experiment();

}

Parameters:
host_name Specifies host to connect to. Must be a valid IP host name. The string
can be empty ("") if to connect to the local computer.

exp_name Specifies the experiment to connect to. If this string is empty, the num-
ber of defined experiments in exptab is checked. If only one experiment is
defined, the function automatically connects to this one. If more than one
experiment is defined, a list is presented and the user can interactively select
one experiment.

client_name Client name of the calling program as it can be seen by others (like
the scl command in ODBE(it).

func Callback function to read in a password if security has been enabled. In all
command line applications this function is NULL which invokes an internal
ss_gets() function to read in a password. In windows environments (MS
Windows, X Windows) a function can be supplied to open a dialog box and
read in the password. The argument of this function must be the returned
password.

Returns:
CM_SUCCESS, CM_UNDEF_EXP, CM_SET_ERROR, RPC_NET_ERROR
CM_VERSION_MISMATCH MIDAS library version different on local and re-
mote computer

Definition at line 1668 of file midas.c.

Referenced by main().

2.28.1.8 INT cm_connect_experimentl (char = host_name, char x exp_name,
char x client_name, void(x)(char %) func, INT odb_size, DWORD watchdog_-
timeout)

Connect to a MIDAS experiment (to the online database) on a specific host.

For internal use only.

Definition at line 1689 of file midas.c.

Referenced by cm_connect_experiment(), and main().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 121

2.28.1.9 INT cm_delete_client_info (HNDLE hDB, INT pid)
Delete client info from database

Parameters:
hDB Database handle

pid PID of entry to delete, zero for this process.

Returns:
CM_SUCCESS

Definition at line 1210 of file midas.c.

Referenced by cm_check_client(), cm_cleanup(), and cm_disconnect_experiment().

2.28.1.10 INT cm_deregister_transition (INT transition)

Definition at line 2722 of file midas.c.

2.28.1.11 INT cm_disconnect_client (HNDLE hConn, BOOL bShutdown)
Disconnect from a MIDAS client

Parameters:
hConn Connection handle obtained via cm_connect_client()

bShutdown If TRUE, disconnect from client and shut it down (exit the client pro-
gram) by sending a RPC_SHUTDOWN message

Returns:
see rpc_client_disconnect()

Definition at line 2089 of file midas.c.

2.28.1.12 INT cm_disconnect_experiment (void)

Disconnect from a MIDAS experiment.

Attention:
Should be the last call to a MIDAS library function in an application before
it exits. This function removes the client information from the ODB, dis-
connects all TCP connections and frees all internal allocated memory. See
cm_connect_experiment() for example.

Returns:
CM_SUCCESS

Definition at line 2103 of file midas.c.

Referenced by cm_connect_experiment1(), main(), and register_equipment().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 122

2.28.1.13 INT cm_execute (char x command, char = result, INT bufsize)

Executes command via system() call

Parameters:
command Command string to execute

result stdout of command

bufsize string size in byte

Returns:
CM_SUCCESS

Definition at line 3600 of file midas.c.

2.28.1.14 INT cm_exist (char x name, BOOL bUnique)

Check if a MIDAS client exists in current experiment

Parameters:
name Client name

bUnique If true, look for the exact client name. If false, look for namexxx where
XXX is a any number

Returns:
CM_SUCCESS, CM_NO_CLIENT

Definition at line 4447 of file midas.c.

Referenced by main().

2.28.1.15 INT cm_get_client_info (char * client_name)

Get info about the current client

Parameters:
«client_name Client name.

Returns:
CM_SUCCESS, CM_UNDEF_EXP

Definition at line 1495 of file midas.c.

Referenced by bm_open_buffer().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 123

2.28.1.16 INT cm_get _environment (char * host_name, int host_name_size, char
* eXp_hame, int exp_name_size)

Returns MIDAS environment variables.

Attention:
This function can be used to evaluate the standard MIDAS environment variables
before connecting to an experiment (see Environment variables). The usual way
is that the host name and experiment name are first derived from the environment
variables MIDAS_SERVER_HOST and MIDAS_EXPT_NAME. They can then
be superseded by command line parameters with -h and -e flags.

#include <stdio.h>
#include <midas.h>
main(int argc, char *argv[])

{
INT status, i;
char host_name[256],exp_name[32];

// get default values from environment
cm_get_environment(host_name, exp_name);

// parse command line parameters
for (i=1 ; i<argc ; i++)

{
if (argv[i][0] == -~
{

if (i+l >= argc || argv[i+1][0] == *-7)
goto usage;

if (argv[i][1] == ’e”)
strcpy(exp_name, argv[++i]);

else if (argv[i][1] == ’h?)
strcpy(host_name, argv[++il);

else
{
usage:
printf("'usage: test [-h Hostname] [-e Experiment]\n\n'");
return 1;
}
}
b

status = cm_connect_experiment(host_name, exp_name, "Test", NULL);
if (status != CM_SUCCESS)

return 1;

...do anyting...
cm_disconnect_experiment();

3
Parameters:
host name Contents of MIDAS_SERVER_HOST environment variable.
host_name_size string length
exp_name Contents of MIDAS_EXPT_NAME environment variable.

exp_name_size string length

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 124

Returns:
CM_SUCCESS

Definition at line 1571 of file midas.c.

Referenced by main().

2.28.1.17 INT cm_get_experiment_database (HNDLE * hDB, HNDLE x hKey-
Client)

Get the handle to the ODB from the currently connected experiment.

Attention:
This function returns the handle of the online database (ODB) which can be used
in future db_xxx() calls. The hkeyclient key handle can be used to access the client

information in the ODB. If the client key handle is not needed, the parameter can
be NULL.

HNDLE hDB, hkeyclient;

char name[32];

int size;

db_get_experiment_database(&hdb, &hkeyclient);

size = sizeof(name);

db_get_value(hdb, hkeyclient, "Name', name, &size, TID_STRING, TRUE);
printf(""My name is %s\n', name);

Parameters:
hDB Database handle.

hKeyClient Handle for key where search starts, zero for root.

Returns:
CM_SUCCESS

Definition at line 2247 of file midas.c.

Referenced by al_trigger_alarm(), ana_end_of_run(), analyzer_init(), bm_open_-
buffer(), cm_connect_client(), cm_deregister_transition(), cm_disconnect_-
experiment(), cm_exist(), cm_get_client_info(), cm_msg_log(), cm_msg_logl(),
cm_msg_retrieve(), cm_register_deferred_transition(), cm_register_transition(),
cm_set_transition_sequence(), cm_set_watchdog_params(), cm_shutdown(), cm_-
transition(), el_submit(), and main().

2.28.1.18 INT cm_get_path (char * path)

Return the path name previously set with cm_set_path.

Parameters:
path Pathname

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 125

Returns:
CM_SUCCESS

Definition at line 1082 of file midas.c.

Referenced by cm_connect_experiment1(), cm_msg_log(), cm_msg_log1(), and cm_-
msg_retrieve().

2.28.1.19 intcm_get_revision ()

Return svn revision number of current MIDAS library as a string

Returns:
revision number

Definition at line 1051 of file midas.c.

2.28.1.20 charsx cm_get_version ()
Return version number of current MIDAS library as a string

Returns:
version number

Definition at line 1042 of file midas.c.

2.28.1.21 INT cm_get watchdog_info (HNDLE hDB, char =« client_name,
DWORD x* timeout, DWORD x last)

Return watchdog information about specific client

Parameters:
hDB ODB handle

client_name ODB client name
timeout Timeout for this application in seconds

last Last time watchdog was called in msec

Returns:
CM_SUCCESS, CM_NO_CLIENT, DB_INVALID_HANDLE

Definition at line 2499 of file midas.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 126

2.28.1.22 INT cm_get_watchdog_params (BOOL x call_watchdog, DWORD x
timeout)

Return the current watchdog parameters

Parameters:
call_watchdog Call the cm_watchdog routine periodically

timeout Timeout for this application in seconds

Returns:
CM_SUCCESS

Definition at line 2479 of file midas.c.

Referenced by bm_open_buffer(), cm_connect_experiment1(), cm_set_client_info(),
and db_open_database().

2.28.1.23 INT cm_list_experiments (char * host_ name, char exp_name[MAX_-
EXPERIMENT][NAME_LENGTH])

Connect to a MIDAS server and return all defined experiments in *xexp_name[MAX_-
EXPERIMENTS]

Parameters:
host_ name Internet host name.

exp_name list of experiment names

Returns:
CM_SUCCESS, RPC_NET_ERROR

Definition at line 1881 of file midas.c.

Referenced by cm_select_experiment().

2.28.1.24 INT cm_register_deferred_transition (INT transition, BOOL(x)(INT,
BOOL) func)

Register a deferred transition handler. If a client is registered as a deferred transition
handler, it may defer a requested transition by returning FALSE until a certain condi-
tion (like a motor reaches its end position) is reached.

Parameters:
transition One of TR_xxx

(xfunc) Function which gets called whenever a transition is requested. If it returns
FALSE, the transition is not performed.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 127

Returns:
CM_SUCCESS, <error> Error from ODB access

Definition at line 2845 of file midas.c.

2.28.1.25 INT cm_register_transition (INT transition, INT(«)(INT, char x) func,
INT sequence_number)

Registers a callback function for run transitions. This function internally registers the
transition callback function and publishes its request for transition notification by writ-
ing a transition request to /System/Clients/<pid>/Transition XXX. Other clients mak-
ing a transition scan the transition requests of all clients and call their transition call-
backs via RPC.

Clients can register for transitions (Start/Stop/Pause/Resume) in a given sequence. All
sequence numbers given in the registration are sorted on a transition and the clients are
contacted in ascending order. By default, all programs register with a sequence number
of 500. The logger however uses 200 for start, so that it can open files before the other
clients are contacted, and 800 for stop, so that the files get closed when all other clients
have gone already through the stop trantition.

The callback function returns CM_SUCCESS if it can perform the transition or a value
larger than one in case of error. An error string can be copied into the error variable.

Attention:
The callback function will be called on transitions from inside the cm_yield() func-
tion which therefore must be contained in the main program loop.

INT start(INT run_number, char *error)

it (<not ok>)
{
strcpy(error, "Cannot start because ...");
return 2;
}
printf("Starting run %d\n*, run_number);
return CM_SUCCESS;

3
main()
{
cm_register_transition(TR_START, start, 500);
do
{
status = cm_yield(1000);
} while (status !'= RPC_SHUTDOWN &&
status != SS_ABORT);
3
Parameters:

transition Transition to register for (see State Codes & Transition Codes)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 128

func Callback function.
sequence_number Sequence number for that transition (1..1000)

Returns:
CM_SUCCESS

Definition at line 2658 of file midas.c.

Referenced by main().

2.28.1.26 INT cm_scan_experiments (void)

Scan the "exptab" file for MIDAS experiment names and save them for later use by
rpc_server_accept(). The file is first searched under $MIDAS/exptab if present, then
the directory from argv[0] is probed.

Returns:
CM_SUCCESS
CM_UNDEF_EXP exptab not found and MIDAS_DIR not set

Definition at line 1118 of file midas.c.

Referenced by cm_connect_experiment1(), and cm_list_experiments().

2.28.1.27 INT cm_select_experiment (char x host_name, char * exp_name)
Connect to a MIDAS server and select an experiment from the experiments available

on this server

For Reeamatess:only.
host_name Internet host name.

exp_name list of experiment names
Returns:

CM_SUCCESS, RPC_NET_ERROR
Definition at line 1984 of file midas.c.

Referenced by cm_connect_experiment1().

2.28.1.28 INT cm_set client_info (HNDLE hDB, HNDLE x hKeyClient, char
x host_name, char x client_name, INT hw_type, char x password, DWORD
watchdog_timeout)

Set client information in online database and return handle

Parameters:
hDB Handle to online database

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 129

hKeyClient returned key

host name server name

client_name Name of this program as it will be seen by other clients.
hw_type Type of byte order

password MIDAS password

watchdog_timeout Default watchdog timeout, can be overwritten by ODB setting
/programs/<name>/Watchdog timeout

Returns:
CM_SUCCESS
Definition at line 1323 of file midas.c.

Referenced by cm_connect_experiment]1().

2.28.1.29 INT cm_set _experiment_database (HNDLE hDB, HNDLE hKey-
Client)

Set the handle to the ODB for the currently connected experiment

Parameters:
hDB Database handle

hKeyClient Key handle of client structure

Returns:
CM_SUCCESS
Definition at line 2184 of file midas.c.

Referenced by cm_connect_experiment1(), and cm_disconnect_experiment().

2.28.1.30 INT cm_set_path (char * path)

Set path to actual experiment. This function gets called by cm_connect_experiment
if the connection is established to a local experiment (not through the TCP/IP server).
The path is then used for all shared memory routines.

Parameters:
path Pathname

Returns:
CM_SUCCESS

Definition at line 1065 of file midas.c.

Referenced by cm_connect_experiment1().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 130

2.28.1.31 INT cm_set transition_sequence (INT transition, INT sequence_-
number)

Change the transition sequence for the calling program.

Parameters:
transition TR_START, TR_PAUSE, TR_RESUME or TR_STOP.

sequence_number New sequence number, should be between 1 and 1000

Returns:
CM_SUCCESS

Definition at line 2781 of file midas.c.

2.28.1.32 INT cm_set_watchdog_params (BOOL call_watchdog, DWORD time-
out)

Sets the internal watchdog flags and the own timeout. If call_watchdog is TRUE, the
cm_watchdog routine is called periodically from the system to show other clients that
this application is "alive". On UNIX systems, the alarm() timer is used which is then
not available for user purposes.

The timeout specifies the time, after which the calling application should be considered
"dead" by other clients. Normally, the cm_watchdog() routines is called periodically.
If a client crashes, this does not occur any more. Then other clients can detect this
and clear all buffer and database entries of this application so they are not blocked any
more. If this application should not checked by others, the timeout can be specified as
zero. It might be useful for debugging purposes to do so, because if a debugger comes
to a breakpoint and stops the application, the periodic call of cm_watchdog is disabled
and the client looks like dead.

If the timeout is not zero, but the watchdog is not called (call_watchdog == FALSE),
the user must ensure to call cm_watchdog periodically with a period of WATCHDOG_-
INTERVAL milliseconds or less.

An application which calles system routines which block the alarm signal for some
time, might increase the timeout to the maximum expected blocking time before issuing
the calls. One example is the logger doing Exabyte tape 1O, which can take up to one
minute.

Parameters:
call_watchdog Call the cm_watchdog routine periodically

timeout Timeout for this application in ms

Returns:
CM_SUCCESS

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 131

Definition at line 2367 of file midas.c.

Referenced by cm_connect_experiment1(), cm_set_client_info(), and main().

2.28.1.33 INT cm_shutdown (char * name, BOOL bUnique)
Shutdown (exit) other MIDAS client

Parameters:
name Client name or "all" for all clients

bUnique If true, look for the exact client name. If false, look for namexxx where
XXX is a any number.

Returns:
CM_SUCCESS, CM_NO_CLIENT, DB_NO_KEY

Definition at line 4358 of file midas.c.

Referenced by cm_transition(), and main().

2.28.1.34 INT cm_synchronize (DWORD x* seconds)

Get time from MIDAS server and set local time.

Parameters:
seconds Time in seconds

Returns:
CM_SUCCESS

Definition at line 956 of file midas.c.

Referenced by main().

2.28.1.35 INT cm_time (DWORD x* time)

Get time from ss_time on server.

Parameters:
time string

Returns:
CM_SUCCESS

Definition at line 1002 of file midas.c.

Referenced by cm_transition().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.28 Midas Common Functions (cm_xxx) 132

2.28.1.36 INT cm_transition (INT transition, INT run_number, char x perror,
INT strsize, INT async_flag, INT debug_flag)

Performs a run transition (Start/Stop/Pause/Resume).

Synchronous/Asynchronous flag. If set to ASYNC, the transition is done asyn-
chronously, meaning that clients are connected and told to execute their callback rou-
tine, but no result is awaited. The return value is specified by the transition callback
function on the remote clients. If all callbacks can perform the transition, CM_-
SUCCESS is returned. If one callback cannot perform the transition, the return value
of this callback is returned from cm_transition(). The async_flag is usually FALSE
so that transition callbacks can block a run transition in case of problems and return
an error string. The only exception are situations where a run transition is performed
automatically by a program which cannot block in a transition. For example the logger
can cause a run stop when a disk is nearly full but it cannot block in the cm_transition()
function since it has its own run stop callback which must flush buffers and close disk
files and tapes.

i=1;
db_set_value(hDB, 0, "/Runinfo/Transition in progress", &i, sizeof(INT), 1, TID_INT);

status = cm_transition(TR_START, new_run_number, str, sizeof(str), SYNC, debug_flag);
if (status != CM_SUCCESS)

{
// in case of error
printf("Error: %s\n', str);
}
Parameters:

transition TR_START, TR_PAUSE, TR_RESUME or TR_STOP.
run_number New run number. If zero, use current run number plus one.
perror returned error string.

strsize Size of error string.

async_flag SYNC: synchronization flag (SYNC:wait completion, ASYNC: retun
immediately)

debug_flag If 1 output debugging information, if 2 output via cm_msg().

Returns:
CM_SUCCESS, <error> error code from remote client

Definition at line 2995 of file midas.c.

Referenced by cm_check_deferred_transition(), scan_fragment(), and scheduler().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 133

2.28.1.37 INT cm_yield (INT millisec)

Central yield functions for clients. This routine should be called in an infinite loop by
a client in order to give the MIDAS system the opportunity to receive commands over
RPC channels, update database records and receive events.

Parameters:
millisec Timeout in millisec. If no message is received during the specified time-
out, the routine returns. If millisec=-1, it only returns when receiving an
RPC_SHUTDOWN message.

Returns:
CM_SUCCESS, RPC_SHUTDOWN

Definition at line 3547 of file midas.c.

Referenced by scan_fragment(), and scheduler().

2.28.1.38 inttr_compare (const void * argl, const void x arg2)
Definition at line 2950 of file midas.c.

Referenced by cm_transition().

2.29 MidasBuffer Manager Functions (bm_xxx)

Functions

* INT bm_match_event (short int event_id, short int trigger_mask,
EVENT_HEADER sxpevent)

» INT bm_open_buffer (char xbuffer_name, INT buffer_size, INT xbuffer_handle)

e INT bm_close_buffer (INT buffer_handle)

e INT bm_close_all_buffers (void)

e INT bm_set_cache_size (INT buffer_handle, INT read_size, INT write_size)

o INT bm_compose_event (EVENT_HEADER xevent_header, short int event_id,
short int trigger_mask, DWORD size, DWORD serial)

* INT bm_request_event (HNDLE buffer_handle, short int event_id, short int
trigger_mask, INT sampling_type, HNDLE x*request_id, void(+func)(HNDLE,
HNDLE, EVENT_HEADER x, void x))

o INT bm_remove_event_request (INT buffer_handle, INT request_id)

* INT bm_delete_request (INT request_id)

e INT bm_send_event (INT buffer_handle, void *source, INT buf_size, INT
async_flag)

* INT bm_flush_cache (INT buffer_handle, INT async_flag)

e INT bm_receive_event (INT buffer_handle, void xdestination, INT «buf_size,
INT async_flag)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 134

* INT bm_skip_event (INT buffer_handle)
e INT bm_push_event (char xbuffer_name)
e INT bm_check_buffers ()
e INT bm_empty_buffers ()

2.29.1 Function Documentation

2.29.1.1 INT bm_check_buffers ()

Check if any requested event is waiting in a buffer

Returns:
TRUE More events are waiting
FALSE No more events are waiting

Definition at line 6767 of file midas.c.

Referenced by cm_yield().

2.29.1.2 INT bm_close_all_buffers (void)

Close all open buffers

Returns:
BM_SUCCESS

Definition at line 4102 of file midas.c.

Referenced by cm_disconnect_experiment(), and cm_set_client_info().

2.29.1.3 INT bm_close_buffer (INT buffer_handle)

Closes an event buffer previously opened with bm_open_buffer().

Parameters:
buffer_handle buffer handle

Returns:
BM_SUCCESS, BM_INVALID_HANDLE

Definition at line 3986 of file midas.c.

Referenced by bm_close_all_buffers(), and source_unbooking().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 135

2.29.1.4 INT bm_compose_event (EVENT_HEADER x event_header, short int
event_id, short int trigger_mask, DWORD size, DWORD serial)

Compose a Midas event header. An event header can usually be set-up manually or
through this routine. If the data size of the event is not known when the header is
composed, it can be set later with event_header->data-size = <...> Following structure
is created at the beginning of an event

typedef struct {

short int event_id;
short int trigger_mask;
DWORD serial_number;
DWORD time_stamp;
DWORD data_size;

1 EVENT_HEADER;

char event[1000];
bm_compose_event((EVENT_HEADER *)event, 1, 0, 100, 1);
*(event+sizeof(EVENT_HEADER)) = <...>

Parameters:
event_header pointer to the event header

event_id event ID of the event
trigger_mask trigger mask of the event
size size if the data part of the event in bytes

serial serial number

Returns:
BM_SUCCESS

Definition at line 5066 of file midas.c.

Referenced by cm_msg(), cm_msg1(), and source_scan().

2.29.1.5 wvoid bm_convert _event header (EVENT_HEADER =« pevent, int
convert_flags) [stati c]

Definition at line 5574 of file midas.c.

Referenced by bm_copy_from_cache(), and bm_receive_event().

2.29.1.6 intbm_copy_from_cache (BUFFER x pbuf, void « destination, int max_-
size, int x buf_size, int convert_flags) [stati c]

Definition at line 5586 of file midas.c.

Referenced by bm_receive_event().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 136

2.29.1.7 INT bm_delete_request (INT request_id)

Deletes an event request previously done with bm_request_event(). When an event
request gets deleted, events of that requested type are not received any more. When a
buffer is closed via bm_close_buffer(), all event requests from that buffer are deleted
automatically

Parameters:
request_id request identifier given by bm_request_event()

Returns:
BM_SUCCESS, BM_INVALID_HANDLE

Definition at line 5361 of file midas.c.

Referenced by bm_close_buffer(), and source_unbooking().

2.29.1.8 void bm_dispatch_event (int buffer_handle, EVENT_HEADER x
pevent) [static]

Definition at line 5538 of file midas.c.

Referenced by bm_dispatch_from_cache(), and bm_push_event().

2.29.1.9 void bm_dispatch_from_cache (BUFFER =« pbuf, int buffer_handle)
[static]

Definition at line 5554 of file midas.c.

Referenced by bm_push_event().

2.29.1.10 INT bm_empty_buffers ()

Clears event buffer and cache. If an event buffer is large and a consumer is slow in
analyzing events, events are usually received some time after they are produced. This
effect is even more experienced if a read cache is used (via bm_set_cache_size()).
When changes to the hardware are made in the experience, the consumer will then still
analyze old events before any new event which reflects the hardware change. Users can
be fooled by looking at histograms which reflect the hardware change many seconds
after they have been made.

To overcome this potential problem, the analyzer can call bm_empty_buffers() just
after the hardware change has been made which skips all old events contained in event
buffers and read caches. Technically this is done by forwarding the read pointer of the
client. No events are really deleted, they are still visible to other clients like the logger.

Note that the front-end also contains write buffers which can delay the delivery of
events. The standard front-end framework mfe.c reduces this effect by flushing all
buffers once every second.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 137

Returns:
BM_SUCCESS

Definition at line 7082 of file midas.c.

Referenced by handFlush(), source_booking(), and source_unbooking().

2.29.1.11 INT bm_flush_cache (INT buffer_handle, INT async_flag)

Empty write cache. This function should be used if events in the write cache should
be visible to the consumers immediately. It should be called at the end of each run,
otherwise events could be kept in the write buffer and will flow to the data of the next
run.

Parameters:
buffer_handle Buffer handle obtained via bm_open_buffer()
async_flag Synchronous/asynchronous flag. If FALSE, the function blocks if the
buffer has not enough free space to receive the full cache. If TRUE, the func-
tion returns immediately with a value of BM_ASYNC_RETURN without
writing the cache.

Returns:
BM_SUCCESS, BM_INVALID_HANDLE
BM_ASYNC_RETURN Routine called with async_flag == TRUE and buffer has
not enough space to receive cache
BM_NO_MEMORY Event is too large for network buffer or event buffer. One has
to increase MAX_EVENT_SIZE in midas.h and recompile.

Definition at line 6029 of file midas.c.

Referenced by bm_send_event(), close_buffers(), scan_fragment(), scheduler(), send_-
event(), and tr_stop().

2.29.1.12 INT bm_match_event (short int event id, short int trigger_mask,
EVENT_HEADER =« pevent)

Check if an event matches a given event request by the event id and trigger mask

Parameters:
event_id Event ID of request

trigger_mask Trigger mask of request

pevent Pointer to event to check

Returns:
TRUE if event matches request

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 138

Definition at line 3708 of file midas.c.

Referenced by bm_dispatch_event(), bm_push_event(), bm_receive_event(), bm_-
send_event(), and bm_wait_for_free_space().

2.29.1.13 INT bm_open_buffer (char x buffer_name, INT buffer_size, INT x
buffer_handle)

Open an event buffer. Two default buffers are created by the system. The "SYSTEM"
buffer is used to exchange events and the "SYSMSG" buffer is used to exchange system
messages. The name and size of the event buffers is defined in midas.h as EVENT_-
BUFFER_NAME and 2+xMAX_EVENT_SIZE. Following example opens the "SYS-
TEM" buffer, requests events with ID 1 and enters a main loop. Events are then re-
ceived in process_event()

#include <stdio.h>
#include "midas.h"
void process_event(HNDLE hbuf, HNDLE request_id,
EVENT_HEADER *pheader, void *pevent)
{
printf("'Received event #%d\r",
pheader->serial_number);
3
main()
{
INT status, request_id;
HNDLE hbut;
status = cm_connect_experiment("'pc810", "Sample', "Simple Analyzer', NULL);
if (status !'= CM_SUCCESS)
return 1;
bm_open_buffer (EVENT_BUFFER_NAME, 2*MAX_EVENT_SIZE, &hbuf);
bm_request_event(hbuf, 1, TRIGGER_ALL, GET_ALL, request_id, process_event);

do

{

status = cm_yield(1000);

} while (status != RPC_SHUTDOWN && status != SS_ABORT);
cm_disconnect_experiment();

return O;
3
Parameters:
buffer_name Name of buffer
buffer_size Default size of buffer in bytes. Can by overwritten with ODB value
buffer_handle Buffer handle returned by function
Returns:

BM_SUCCESS, BM_CREATED
BM_NO_SHM Shared memory cannot be created
BM_NO_MUTEX Mutex cannot be created

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 139

BM_NO_MEMORY Not enough memory to create buffer descriptor
BM_MEMSIZE_MISMATCH Buffer size conflicts with an existing buffer of dif-
ferent size

BM_INVALID_PARAM Invalid parameter

Definition at line 3769 of file midas.c.

Referenced by cm_msg(), cm_msg1(), cm_msg_register(), register_equipment(), and
source_booking().

2.29.1.14 INT bm_push_event (char * buffer_name)
Check a buffer if an event is available and call the dispatch function if found.

Parameters:
buffer_name Name of buffer

Returns:
BM_SUCCESS, BM_INVALID_HANDLE, BM_TRUNCATED, BM_ASYNC_-
RETURN, RPC_NET_ERROR

Definition at line 6550 of file midas.c.
Referenced by bm_check_buffers().

2.29.1.15 int bm_read_cache_has_events (const BUFFER x pbuf) [stati c]

Definition at line 5620 of file midas.c.

Referenced by bm_push_event(), and bm_receive_event().

2.29.1.16 INT bm_receive_event (INT buffer_handle, void x destination, INT %
buf_size, INT async_flag)

Receives events directly. This function is an alternative way to receive events without
a main loop.

It can be used in analysis systems which actively receive events, rather than using
callbacks. A analysis package could for example contain its own command line
interface. A command like "receive 1000 events" could make it necessary to call
bm_receive_event() 1000 times in a row to receive these events and then return back to
the command line prompt. The according bm_request_event() call contains NULL as
the callback routine to indicate that bm_receive_event() is called to receive events.

#include <stdio.h>
#include "midas.h"

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 140

void process_event(EVENT_HEADER *pheader)

printf("’'Received event #%d\r",
pheader->serial_number);

}

main()
{
INT status, request_id;
HNDLE hbuf;
char event_buffer[1000];
status = cm_connect_experiment(*"*, "Sample",
"Simple Analyzer', NULL);
if (status != CM_SUCCESS)
return 1;
bm_open_buffer (EVENT_BUFFER_NAME, 2*MAX_EVENT_SIZE, &hbuf);
bm_request_event(hbuf, 1, TRIGGER_ALL, GET_ALL, request_id, NULL);

do
{

size = sizeof(event_buffer);

status = bm_receive_event(hbuf, event buffer, &size, ASYNC);
if (status == CM_SUCCESS)

process_event((EVENT_HEADER *) event_buffer);

<...do something else...>

status = cm_yield(0);
} while (status !'= RPC_SHUTDOWN &&

status != SS_ABORT);

cm_disconnect_experiment();

return O;

}

Parameters:
buffer_handle buffer handle

destination destination address where event is written to
buf_size size of destination buffer on input, size of event plus header on return.

async_flag Synchronous/asynchronous flag. If FALSE, the function blocks if no
event is available. If TRUE, the function returns immediately with a value of
BM_ASYNC_RETURN without receiving any event.

Returns:
BM_SUCCESS, BM_INVALID_HANDLE
BM_TRUNCATED The event is larger than the destination buffer and was there-
fore truncated
BM_ASYNC_RETURN No event available

Definition at line 6223 of file midas.c.

Referenced by handFlush(), and source_scan().

2.29.1.17 INT bm_remove_event_request (INT buffer_handle, INT request_id)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 141

Delete a previously placed request for a specific event type in the client structure of the
buffer refereced by buffer_handle.

Parameters:
buffer_handle Handle to the buffer where the re- quest should be placed in

request_id Request id returned by bm_request_event

Returns:
BM_SUCCESS, BM_INVALID_HANDLE, BM_NOT_FOUND, RPC_NET_-
ERROR

Definition at line 5292 of file midas.c.

Referenced by bm_delete_request().

2.29.1.18 INT bm_request_event (HNDLE buffer_handle, short int event_id,
short int trigger_mask, INT sampling_type, HNDLE = request_id, void(x)(HNDLE,
HNDLE, EVENT_HEADER x, void) func)

Place an event request based on certain characteristics. Multiple event requests can be
placed for each buffer, which are later identified by their request ID. They can contain
different callback routines. Example see bm_open_buffer() and bm_receive_event()

Parameters:
buffer_handle buffer handle obtained via bm_open_buffer()

event_id event ID for requested events. Use EVENTID_ALL to receive events
with any ID.

trigger_mask trigger mask for requested events. The requested events must have
at least one bit in its trigger mask common with the requested trigger mask.
Use TRIGGER_ALL to receive events with any trigger mask.

sampling_type specifies how many events to receive. A value of GET_ALL re-
ceives all events which match the specified event ID and trigger mask. If
the events are consumed slower than produced, the producer is automatically
slowed down. A value of GET_SOME receives as much events as possi-
ble without slowing down the producer. GET_ALL is typically used by the
logger, while GET_SOME is typically used by analyzers.

request_id request ID returned by the function. This ID is passed to the callback
routine and must be used in the bm_delete_request() routine.

func allback routine which gets called when an event of the specified type is re-
ceived.

Returns:
BM_SUCCESS, BM_INVALID_HANDLE
BM_NO_MEMORY too many requests. The value MAX_EVENT_REQUESTS
in midas.h should be increased.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 142

Definition at line 5228 of file midas.c.

Referenced by cm_msg_register(), and source_booking().

2.29.1.19 INT bm_send_event (INT buffer_handle, void * source, INT buf_size,
INT async_flag)

Sends an event to a buffer. This function check if the buffer has enough space for the
event, then copies the event to the buffer in shared memory. If clients have requests for
the event, they are notified via an UDP packet.

char event[1000];
// create event with ID 1, trigger mask 0, size 100 bytes and serial number 1
bm_compose_event((EVENT_HEADER *) event, 1, 0, 100, 1);

// set first byte of event
*(event+sizeof(EVENT_HEADER)) = <...>
#include <stdio.h>

#include "midas.h"

main()

INT status, i;
HNDLE hbuf;
char event[1000];

status = cm_connect_experiment(*"*, "Sample', "Producer™, NULL);
if (status !'= CM_SUCCESS)
return 1;

bm_open_buffer(EVENT_BUFFER_NAME, 2*MAX_EVENT_SIZE, &hbuf);

// create event with ID 1, trigger mask 0, size 100 bytes and serial number 1
bm_compose_event((EVENT_HEADER *) event, 1, 0, 100, 1);

// set event data

for (i=0 ; i<100 ; i++)

*(event+sizeof(EVENT_HEADER)+i) = i;

// send event

bm_send_event(hbuf, event, 100+sizeof(EVENT_HEADER), SYNC);
cm_disconnect_experiment();

return O;

}

Parameters:
buffer_handle Buffer handle obtained via bm_open_buffer()

source Address of event buffer
buf_size Size of event including event header in bytes

async_flag Synchronous/asynchronous flag. If FALSE, the function blocks if the
buffer has not enough free space to receive the event. If TRUE, the function
returns immediately with a value of BM_ASYNC_RETURN without writing
the event to the buffer

Returns:
BM_SUCCESS, BM_INVALID_HANDLE, BM_INVALID PARAM

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.29 Midas Buffer Manager Functions (bm_xxx) 143

BM_ASYNC_RETURN Routine called with async_flag == TRUE and buffer has
not enough space to receive event

BM_NO_MEMORY Event is too large for network buffer or event buffer. One has
to increase MAX_EVENT_SIZE in midas.h and recompile.

Definition at line 5838 of file midas.c.

Referenced by cm_msg(), cm_msg1(), and rpc_send_event().

2.29.1.20 INT bm_set cache size (INT buffer_handle, INT read_size, INT
write_size)

Modifies buffer cache size. Without a buffer cache, events are copied to/from the shared
memory event by event.

To protect processed from accessing the shared memory simultaneously, semaphores
are used. Since semaphore operations are CPU consuming (typically 50-100us) this
can slow down the data transfer especially for small events. By using a cache the
number of semaphore operations is reduced dramatically. Instead writing directly to
the shared memory, the events are copied to a local cache buffer. When this buffer is
full, it is copied to the shared memory in one operation. The same technique can be
used when receiving events.

The drawback of this method is that the events have to be copied twice, once to the
cache and once from the cache to the shared memory. Therefore it can happen that the
usage of a cache even slows down data throughput on a given environment (computer
type, OS type, event size). The cache size has therefore be optimized manually to
maximize data throughput.

Parameters:
buffer_handle buffer handle obtained via bm_open_buffer()

read_size cache size for reading events in bytes, zero for no cache

write_size cache size for writing events in bytes, zero for no cache

Returns:
BM_SUCCESS, BM_INVALID HANDLE, BM_NO_MEMORY, BM._-
INVALID PARAM

Definition at line 4971 of file midas.c.

Referenced by register_equipment().

2.29.1.21 INT bm_skip_event (INT buffer_handle)
Skip all events in current buffer.

Useful for single event displays to see the newest events

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.30 Midas Message Functions (msg_xxx) 144

Parameters:
buffer_handle Handle of the buffer. Must be obtained via bm_open_buffer.

Returns:
BM_SUCCESS, BM_INVALID_HANDLE, RPC_NET_ERROR

Definition at line 6502 of file midas.c.

2.29.1.22 BOOL bm_update read pointer (const char = caller_name,
BUFFER_HEADER =« pheader) [stati c]

Definition at line 5454 of file midas.c.

Referenced by bm_flush_cache(), bm_push_event(), bm_receive_event(), bm_send_-
event(), and bm_wait_for_free_space().

2.29.1.23 void bm_validate_client_pointers (BUFFER_HEADER x pheader,
BUFFER_CLIENT = pclient) [stati c]

Definition at line 5393 of file midas.c.

Referenced by bm_update_read_pointer().

2.29.1.24 int bm_wait_for_free_space (int buffer_handle, BUFFER =« pbuf, int
async_flag, int requested_space) [static]

Definition at line 5631 of file midas.c.

Referenced by bm_flush_cache(), and bm_send_event().

2.29.1.25 void bm_wakeup_producers (const BUFFER_HEADER x pheader,
const BUFFER_CLIENT xpc) [static]

Definition at line 5509 of file midas.c.

Referenced by bm_push_event(), and bm_receive_event().

2.30 Midas Message Functions (msg_xxx)
Functions

o INT cm_get_error (INT code, char *string)

o INT cm_set_msg_print (INT system_mask, INT user_mask, int(xfunc)(const
char x))
e INT cm_msg_log (INT message_type, const char xmessage)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.30 Midas Message Functions (msg_xxx) 145

* INT cm_msg_logl (INT message_type, const char xmessage, const char
xfacility)

* INT cm_msg (INT message_type, char xfilename, INT line, const char *routine,
const char xformat,...)

* INT cm_msgl (INT message_type, char xfilename, INT line, const char
«facility, const char *routine, const char «format,...)

o INT cm_msg_register (void(xfunc)(HNDLE, HNDLE, EVENT_HEADER x,
void %))

e INT cm_msg_retrieve (INT n_message, char xmessage, INT «buf_size)

2.30.1 Function Documentation

2.30.1.1 INT cm_get_error (INT code, char x string)
Convert error code to string. Used after cm_connect_experiment to print error string in

command line programs or windows programs.

Parameters:
code Error code as defined in midas.h

string Error string

Returns:
CM_SUCCESS

Definition at line 297 of file midas.c.

Referenced by cm_connect_experiment().

2.30.1.2 INT cm_msg (INT message_type, char x filename, INT line, const char
* routine, const char « format, ...)

This routine can be called whenever an internal error occurs or an informative message
is produced. Different message types can be enabled or disabled by setting the type
bits via cm_set_msg_print().

Attention:

Do not add the "\n" escape carriage control at the end of the formated line as it is
already added by the client on the receiving side.

cm_msg(MINFO, "my program', "This is a information message only);

cm_msg(MERROR, "my program', "This is an error message with status:%d",

cm_msg(MTALK, "my_program™, My program is Done!');

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

my_status);

2.30 Midas Message Functions (msg_xxx) 146

Parameters:
message_type (See MIDAS Macros).

filename Name of source file where error occured
line Line number where error occured
routine Routine name.

format message to printout, ... Parameters like for printf()

Returns:
CM_SUCCESS

Definition at line 560 of file midas.c.

Referenced by al_trigger_alarm(), analyzer_init(), bk_list(), bm_close_buffer(),
bm_copy_from_cache(), bm_flush_cache(), bm_open_buffer(), bm_push_event(),
bm_receive_event(), bm_remove_event_request(), bm_request_event(), bm_send_-
event(), bm_set_cache_size(), bm_skip_event(), bm_update_read_pointer(), bm_-
validate_client_index(), bm_validate_client_pointers(), bm_wait_for_free_space(),
bm_wakeup_producers(), close_buffers(), cm_check_client(), cm_check_deferred_-
transition(), cm_cleanup(), cm_connect_experimentl(), cm_deregister_transition(),
cm_disconnect_experiment(), cm_get_watchdog_info(), cm_list_experiments(), cm_-
register_deferred_transition(), cm_register_transition(), cm_set_client_info(), cm_-
set_transition_sequence(), cm_shutdown(), cm_transition(), db_check_record(), db_-
close_database(), db_copy(), db_copy_xml(), db_create_key(), db_create_link(), db_-
create_record(), db_delete_keyl(), db_enum_key(), db_find_key(), db_get_data(),
db_get_data_index(), db_get_key(), db_get_key_info(), db_get_key_time(), db_-
get_record(), db_get_value(), db_load(), db_lock_database(), db_open_database(),
db_open_record(), db_paste(), db_paste_node(), db_protect_database(), db_save(),
db_save_struct(), db_save_xml(), db_save_xml_key(), db_set_data(), db_set_data_-
index(), db_set_record(), db_set_value(), db_unlock_database(), dm_buffer_create(),
el_submit(), handFlush(), load_fragment(), main(), readout_thread(), receive_trigger_-
event(), register_equipment(), rpc_flush_event(), rpc_register_functions(), rpc_send_-
event(), rpc_set_option(), scan_fragment(), scheduler(), send_event(), source_-
booking(), source_scan(), source_unbooking(), tr_start(), tr_stop(), update_odb(), and
ybk_list().

2.30.1.3 INT cm_msgl (INT message_type, char « filename, INT line, const char
« facility, const char * routine, const char x format, ...)

This routine is similar to cm_msg(). It differs from cm_msg() only by the logging
destination being a file given through the argument list i.e:facility

For fttamiadmwise only.
Do not add the "\n" escape carriage control at the end of the formated line as it
is already added by the client on the receiving side. The first arg in the follow-
ing example uses the predefined macro MINFO which handles automatically
the first 3 arguments of the function (see MIDAS Macros).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.30 Midas Message Functions (msg_xxx) 147

cm_msgl(MINFO, "my_log_file", "my_program”," My message status:%d"

//-———- File my_log_file.log
Thu Nov 8 17:59:28 2001 [my_program] My message status:1

Parameters:
message_type See MIDAS Macros.

filename Name of source file where error occured

line Line number where error occured

facility Logging file name

routine Routine name

format message to printout, ... Parameters like for printf()

Returns:
CM_SUCCESS

Definition at line 676 of file midas.c.

2.30.1.4 INT cm_msg_log (INT message_type, const char x message)
Write message to logging file. Called by cm_msg.

Attention:
May burn your fingers

Parameters:
message_type Message type

message Message string

Returns:
CM_SUCCESS

Definition at line 359 of file midas.c.

Referenced by cm_msg().

2.30.1.5 INT cm_msg_logl (INT message_type, const char x message, const char
« facility)

Write message to logging file. Called by cm_msg().

For Reeamatess:only.
message_type Message type

message Message string
facility Message facility, filename in which messages will be written

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

, status);

2.30 Midas Message Functions (msg_xxx) 148

Returns:
CM_SUCCESS

Definition at line 431 of file midas.c.

Referenced by cm_msg1().

2.30.1.6 INT cm_msg_register (void(x)(HNDLE, HNDLE, EVENT_HEADER x,
void x) func)

Register a dispatch function for receiving system messages.

» example code from mlxspeaker.c

void receive_message(HNDLE hBuf, HNDLE id, EVENT_HEADER *header, void *message)

{
char str[256], *pc, *sp;
// print message
printf(""%s\n", (char *)(message));

printf("evID:%x Mask:%x Serial:%i Size:%d\n"
,header->event_id
,header->trigger_mask
,header->serial_number
,header->data_size);

pc = strchr((char *)(message),’]’)+2;

// skip none talking message
if (header->trigger_mask == MT_TALK ||
header->trigger_mask == MT_USER)

}

int main(int argc, char *argv[])

{

// now connect to server
status = cm_connect_experiment(host_name, exp_name, "Speaker', NULL);
if (status !'= CM_SUCCESS)
return 1;
// Register callback for messages
cm_msg_register(receive_message);

,

Parameters:
func Dispatch function.

Returns:
CM_SUCCESS or bm_open_buffer and bm_request_event return status

Definition at line 807 of file midas.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.30 Midas Message Functions (msg_xxx) 149

2.30.1.7 INT cm_msg_retrieve (INT n_message, char = message, INT x buf_size)

Retrieve old messages from log file

Parameters:
n_message Number of messages to retrieve

message buf_size bytes of messages, separated by

characters. The returned number of bytes is normally smaller than the initial
buf_size, since only full lines are returned.

xbuf_size Size of message buffer to fill

Returns:
CM_SUCCESS

Definition at line 837 of file midas.c.

2.30.1.8 INT cm_set_msg_print (INT system_mask, INT user_mask, int(x)(const
char %) func)

Set message masks. When a message is generated by calling cm_msg(), it can got to
two destinatinons. First a user defined callback routine and second to the "SYSMSG"
buffer.

A user defined callback receives all messages which satisfy the user_mask.

int message_print(const char *msg)

{
char str[160];

memset(str, * 7, 159);
str[159] = 0;
if (msg[0] == "[7)

msg = strchr(msg, *]17)+2;
memcpy(str, msg, strlen(msg));
ss_printf(0, 20, str);
return O;

cm_set_msg_print(MT_ALL, MT_ALL, message_print);

Parameters:
system_mask Bit masks for MERROR, MINFO etc. to send system messages.

user_mask Bit masks for MERROR, MINFO etc. to send messages to the user
callback.

func Function which receives all printout. By setting "puts", messages are just
printed to the screen.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.31 Midas Bank Functions (bk_xxx) 150

Returns:
CM_SUCCESS

Definition at line 342 of file midas.c.

Referenced by cm_connect_experiment1(), and main().

2.31 MidasBank Functions (bk_xxx)

Functions

* void bk_init (void *event)

* void bk_init32 (void *event)

e INT bk_size (void xevent)

* void bk_create (void *event, const char xname, WORD type, void spdata)

» INT bk_close (void *event, void xpdata)

e INT bk_list (void *event, char *bklist)

* INT bk_locate (void *event, const char xname, void *pdata)

* INT bk_find (BANK_HEADER x*pbkh, const char xname, DWORD xbklen,
DWORD xbktype, void **pdata)

* INT bk_iterate (void xevent, BANK xxpbk, void «pdata)

» INT bk_swap (void xevent, BOOL force)

2.31.1 Function Documentation

2.31.1.1 INT bk_close (void * event, void * pdata)

Close the Midas bank priviously created by bk_create(). The data pointer pdata must
be obtained by bk_create() and used as an address to fill a bank. It is incremented with
every value written to the bank and finally points to a location just after the last byte of
the bank. It is then passed to bk_close() to finish the bank creation

Parameters:
event pointer to current composed event

pdata pointer to the data

Returns:
number of bytes contained in bank
Definition at line 12168 of file midas.c.

Referenced by adc_calib(), adc_summing(), eb_user(), read_scaler_event(), read_-
trigger_event(), and scaler_accum().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.31 Midas Bank Functions (bk_xxx) 151

2.31.1.2 void bk _create (void * event, const char * name, WORD type, void *
pdata)

Create a Midas bank. The data pointer pdata must be used as an address to fill a bank.
It is incremented with every value written to the bank and finally points to a location
just after the last byte of the bank. It is then passed to the function bk_close() to finish
the bank creation.

INT *pdata;

bk_init(pevent);

bk_create(pevent, "ADCO"™, TID_INT, &pdata);
*pdata++ = 123

*pdata++ = 456

bk_close(pevent, pdata);

Parameters:
event pointer to the data area

name of the bank, must be exactly 4 charaters
type type of bank, one of the Midas Data Types values defined in midas.h
pdata pointer to the data area of the newly created bank

Returns:
void

Definition at line 12056 of file midas.c.

Referenced by adc_calib(), adc_summing(), eb_user(), read_scaler_event(), read_-
trigger_event(), and scaler_accum().

2.31.1.3 INT bk _find (BANK_HEADER x pbkh, const char * name, DWORD x
bklen, DWORD = bktype, void *x pdata)

Finds a MIDAS bank of given name inside an event.

Parameters:
pbkh pointer to current composed event

name bank name to look for

bklen number of elemtents in bank

bktype bank type, one of TID_xxx

pdata pointer to data area of bank, NULL if bank not found

Returns:
1 if bank found, O otherwise

Definition at line 12312 of file midas.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.31 Midas Bank Functions (bk_xxx) 152

2.31.1.4 void bk_init (void * event)

Initializes an event for Midas banks structure. Before banks can be created in an event,
bk_init() has to be called first.

Parameters:
event pointer to the area of event

Definition at line 11974 of file midas.c.

Referenced by eb_user(), read_scaler_event(), and read_trigger_event().

2.31.1.5 void bk_init32 (void x event)

Initializes an event for Midas banks structure for large bank size (> 32KBytes) Before
banks can be created in an event, bk_init32() has to be called first.

Parameters:
event pointer to the area of event

Returns:
void

Definition at line 12015 of file midas.c.

2.31.1.6 INT bk _iterate (void * event, BANK xx pbk, void * pdata)

Iterates through banks inside an event. The function can be used to enumerate all banks
of an event. The returned pointer to the bank header has following structure:

typedef struct {
char name[4];

WORD type;
WORD data_size;
} BANK;

where type is a TID_xxx value and data_size the size of the bank in bytes.

BANK *pbk;
INT size;
void *pdata;
char name[5];
pbk = NULL;
do
{
size = bk_iterate(event, &pbk, &pdata);
ifT (pbk == NULL)
break;
*((DWORD *)name) = *((DWORD *)(pbk)->name);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.31 Midas Bank Functions (bk_xxx) 153

name[4] = O;
printf("’bank %s found\n", name);
} while(TRUE);

Parameters:
event Pointer to data area of event.

pbk pointer to the bank header, must be NULL for the first call to this function.
pdata Pointer to the bank header, must be NULL for the first call to this function

Returns:
Size of bank in bytes

Definition at line 12393 of file midas.c.
Referenced by bk_list(), and update_odb().

2.31.1.7 INT bk _list (void * event, char * bklist)

Extract the MIDAS bank name listing of an event. The bklist should be dimensioned
with STRING_BANKLIST_MAX which corresponds to a max of BANKLIST _MAX
banks (midas.h: 32 banks max).

INT adc_calib(EVENT_HEADER *pheader, void *pevent)
{

INT n_adc, nbanks;
WORD *pdata;
char banklist[STRING_BANKLIST_MAX];

// Display # of banks and list of banks in the event
nbanks = bk_list(pevent, banklist);
printf("'#banks:%d List:%s\n", nbanks, banklist);

// look for ADCO bank, return if not present
n_adc = bk_locate(pevent, "ADCO", &pdata);

L

Parameters:
event pointer to current composed event

bklist returned ASCII string, has to be booked with STRING_BANKLIST_MAX.

Returns:
number of bank found in this event.

Definition at line 12218 of file midas.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.31 Midas Bank Functions (bk_xxx) 154

2.31.1.8 INT bk_locate (void = event, const char * name, void x pdata)
Locates a MIDAS bank of given name inside an event.

Parameters:
event pointer to current composed event

name bank name to look for
pdata pointer to data area of bank, NULL if bank not found

Returns:
number of values inside the bank

Definition at line 12262 of file midas.c.

Referenced by adc_calib(), adc_summing(), and scaler_accum().

2.31.1.9 INT bk_size (void x event)

Returns the size of an event containing banks. The total size of an event is the value
returned by bk_size() plus the size of the event header (sizeof(EVENT_HEADER)).

Parameters:
event pointer to the area of event

Returns:
number of bytes contained in data area of event

Definition at line 12029 of file midas.c.

Referenced by read_scaler_event(), and read_trigger_event().

2.31.1.10 INT bk_swap (void x event, BOOL force)
Swaps bytes from little endian to big endian or vice versa for a whole event.

An event contains a flag which is set by bk_init() to identify the endian format of an
event. If force is FALSE, this flag is evaluated and the event is only swapped if it is in
the "wrong" format for this system. An event can be swapped to the "wrong" format on
purpose for example by a front-end which wants to produce events in a "right" format
for a back-end analyzer which has different byte ordering.

Parameters:
event pointer to data area of event

force If TRUE, the event is always swapped, if FALSE, the event is only swapped
if it is in the wrong format.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.32 Midas Alarm Functions (al_xxx) 155

Returns:
I==event has been swap, O==event has not been swapped.

Definition at line 12468 of file midas.c.

Referenced by eb_mfragment_add(), and source_scan().

2.32 MidasAlarm Functions (al_xxx)

Functions

* INT al_trigger_alarm (char *alarm_name, char xalarm_message, char xdefault_-
class, char xcond_str, INT type)

2.32.1 Function Documentation

2.32.1.1 INT al_trigger_alarm (char x alarm_name, char x alarm_message, char
« default_class, char x cond_str, INT type)

Trigger a certain alarm.

lazy.alarm[0] = O;
size = sizeof(lazy.alarm);
db_get_value(hDB, pLch->hKey, "Settings/Alarm Class", lazy.alarm, &size, TID_STRING, TRUE);

// trigger alarm if defined
it (lazy.alarm[0])
al_trigger_alarm("Tape"™, "Tape full.._load new one!", lazy.alarm, "Tape full', AT_INTERNAL);

Parameters:
alarm_name Alarm name, defined in /alarms/alarms

alarm_message Optional message which goes with alarm

default_class If alarm is not yet defined under /alarms/alarms/<alarm_name>>, a
new one is created and this default class is used.

cond_str String displayed in alarm condition
type Alarm type, one of AT_xxx

Returns:
AL_SUCCESS, AL_INVALID_NAME

Definition at line 15438 of file midas.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.33 Midas History Functions (hs_xxx) 156

2.33 MidasHistory Functions (hs_xxx)

Functions

* INT hs_set_path (char *path)
* INT hs_open_file (time_t Itime, char xsuffix, INT mode, int xth)

2.33.1 Function Documentation

2.33.1.1 INT hs_open_file (time_t Itime, char * suffix, INT mode, int * fh)

Open history file belonging to certain date. Internal use only.

Parameters:
Itime Date for which a history file should be opened.

suffix File name suffix like "hst", "idx", "idf"
mode R/W access mode
fh File handle

Returns:
HS_SUCCESS

Definition at line 12606 of file midas.c.

2.33.1.2 INT hs_set_path (char * path)

Sets the path for future history file accesses. Should be called before any other history
function is called.

Parameters:
path Directory where history files reside

Returns:
HS_SUCCESS

Definition at line 12580 of file midas.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.34 Midas Elog Functions (el_xxx) 157

2.34 MidasElog Functions (el_xxx)
Functions

* INT el_submit (int run, char *author, char xtype, char *system, char xsubject,
char xtext, char *reply_to, char *encoding, char xafilenamel, char xbufferl,
INT buffer_sizel, char xafilename2, char sbuffer2, INT buffer_size2, char
xafilename3, char xbuffer3, INT buffer_size3, char xtag, INT tag_size)

2.34.1 Function Documentation

2.34.1.1 INT el_submit (int run, char x author, char = type, char x system, char
x subject, char x text, char x reply_to, char x encoding, char * afilenamel, char
x bufferl, INT buffer_sizel, char x afilename2, char x buffer2, INT buffer_size2,
char « afilename3, char « buffer3, INT buffer_size3, char « tag, INT tag_size)

Submit an ELog entry.

Parameters:
run Run Number.

author Message author.

type Message type.

system Message system.

subject Subject.

text Message text.

reply_to In reply to this message.
encoding Text encoding, either HTML or plain.
afilenamel File name of attachment.
bufferl File contents.

buffer_sizel Size of buffer in bytes.
afilename2 File name of attachment.
buffer2 File contents.

buffer_size2 Size of buffer in bytes.
afilename3 File name of attachment.
buffer3 File contents.

buffer_size3 Size of buffer in bytes.

tag If given, edit existing message.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.35 Midas RPC Functions (rpc_xxx) 158

tag_size Maximum size of tag.

Returns:
EL_SUCCESS

Definition at line 14395 of file midas.c.

2.35 Midas RPC Functions (rpc_xxx)

Functions

* INT rpc_register_client (char xname, RPC_LIST xlist)

o INT rpc_register_functions (RPC_LIST xnew_list, INT(xfunc)(INT, void *:x))

* INT rpc_set_option (HNDLE hConn, INT item, INT value)

* INT rpc_send_event (INT buffer_handle, void *source, INT buf_size, INT
async_flag, INT mode)

e INT rpc_flush_event ()

2.35.1 Function Documentation

2.35.1.1 INT rpc_flush_event ()
Send event residing in the TCP cache buffer filled by rpc_send_event. This routine
should be called when a run is stopped.

Returns:
RPC_SUCCESS, RPC_NET_ERROR

Definition at line 9665 of file midas.c.

Referenced by scan_fragment(), scheduler(), send_event(), and tr_stop().

2.35.1.2 INT rpc_register_client (char « name, RPC_LIST = list)

Register RPC client for standalone mode (without standard midas server)

Parameters:
list Array of RPC_LIST structures containing function IDs and parameter defini-
tions. The end of the list must be indicated by a function ID of zero.

name Name of this client

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.35 Midas RPC Functions (rpc_xxx) 159

Returns:
RPC_SUCCESS

Definition at line 7535 of file midas.c.

2.35.1.3 INT rpc_register_functions (RPC_LIST x new_list, INT(x)(INT, void
xx) func)

Register a set of RPC functions (both as clients or servers)

Parameters:
new_list Array of RPC_LIST structures containing function IDs and parameter
definitions. The end of the list must be indicated by a function ID of zero.

func Default dispatch function

Returns:
RPC_SUCCESS, RPC_NO_MEMORY, RPC_DOUBLE_DEFINED

Definition at line 7555 of file midas.c.

Referenced by cm_connect_experiment1(), and rpc_register_client().

2.35.1.4 INT rpc_send_event (INT buffer_handle, void * source, INT buf_size,
INT async_flag, INT mode)

Fast send_event routine which bypasses the RPC layer and sends the event directly at
the TCP level.

Parameters:
buffer_handle Handle of the buffer to send the event to. Must be obtained via
bm_open_buffer.
source Address of the event to send. It must have a proper event header.
buf_size Size of event in bytes with header.

async_flag SYNC / ASYNC flag. In ASYNC mode, the function returns imme-
diately if it cannot send the event over the network. In SYNC mode, it waits
until the packet is sent (blocking).

mode Determines in which mode the event is sent. If zero, use RPC socket, if one,
use special event socket to bypass RPC layer on the server side.

Returns:
BM_INVALID_PARAM, BM_ASYNC_RETURN, RPC_SUCCESS, RPC_-
NET_ERROR, RPC_NO_CONNECTION, RPC_EXCEED_BUFFER

Definition at line 9465 of file midas.c.

Referenced by receive_trigger_event(), scheduler(), send_event(), and source_scan().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.36 Midas Dual Buffer Memory Functions (dm_xxx) 160

2.35.1.5 INT rpc_set_option (HNDLE hConn, INT item, INT value)
Set RPC option

Parameters:
hConn RPC connection handle

item One of RPC_Oxxx
value Value to set

Returns:
RPC_SUCCESS

Definition at line 8554 of file midas.c.

Referenced by bm_receive_event(), cm_transition(), db_send_changed_records(),
main(), scheduler(), and update_odb().

2.36 MidasDual Buffer Memory Functions (dm_xxx)

Functions

e INT dm_buffer_create (INT size, INT user_max_event_size)

2.36.1 Function Documentation

2.36.1.1 INT dm_buffer_create (INT size, INT user_max_event_size)
Setup a dual memory buffer. Has to be called initially before any other dm_xxx func-

tion

Parameters:
size Size in bytes

user_max_event_size max event size

Returns:
CM_SUCCESS, BM_NO_MEMORY, BM_MEMSIZE_MISMATCH

Definition at line 16396 of file midas.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.37 Midas Ring Buffer Functions (rb_xxx) 161

2.37 MidasRing Buffer Functions (rb_xxx)

Functions

* int rb_set_nonblocking ()

* int rb_create (int size, int max_event_size, int xhandle)
* int rb_delete (int handle)

* int rb_get_wp (int handle, void #x*p, int millisec)

* int rb_increment_wp (int handle, int size)

* int rb_get_rp (int handle, void *x*p, int millisec)

* int rb_increment_rp (int handle, int size)

* int rb_get_buffer_level (int handle, int *n_bytes)

2.37.1 Function Documentation

2.37.1.1 intrb_create (int size, int max_event_size, int « handle)
Create a ring buffer with a given size

Provide an inter-thread buffer scheme for handling front-end events. This code allows
concurrent data acquisition, calibration and network transfer on a multi-CPU machine.
One thread reads out the data, passes it via the ring buffer functions to another thread
running on the other CPU, which can then calibrate and/or send the data over the net-
work.

Parameters:
size Size of ring buffer, must be larger than 2+xmax_event_size

max_event_size Maximum event size to be placed into
xhandle Handle to ring buffer

Returns:
DB_SUCCESS, DB_NO_MEMORY, DB_INVALID_PARAM

Definition at line 17124 of file midas.c.

Referenced by register_equipment().

2.37.1.2 intrb_delete (int handle)

Delete a ring buffer

Parameters:
handle Handle of the ring buffer

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.37 Midas Ring Buffer Functions (rb_xxx) 162

Returns:
DB_SUCCESS

Definition at line 17178 of file midas.c.

2.37.1.3 intrb_get_buffer_level (int handle, int x n_bytes)

Return number of bytes in a ring buffer

Parameters:
handle Handle of the buffer to get the info

*N_bytes Number of bytes in buffer

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 17468 of file midas.c.

2.37.1.4 intrb_get_rp (int handle, void «x p, int millisec)

Obtain the current read pointer at which new data is available with optional timeout

Parameters:
handle Ring buffer handle

millisec Optional timeout in milliseconds if buffer is full. Zero to not wait at all
(non-blocking)

+xp Address of pointer pointing to newly available data. If p == NULL, only
return status.

Returns:
DB_SUCCESS, DB_TIEMOUT, DB_INVALID_HANDLE

Definition at line 17352 of file midas.c.

Referenced by receive_trigger_event().

2.37.15 intrb_get_wp (int handle, void «x p, int millisec)
Retrieve write pointer where new data can be written

Parameters:
handle Ring buffer handle

millisec Optional timeout in milliseconds if buffer is full. Zero to not wait at all
(non-blocking)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.37 Midas Ring Buffer Functions (rb_xxx) 163

*xp Write pointer

Returns:
DB_SUCCESS, DB_TIMEOUT, DB_INVALID_HANDLE

Definition at line 17214 of file midas.c.

Referenced by interrupt_routine(), and readout_thread().

2.37.1.6 intrb_increment_rp (int handle, int size)
Increment current read pointer, freeing up space for the writing thread.

Parameters:
handle Ring buffer handle

size Number of bytes to free up at current read pointer

Returns:
DB_SUCCESS, DB_INVALID_PARAM

Definition at line 17414 of file midas.c.

Referenced by receive_trigger_event().

2.37.1.7 intrb_increment_wp (int handle, int size)
rb_increment_wp
Increment current write pointer, making the data at the write pointer available to the

receiving thread

Parameters:
handle Ring buffer handle

size Number of bytes placed at the WP

Returns:
DB_SUCCESS, DB_INVALID_PARAM, DB_INVALID HANDLE

Definition at line 17290 of file midas.c.

Referenced by interrupt_routine(), and readout_thread().

2.37.1.8 intrb_set nonblocking ()

Set all rb_get_xx to nonblocking. Needed in multi-thread environments for stopping
all theads without deadlock

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.38 System Functions (ss_Xxx) 164

Returns:
DB_SUCCESS

Definition at line 17083 of file midas.c.

Referenced by main().

2.38 System Functions (ss_xxx)

Functions

e INT ss_system (char xcommand)

* midas_thread_t ss_thread_create (INT(xthread_func)(void %), void *param)
INT ss_thread_kill (midas_thread_t thread_id)

DWORD ss_millitime ()

DWORD ss_time ()

o INT ss_sleep (INT millisec)

2.38.1 Function Documentation

2.38.1.1 DWORD ss_millitime ()

Returns the actual time in milliseconds with an arbitrary origin. This time may only be
used to calculate relative times.

Overruns in the 32 bit value don’t hurt since in a subtraction calculated with 32 bit
accuracy this overrun cancels (you may think about!)..

DWORD start, stop:
start = ss_millitime();
< do operations >
stop = ss_millitime();
printf('Operation took %1.3If seconds\n", (stop-start)/1000.0);

Returns:
millisecond time stamp.

Definition at line 2174 of file system.c.

Referenced by bm_check_buffers(), bm_open_buffer(), close_buffers(), cm_cleanup(),
cm_get_watchdog_info(), cm_set_watchdog_params(), cm_shutdown(), db_open_-
database(), dm_buffer_create(), register_equipment(), sc_thread(), scan_fragment(),
scheduler(), send_event(), and tr_stop().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.38 System Functions (ss_Xxx) 165

2.38.1.2 INT ss_sleep (INT millisec)
Suspend the calling process for a certain time.

The function is similar to the sleep() function, but has a resolution of one milliseconds.
Under VxWorks the resolution is 1/60 of a second. It uses the socket select() function
with a time-out. See examples in ss_time()

Parameters:
millisec Time in milliseconds to sleep. Zero means infinite (until another process
calls ss_wake)

Returns:
SS_SUCCESS

Definition at line 2406 of file system.c.

Referenced by cm_shutdown(), device_driver(), main(), rb_get_rp(), rb_get_wp(),
read_trigger_event(), readout_thread(), and register_equipment().

2.38.1.3 INT ss_system (char x+ command)

Execute command in a separate process, close all open file descriptors invoke ss_exec()
and ignore pid.

{ ...

char cmd[256];

sprintf(cmd,"%s %s %i %s/%s %1.31F %d", lazy.commandAfter,
lazy.backlabel, lazyst.nfiles, lazy.path, lazyst.backfile,
lazyst._file_size/1024.0/1024.0, blockn);

cm_msg(MINFO,"Lazy","Exec post file write script:%s",cmd);

ss_system(cmd) ;

}

Parameters:
command Command to execute.

Returns:
SS_SUCCESS or ss_exec() return code

Definition at line 1488 of file system.c.

Referenced by cm_transition().

2.38.1.4 midas_thread_t ss_thread_create (INT(x)(void =) thread_func, void x
param)

Creates and returns a new thread of execution.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.38 System Functions (ss_Xxx) 166

Note the difference when calling from vxWorks versus Linux and Windows. The pa-
rameter pointer for a vxWorks call is a VX_TASK_SPAWN structure, whereas for
Linux and Windows it is a void pointer. Early versions returned SS_SUCCESS or
SS_NO_THREAD instead of thread ID.

Example for VxWorks

VX_TASK_SPAWN tsWatch = {"Watchdog'", 100, 0, 2000, (int) pDevice, 0O, O, O, O, O, O, O, O ,0};
midas_thread_t thread_id = ss_thread_create((void *) taskWatch, &tsWatch);
if (thread_id == 0) {
printf(**cannot spawn taskWatch\n');
3

Example for Linux

midas_thread_t thread_id = ss_thread_create((void *) taskWatch, pDevice);
if (thread_id == 0) {

printf(*'cannot spawn taskWatch\n');
}

Parameters:
(xthread_func) Thread function to create.

param a pointer to a VX_TASK_SPAWN structure for vxWorks and a void
pointer for Unix and Windows

Returns:
the new thread id or zero on error

Definition at line 1614 of file system.c.

Referenced by device_driver(), dm_buffer_create(), and register_equipment().

2.38.1.5 INT ss_thread_kill (midas_thread_t thread_id)

Destroys the thread identified by the passed thread id. The thread id is returned by
ss_thread_create() on creation.

midas_thread_t thread_id = ss_thread_create((void *) taskWatch, pDevice);
if (thread_id == 0) {

printf(*'cannot spawn taskWatch\n');
}

ss_thread_Kill(thread id):

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.39 The msystem.h & system.c 167

Parameters:
thread_id the thread id of the thread to be killed.

Returns:
SS_SUCCESS if no error, else SS_NO_THREAD
Definition at line 1688 of file system.c.

Referenced by device_driver().

2.38.1.6 DWORD ss_time ()

Returns the actual time in seconds since 1.1.1970 UTC.

DWORD start, stop:
start = ss_time();
ss_sleep(12000);
stop = ss_time();
printf(*'Operation took %1.3I1f seconds\n",stop-start);

Returns:
Time in seconds

Definition at line 2241 of file system.c.

Referenced by al_trigger_alarm(), bm_compose_event(), cm_synchronize(), cm_-
time(), cm_yield(), db_get_key_time(), db_set_data(), db_set_data_index(), db_set_-
value(), scheduler(), and send_event().

2.39 Themsystem.h & system.c

Modules

* group System Functions (ss_xxx)

* group System Define

* group System Macros

* group System Structure Declaration

2.40 System Defi ne

Defines

e #define DRI_16 (1<<0)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.40 System Define

168

#define DRI_32 (1<<1)

#define DRI_64 (1<<2)

#define DRI_LITTLE_ENDIAN (1<<3)
#define DRI_BIG_ENDIAN (1<<4)

e #define DRF_IEEE (1<<5)

#define DRF_G_FLOAT (1<<6)

#define DR_ASCII (1<<7)

2.40.1 Define Documentation

2.40.1.1 #define DR_ASCII (1<<7)

Definition at line 55 of file msystem.h.

2.40.1.2 #define DRF_G_FLOAT (1<<6)

Definition at line 54 of file msystem.h.

2.40.1.3 #define DRF_IEEE (1<<5)

Definition at line 53 of file msystem.h.

2.40.1.4 #define DRI_16 (1<<0)

Definition at line 48 of file msystem.h.

2.40.1.5 #define DRI_32 (1<<1)

Definition at line 49 of file msystem.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.41 System Macros 169

2.40.1.6 #define DRI_64 (1<<2)

Definition at line 50 of file msystem.h.

2.40.1.7 #define DRI_BIG_ENDIAN (1<<4)

Definition at line 52 of file msystem.h.

2.40.1.8 #define DRI_LITTLE_ENDIAN (1<<3)

Definition at line 51 of file msystem.h.

241 System Macros
Defines

« #define WORD_SWAP(x)
« #define DWORD_SWAP(x)
« #define QWORD_SWAP(x)

2.41.1 Define Documentation

2.41.1.1 #define DIWORD_SWAP(x)

Value:

{ BYTE _tmp; \
_tmp= *((BYTE *)(X));
*((BYTE) (X)) = *(((BYTE *)(X))+3);
*(((BYTE *)(x))+3) = _tmp;
_tmp= *(((BYTE *)(x))+1);
*((BYTE *)())+1) = *(((BYTE *)(x))+2);
*(((BYTE *)(x))+2) = _tmp; }

e

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.42 System Structure Declaration 170

SWAP DWORD macro
Definition at line 75 of file msystem.h.

Referenced by bk_swap().

2.41.1.2 #define QWORD_SWAP(x)

Value:

{ BYTE _tmp; \
_tmp= *((BYTE *)(X)); \
*((BYTE *) (X)) = *(((BYTE *)(X))+7); \
*(((BYTE *)(x))+7) = _tmp; \
_tmp= *(((BYTE *)(xX))+1); \
*(((BYTE *)(x))+1) = *(((BYTE *)())+6); \
*(((BYTE *)(x))+6) = _tmp; \
_tmp= *(((BYTE *)(X))+2); \
*(((BYTE *)(x))+2) = *(((BYTE *)())+5); \
*(((BYTE *)(x))+5) = _tmp; \
_tmp= *(((BYTE *)(xX))+3); \
*(((BYTE *)(x))+3) = *(((BYTE *)())+4);5 \
*(((BYTE *)(x))+4) = _tmp; }

SWAP QWORD macro

Definition at line 85 of file msystem.h.

Referenced by bk_swap().

2.41.1.3 #define WORD_SWAP(X)

Value:

{ BYTE _tmp; \
_tmp= *((BYTE *)(X)); \
*((BYTE *)(x)) = *(((BYTE *)(X))+1) \
*(((BYTE *)(x))+1) = _tmp; }

SWAP WORD macro

Definition at line 68 of file msystem.h.
Referenced by bk_swap().

2.42 System Structure Declaration

Data Structures

¢ struct FREE_DESCRIP

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.43

The mrpc.h & mrpc.c

171

struct OPEN_RECORD
struct DATABASE_CLIENT
struct DATABASE_HEADER
struct DATABASE

struct RECORD_LIST

struct REQUEST_LIST

243 Themrpc.h & mrpc.c

Modules

* group RPC Define
e group Midas RPC_LIST

2.44 RPC De€fi ne

Defines

#define RPC_CM_SET_CLIENT_INFO 11000

#define RPC_CM_SET_WATCHDOG_PARAMS 11001
#define RPC_CM_CLEANUP 11002

#define RPC_CM_GET_WATCHDOG_INFO 11003
#define RPC_CM_MSG_LOG 11004

#define RPC_CM_EXECUTE 11005

#define RPC_CM_SYNCHRONIZE 11006

#define RPC_CM_ASCTIME 11007

#define RPC_CM_TIME 11008

#define RPC_CM_MSG 11009

#define RPC_CM_EXIST 11011

#define RPC_CM_MSG_RETRIEVE 11012

#define RPC_CM_MSG_LOGI 11013

#define RPC_BM_OPEN_BUFFER 11100

#define RPC_BM_CLOSE_BUFFER 11101

#define RPC_BM_CLOSE_ALL_BUFFERS 11102
#define RPC_BM_GET_BUFFER_INFO 11103
#define RPC_BM_GET_BUFFER_LEVEL 11104
#define RPC_BM_INIT_BUFFER_COUNTERS 11105
#define RPC_BM_SET_CACHE_SIZE 11106

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 172

¢ #define RPC_BM_ADD_EVENT_REQUEST 11107
¢ #define RPC_BM_REMOVE_EVENT_REQUEST 11108
¢ #define RPC_BM_SEND_EVENT 11109

e #define RPC_BM_FLUSH_CACHE 11110
 #define RPC_BM_RECEIVE_EVENT 11111

¢ #define RPC_BM_MARK_READ_WAITING 11112
¢ #define RPC_BM_EMPTY_BUFFERS 11113
 #define RPC_BM_SKIP_EVENT 11114

¢ #define RPC_DB_OPEN_DATABASE 11200

* #define RPC_DB_CLOSE_DATABASE 11201

* #define RPC_DB_CLOSE_ALL_DATABASES 11202
¢ #define RPC_DB_CREATE_KEY 11203

 #define RPC_DB_CREATE_LINK 11204

¢ #define RPC_DB_SET_VALUE 11205

e #define RPC_DB_GET_VALUE 11206

* #define RPC_DB_FIND_KEY 11207

¢ #define RPC_DB_FIND_LINK 11208

* #define RPC_DB_GET _PATH 11209

* #define RPC_DB_DELETE_KEY 11210

e #define RPC_DB_ENUM_KEY 11211

 #define RPC_DB_GET_KEY 11212

¢ #define RPC_DB_GET_DATA 11213

* #define RPC_DB_SET_DATA 11214

 #define RPC_DB_SET_DATA_INDEX 11215

¢ #define RPC_DB_SET_MODE 11216

* #define RPC_DB_GET_RECORD_SIZE 11219

e #define RPC_DB_GET_RECORD 11220

¢ #define RPC_DB_SET_RECORD 11221

 #define RPC_DB_ADD_OPEN_RECORD 11222

¢ #define RPC_DB_REMOVE_OPEN_RECORD 11223
* #define RPC_DB_SAVE 11224

 #define RPC_DB_LOAD 11225

* #define RPC_DB_SET_CLIENT_NAME 11226

* #define RPC_DB_RENAME_KEY 11227

 #define RPC_DB_ENUM_LINK 11228

¢ #define RPC_DB_REORDER_KEY 11229

* #define RPC_DB_CREATE_RECORD 11230

* #define RPC_DB_GET_DATA_INDEX 11231

¢ #define RPC_DB_GET_KEY_TIME 11232
 #define RPC_DB_GET_OPEN_RECORDS 11233

¢ #define RPC_DB_FLUSH_DATABASE 11235

* #define RPC_DB_SET_DATA_INDEX2 11236

* #define RPC_DB_GET_KEY_INFO 11237

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 173

¢ #define RPC_DB_GET_DATAL1 11238

¢ #define RPC_DB_SET_NUM_VALUES 11239
¢ #define RPC_DB_CHECK_RECORD 11240
¢ #define RPC_DB_GET_NEXT_LINK 11241
e #define RPC_HS_SET_PATH 11300

¢ #define RPC_HS_DEFINE_EVENT 11301

¢ #define RPC_HS_WRITE_EVENT 11302

¢ #define RPC_HS_COUNT_EVENTS 11303
* #define RPC_HS_ENUM_EVENTS 11304

* #define RPC_HS_COUNT_VARS 11305

* #define RPC_HS_ENUM_VARS 11306
 #define RPC_HS_READ 11307

* #define RPC_HS_GET_VAR 11308

* #define RPC_HS_GET_EVENT_ID 11309
 #define RPC_EL_SUBMIT 11400

 #define RPC_AL_CHECK 11500

 #define RPC_AL_TRIGGER_ALARM 11501
 #define RPC_RC_TRANSITION 12000

* #define RPC_ANA_CLEAR_HISTOS 13000
* #define RPC_LOG_REWIND 14000

* #define RPC_TEST 15000

* #define RPC_CNAF16 16000

* #define RPC_CNAF24 16001

* #define RPC_MANUAL_TRIG 17000

¢ #define RPC_ID_WATCHDOG 99997

¢ #define RPC_ID_SHUTDOWN 99998

¢ #define RPC_ID_EXIT 99999

2.44.1 Define Documentation

2.44.1.1 #define RPC_AL_CHECK 11500

Definition at line 121 of file mrpc.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 174

2.44.1.2 #define RPC_AL_TRIGGER_ALARM 11501

Definition at line 122 of file mrpc.h.

Referenced by al_trigger_alarm().

2.44.1.3 #define RPC_ANA_CLEAR_HISTOS 13000

Definition at line 126 of file mrpc.h.

24414 #define RPC_BM_ADD_EVENT_REQUEST 11107

Definition at line 59 of file mrpc.h.

2.44.15 #define RPC_BM_CLOSE_ALL_BUFFERS 11102

Definition at line 54 of file mrpc.h.
Referenced by bm_close_all_buffers().

2.44.1.6 #define RPC_BM_CLOSE_BUFFER 11101

Definition at line 53 of file mrpc.h.
Referenced by bm_close_buffer().

2.44.1.7 #define RPC_BM_EMPTY_BUFFERS 11113

Definition at line 65 of file mrpc.h.
Referenced by bm_empty_buffers().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 175

2.44.1.8 #define RPC_BM_FLUSH_CACHE 11110

Definition at line 62 of file mrpc.h.
Referenced by bm_flush_cache().

2.44.19 #define RPC_BM_GET_BUFFER_INFO 11103

Definition at line 55 of file mrpc.h.

2.44.1.10 #define RPC_BM_GET_BUFFER_LEVEL 11104

Definition at line 56 of file mrpc.h.

2.44.1.11 #define RPC_BM_INIT_BUFFER_COUNTERS 11105

Definition at line 57 of file mrpc.h.

2.44.1.12 #define RPC_BM_MARK_READ_WAITING 11112

Definition at line 64 of file mrpc.h.

2.44.1.13 #define RPC_BM_OPEN_BUFFER 11100

Definition at line 52 of file mrpc.h.
Referenced by bm_open_buffer().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 176

2.44.1.14 #define RPC_BM_RECEIVE_EVENT 11111

Definition at line 63 of file mrpc.h.

Referenced by bm_receive_event().

2.44.1.15 #define RPC_BM_REMOVE_EVENT_REQUEST 11108

Definition at line 60 of file mrpc.h.

Referenced by bm_remove_event_request().

2.44.1.16 #define RPC_BM_SEND_EVENT 11109

Definition at line 61 of file mrpc.h.

Referenced by bm_send_event(), and rpc_send_event().

2.44.1.17 #define RPC_BM_SET_CACHE_SIZE 11106

Definition at line 58 of file mrpc.h.

Referenced by bm_set_cache_size().

2.44.1.18 #define RPC_BM_SKIP_EVENT 11114

Definition at line 66 of file mrpc.h.

Referenced by bm_skip_event().

2.44.1.19 #define RPC_CM_ASCTIME 11007

Definition at line 45 of file mrpc.h.

Referenced by cm_asctime().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 177

2.44.1.20 #define RPC_CM_CLEANUP 11002

Definition at line 40 of file mrpc.h.

Referenced by cm_cleanup().

2.44.1.21 #define RPC_CM_EXECUTE 11005

Definition at line 43 of file mrpc.h.

Referenced by cm_execute().

2.44.1.22 #define RPC_CM_EXIST 11011

Definition at line 48 of file mrpc.h.

Referenced by cm_exist().

2.44.1.23 #define RPC_CM_GET_WATCHDOG_INFO 11003

Definition at line 41 of file mrpc.h.

Referenced by cm_get_watchdog_info().

2.44.1.24 #define RPC_CM_MSG 11009

Definition at line 47 of file mrpc.h.

2.44.1.25 #define RPC_CM_MSG_LOG 11004

Definition at line 42 of file mrpc.h.
Referenced by cm_msg_log().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 178

2.44.1.26 #define RPC_CM_MSG_LOG1 11013

Definition at line 50 of file mrpc.h.
Referenced by cm_msg_log1().

2.44.1.27 #define RPC_CM_MSG_RETRIEVE 11012

Definition at line 49 of file mrpc.h.

Referenced by cm_msg_retrieve().

2.44.1.28 #define RPC_CM_SET_CLIENT_INFO 11000

Definition at line 38 of file mrpc.h.

Referenced by cm_set_client_info().

2.44.1.29 #define RPC_CM_SET_WATCHDOG_PARAMS 11001

Definition at line 39 of file mrpc.h.

Referenced by cm_set_watchdog_params().

2.44.1.30 #define RPC_CM_SYNCHRONIZE 11006

Definition at line 44 of file mrpc.h.

Referenced by cm_synchronize().

2.44.1.31 #define RPC_CM_TIME 11008

Definition at line 46 of file mrpc.h.

Referenced by cm_time().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 179

2.44.1.32 #define RPC_CNAF16 16000

Definition at line 132 of file mrpc.h.

2.44.1.33 #define RPC_CNAF24 16001

Definition at line 133 of file mrpc.h.

2.44.1.34 #define RPC_DB_ADD_OPEN_RECORD 11222

Definition at line 88 of file mrpc.h.

2.44.1.35 #define RPC_DB_CHECK_RECORD 11240

Definition at line 105 of file mrpc.h.
Referenced by db_check_record().

2.44.1.36 #define RPC_DB_CLOSE_ALL_DATABASES 11202

Definition at line 70 of file mrpc.h.

2.44.1.37 #define RPC_DB_CLOSE_DATABASE 11201

Definition at line 69 of file mrpc.h.
Referenced by db_close_database().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 180

2.44.1.38 #define RPC_DB_CREATE_KEY 11203

Definition at line 71 of file mrpc.h.
Referenced by db_create_key().

2.44.1.39 #define RPC_DB_CREATE_LINK 11204

Definition at line 72 of file mrpc.h.
Referenced by db_create_link().

2.44.1.40 #define RPC_DB_CREATE_RECORD 11230

Definition at line 96 of file mrpc.h.
Referenced by db_create_record().

2.44.1.41 #define RPC_DB_DELETE_KEY 11210

Definition at line 78 of file mrpc.h.
Referenced by db_delete_key().

2.44.1.42 #define RPC_DB_ENUM_KEY 11211

Definition at line 79 of file mrpc.h.

Referenced by db_enum_key().

2.44.1.43 #define RPC_DB_ENUM_LINK 11228

Definition at line 94 of file mrpc.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define

181

2.44.1.44 #define RPC_DB_FIND_KEY 11207

Definition at line 75 of file mrpc.h.
Referenced by db_find_key().

2.44.1.45 #define RPC_DB_FIND_LINK 11208

Definition at line 76 of file mrpc.h.

2.44.1.46 #define RPC_DB_FLUSH_DATABASE 11235

Definition at line 100 of file mrpc.h.

2.44.1.47 #define RPC_DB_GET_DATA 11213

Definition at line 81 of file mrpc.h.
Referenced by db_get_data().

2.44.1.48 #define RPC_DB_GET_DATAL 11238

Definition at line 103 of file mrpc.h.

2.44.1.49 #define RPC_DB_GET_DATA_INDEX 11231

Definition at line 97 of file mrpc.h.
Referenced by db_get_data_index().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 182

2.44.1.50 #define RPC_DB_GET_KEY 11212

Definition at line 80 of file mrpc.h.
Referenced by db_get_key().

2.44.151 #define RPC_DB_GET_KEY_INFO 11237

Definition at line 102 of file mrpc.h.
Referenced by db_get_key_info().

2.44.152 #define RPC_DB_GET_KEY_TIME 11232

Definition at line 98 of file mrpc.h.
Referenced by db_get_key_time().

2.44.153 #define RPC_DB_GET_NEXT_LINK 11241

Definition at line 106 of file mrpc.h.

2.44.1.54 #define RPC_DB_GET_OPEN_RECORDS 11233

Definition at line 99 of file mrpc.h.

2.44.1.55 #define RPC_DB_GET_PATH 11209

Definition at line 77 of file mrpc.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 183

2.44.1.56 #define RPC_DB_GET_RECORD 11220

Definition at line 86 of file mrpc.h.
Referenced by db_get_record().

2.44.1.57 #define RPC_DB_GET_RECORD_SIZE 11219

Definition at line 85 of file mrpc.h.
Referenced by db_get_record_size().

2.44.1.58 #define RPC_DB_GET_VALUE 11206

Definition at line 74 of file mrpc.h.
Referenced by db_get_value().

2.44.1.59 #define RPC_DB_LOAD 11225

Definition at line 91 of file mrpc.h.
Referenced by db_load().

2.44.1.60 #define RPC_DB_OPEN_DATABASE 11200

Definition at line 68 of file mrpc.h.

Referenced by db_open_database().

2.44.1.61 #define RPC_DB_REMOVE_OPEN_RECORD 11223

Definition at line 89 of file mrpc.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 184

2.44.1.62 #define RPC_DB_RENAME_KEY 11227

Definition at line 93 of file mrpc.h.

2.44.1.63 #define RPC_DB_REORDER_KEY 11229

Definition at line 95 of file mrpc.h.

2.44.1.64 #define RPC_DB_SAVE 11224

Definition at line 90 of file mrpc.h.
Referenced by db_save().

2.44.1.65 #define RPC_DB_SET_CLIENT_NAME 11226

Definition at line 92 of file mrpc.h.

2.44.1.66 #define RPC_DB_SET_DATA 11214

Definition at line 82 of file mrpc.h.
Referenced by db_set_data().

2.44.1.67 #define RPC_DB_SET DATA_INDEX 11215

Definition at line 83 of file mrpc.h.
Referenced by db_set_data_index().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 185

2.44.1.68 #define RPC_DB_SET_DATA_INDEX2 11236

Definition at line 101 of file mrpc.h.

2.44.1.69 #define RPC_DB_SET_MODE 11216

Definition at line 84 of file mrpc.h.

2.44.1.70 #define RPC_DB_SET_NUM_VALUES 11239

Definition at line 104 of file mrpc.h.

2.44.1.71 #define RPC_DB_SET_RECORD 11221

Definition at line 87 of file mrpc.h.
Referenced by db_set_record().

2.44.1.72 #define RPC_DB_SET_VALUE 11205

Definition at line 73 of file mrpc.h.
Referenced by db_set_value().

2.44.1.73 #define RPC_EL_SUBMIT 11400

Definition at line 119 of file mrpc.h.
Referenced by el_submit().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 186

2.44.1.74 #define RPC_HS_COUNT_EVENTS 11303

Definition at line 111 of file mrpc.h.

2.44.1.75 #define RPC_HS_COUNT_VARS 11305

Definition at line 113 of file mrpc.h.

2.44.1.76 #define RPC_HS_DEFINE_EVENT 11301

Definition at line 109 of file mrpc.h.

2.44.1.77 #define RPC_HS_ENUM_EVENTS 11304

Definition at line 112 of file mrpc.h.

2.44.1.78 #define RPC_HS_ENUM_VARS 11306

Definition at line 114 of file mrpc.h.

2.44.1.79 #define RPC_HS_GET_EVENT_ID 11309

Definition at line 117 of file mrpc.h.

2.44.1.80 #define RPC_HS_GET_VAR 11308

Definition at line 116 of file mrpc.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.44 RPC Define 187

2.44.1.81 #define RPC_HS_READ 11307

Definition at line 115 of file mrpc.h.

2.44.1.82 #define RPC_HS_SET_PATH 11300

Definition at line 108 of file mrpc.h.
Referenced by hs_set_path().

2.44.1.83 #define RPC_HS_WRITE_EVENT 11302

Definition at line 110 of file mrpc.h.

2.44.1.84 #define RPC_ID_EXIT 99999

Definition at line 139 of file mrpc.h.

2.44.1.85 #define RPC_ID_SHUTDOWN 99998

Definition at line 138 of file mrpc.h.

2.44.1.86 #define RPC_ID_WATCHDOG 99997

Definition at line 137 of file mrpc.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.45 Midas RPC_LIST 188

2.44.1.87 #define RPC_LOG_REWIND 14000

Definition at line 128 of file mrpc.h.

2.44.1.88 #define RPC_MANUAL_TRIG 17000

Definition at line 135 of file mrpc.h.

Referenced by register_equipment().

2.44.1.89 #define RPC_RC_TRANSITION 12000

Definition at line 124 of file mrpc.h.

Referenced by cm_register_transition(), and cm_transition().

2.44.1.90 #define RPC_TEST 15000

Definition at line 130 of file mrpc.h.

245 MidasRPC_LIST

Variables

o RPC_LIST rpc_list_library []
e RPC_LIST rpc_list_system []

2.45.1 Function Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.46 The odbh.c 189

2.45.1.1 RPC_LISTx rpc_get internal_list (INT flag)
Definition at line 1187 of file mrpc.c.

Referenced by cm_connect_experimentl(), rpc_register_client(), and rpc_register_-
functions().

2.45.2 Variable Documentation

2.45.2.1 RPC_LIST rpc_list_library[] [stati c]

rpc_list_library contains all MIDAS library functions and gets registerd whenever a
connection to the MIDAS server is established

Definition at line 44 of file mrpc.c.

24522 RPC_LIST rpc_list_system[] [stati c]

Initial value:

{
{RPC_ID_WATCHDOG, *id_watchdog",
{{0}}},

{RPC_ID_SHUTDOWN, *id_shutdown",
{{03}3}3,

{RPC_ID_EXIT, "id_exit",
{{0}}}.

{0}
}

rpc_list_system contains MIDAS system functions and gets registerd whenever a RPC
server is registered

Definition at line 1171 of file mrpc.c.

246 Theodb.c

Modules

* group Midas ODB Functions (db_xxx)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 190

2.47 Midas ODB Functions (db_xxx)
Functions

¢ INT db_open_database (char xdatabase_name, INT database_size, HNDLE
«hDB, char *client_name)

e INT db_close_database (HNDLE hDB)

e INT db_lock_database (HNDLE hDB)

¢ INT db_unlock_database (HNDLE hDB)

* INT db_protect_database (HNDLE hDB)

e INT db_create_key (HNDLE hDB, HNDLE hKey, char xkey_name, DWORD
type)

o INT db_create_link (HNDLE hDB, HNDLE hKey, char xlink_name, char
xdestination)

* INT db_delete_keyl (HNDLE hDB, HNDLE hKey, INT level, BOOL follow_-
links)

e INT db_delete_key (HNDLE hDB, HNDLE hKey, BOOL follow_links)

¢ INT db_find_key (HNDLE hDB, HNDLE hKey, char skey_name, HNDLE
xsubhKey)

¢ INT db_set_value (HNDLE hDB, HNDLE hKeyRoot, char xkey_name, void
xdata, INT data_size, INT num_values, DWORD type)

* INT db_get_value (HNDLE hDB, HNDLE hKeyRoot, char xkey_name, void
xdata, INT xbuf_size, DWORD type, BOOL create)

* INT db_enum_key (HNDLE hDB, HNDLE hKey, INT index, HNDLE
xsubkey_handle)

e INT db_get_key (HNDLE hDB, HNDLE hKey, KEY xkey)

e INT db_get_key_time (HNDLE hDB, HNDLE hKey, DWORD xdelta)

e INT db_get_key_info (HNDLE hDB, HNDLE hKey, char «name, INT name_-
size, INT xtype, INT snum_values, INT xitem_size)

¢ INT db_get_data (HNDLE hDB, HNDLE hKey, void *data, INT =xbuf_size,
DWORD type)

e INT db_get_data_index (HNDLE hDB, HNDLE hKey, void xdata, INT *buf_-
size, INT index, DWORD type)

* INT db_set_data (HNDLE hDB, HNDLE hKey, void *data, INT buf_size, INT
num_values, DWORD type)

* INT db_set_data_index (HNDLE hDB, HNDLE hKey, void *data, INT data_-
size, INT index, DWORD type)

¢ INT db_load (HNDLE hDB, HNDLE hKeyRoot, char xfilename, BOOL b-
Remote)

* INT db_copy (HNDLE hDB, HNDLE hKey, char xbuffer, INT xbuffer_size,
char xpath)

* INT db_paste (HNDLE hDB, HNDLE hKeyRoot, char xbuffer)

* INT db_paste_xml (HNDLE hDB, HNDLE hKeyRoot, char *buffer)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 191

* INT db_copy_xml (HNDLE hDB, HNDLE hKey, char *buffer, INT sbuffer_-
size)

¢ INT db_save (HNDLE hDB, HNDLE hKey, char *filename, BOOL bRemote)

e INT db_save_xml (HNDLE hDB, HNDLE hKey, char xfilename)

¢ INT db_save_struct (HNDLE hDB, HNDLE hKey, char xfile_name, char
xstruct_name, BOOL append)

e INT db_sprintf (char *string, void xdata, INT data_size, INT index, DWORD
type)

* INT db_get_record_size (HNDLE hDB, HNDLE hKey, INT align, INT xbuf_-
size)

e INT db_get_record (HNDLE hDB, HNDLE hKey, void «data, INT «buf_size,
INT align)

¢ INT db_set_record (HNDLE hDB, HNDLE hKey, void xdata, INT buf_size,
INT align)

e INT db_create_record (HNDLE hDB, HNDLE hKey, char xorig_key_name,
char xinit_str)

e INT db_check_record (HNDLE hDB, HNDLE hKey, char skeyname, char
xrec_str, BOOL correct)

* INT db_open_record (HNDLE hDB, HNDLE hKey, void *ptr, INT rec_size,
WORD access_mode, void(xdispatcher)(INT, INT, void *), void *xinfo)

¢ INT db_close_record (HNDLE hDB, HNDLE hKey)

e INT db_close_all_records ()

e INT db_update_record (INT hDB, INT hKey, int socket)

* INT db_send_changed_records ()

2.47.1 Function Documentation

2.47.1.1 INT db_check_record (HNDLE hDB, HNDLE hKey, char * keyname,
char x rec_str, BOOL correct)

This function ensures that a certain ODB subtree matches a given C structure, by
comparing the init_str with the current ODB structure. If the record does not exist
at all, it is created with the default values in init_str. If it does exist but does not
match the variables in init_str, the function returns an error if correct=FALSE or calls
db_create_record() if correct=TRUE.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.
keyname Name of key to search, can contain directories.

rec_str ASCII representation of ODB record in the format

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 192

correct If TRUE, correct ODB record if necessary

Returns:
DB_SUCCESS, DB_INVALID HANDLE, DB_NO_KEY, DB_STRUCT._-
MISMATCH

Definition at line 7462 of file odb.c.

Referenced by al_trigger_alarm(), cm_connect_experimentl(), and register_-
equipment().

2.47.1.2 INT db_close_all_records ()

Release local memory for open records. This routines is called by db_close_all_-
databases() and cm_disconnect_experiment()

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 7942 of file odb.c.

Referenced by cm_disconnect_experiment().

2.47.1.3 INT db_close_database (HNDLE hDB)

Close a database

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, RPC_NET_ERROR

Definition at line 1032 of file odb.c.

2.47.1.4 INT db_close_record (HNDLE hDB, HNDLE hKey)

Close a record previously opend with db_open_record.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 7905 of file odb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 193

2.47.1.5 INT db_copy (HNDLE hDB, HNDLE hKey, char * buffer, INT x
buffer_size, char x path)

Copy an ODB subtree in ASCII format to a buffer

This function converts the binary ODB contents to an ASCII. The function db_paste()
can be used to convert the ASCII representation back to binary ODB contents. The
functions db_load() and db_save() internally use db_copy() and db_paste(). This func-
tion converts the binary ODB contents to an ASCII representation of the form:

* For single value:

[ODB path]
key name = type : value

* For strings:

key name = STRING : [size] string contents

* For arrayes (type can be BYTE, SBYTE, CHAR, WORD, SHORT, DWORD,
INT, BOOL, FLOAT, DOUBLE, STRING or LINK):

key name = type[size] :
[0] valueO
[1] valuel
[2] value2

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
buffer ASCII buffer which receives ODB contents.
buffer_size Size of buffer, returns remaining space in buffer.
path Internal use only, must be empty ("").

Returns:
DB_SUCCESS, DB_TRUNCATED, DB_NO_MEMORY
Definition at line 4999 of file odb.c.

Referenced by db_create_record(), and db_save().

2.47.1.6 INT db_copy_xml (HNDLE hDB, HNDLE hKey, char = buffer, INT x
buffer_size)

Copy an ODB subtree in XML format to a buffer

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 194

hKey Handle for key where search starts, zero for root.
buffer ASCII buffer which receives ODB contents.
buffer_size Size of buffer, returns remaining space in buffer.

Returns:
DB_SUCCESS, DB_TRUNCATED, DB_NO_MEMORY

Definition at line 5708 of file odb.c.

2.47.1.7 INT db_create_key (HNDLE hDB, HNDLE hKey, char % key name,
DWORD type)

Create a new key in a database

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Key handle to start with, O for root
key_name Name of key in the form "/key/key/key"
type Type of key, one of TID_xxx (see Midas Data Types)

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_INVALID PARAM, DB_FULL,
DB_KEY_EXIST, DB_NO_ACCESS

Definition at line 1454 of file odb.c.

Referenced by db_create_record(), db_get_value(), db_paste(), db_paste_node(), db_-
set_value(), and register_equipment().

2.47.1.8 INT db_create link (HNDLE hDB, HNDLE hKey, char x link_name,
char x destination)

Create a link to a key or set the destination of and existing link.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Key handle to start with, O for root
link_name Name of key in the form "/key/key/key"
destination Destination of link in the form "/key/key/key"

Returns:

DB_SUCCESS, DB_INVALID_HANDLE, DB_FULL, DB_KEY_EXIST, DB_-
NO_ACCESS

Definition at line 1693 of file odb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 195

2.47.1.9 INT db_create_record (HNDLE hDB, HNDLE hKey, char x orig_key -
name, char = init_str)

Create a record. If a part of the record exists alreay, merge it with the init_str (use
values from the init_str only when they are not in the existing record).

This functions creates a ODB sub-tree according to an ASCII representation of that
tree. See db_copy() for a description. It can be used to create a sub-tree which exactly
matches a C structure. The sub-tree can then later mapped to the C structure ("hot-
link") via the function db_open_record().

If a sub-tree exists already which exactly matches the ASCII representation, it is not
modified. If part of the tree exists, it is merged with the ASCII representation where
the ODB values have priority, only values not present in the ODB are created with the
default values of the ASCII representation. It is therefore recommended that before
creating an ODB hot-link the function db_create_record() is called to insure that the
ODB tree and the C structure contain exactly the same values in the same order.

Following example creates a record under /Equipment/Trigger/Settings, opens a hot-
link between that record and a local C structure trigger_settings and registers a callback
function trigger_update() which gets called each time the record is changed.

struct {
INT levell;
INT level2;
} trigger_settings;
char *trigger_settings_str =
"[Settings]\n\
levell = INT : O\n\
level2 = INT : 0";
void trigger_update(INT hDB, INT hkey, void *info)

printf(""New levels: %d %d\n",
trigger_settings.levell,
trigger_settings.level2);

3
main()
{

HNDLE hDB, hkey;

char[128] info;

cm_get_experiment_database(&hDB, NULL);

db_create_record(hDB, 0, "/Equipment/Trigger", trigger_settings_str);

db_find_key(hDB, 0,"/Equipment/Trigger/Settings", &hkey);

db_open_record(hDB, hkey, &trigger_settings,
sizeof(trigger_settings), MODE_READ, trigger_update, info);

}
Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

orig_key name Name of key to search, can contain directories.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 196

init_str Initialization string in the format of the db_copy/db_save functions.

Returns:
DB_SUCCESS, DB_INVALID HANDLE, DB_FULL, DB_NO_ACCESS, DB_-
OPEN_RECORD

Definition at line 7292 of file odb.c.

Referenced by al_trigger_alarm(), analyzer_init(), cm_set_client_info(), db_check_-
record(), main(), register_equipment(), and tr_start().

2.47.1.10 INT db_delete_key (HNDLE hDB, HNDLE hKey, BOOL follow_links)

Delete a subtree in a database starting from a key (including this key).

status = db_find_link(hDB, 0, str, &hkey);
if (status != DB_SUCCESS)

cm_msg(MINFO,"my_delete™," "Cannot find key %s"™, str);
return;

}

status = db_delete_key(hDB, hkey, FALSE);
if (status != DB_SUCCESS)

cm_msg(MERROR, "my_delete™," "Cannot delete key %s", str);
return;

}

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey for key where search starts, zero for root.
follow_links Follow links when TRUE.

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_NO_ACCESS, DB_OPEN._-
RECORD

Definition at line 1893 of file odb.c.

Referenced by cm_deregister_transition(), cm_set_client_info(), and db_create_-
record().

2.47.1.11 INT db_delete_keyl (HNDLE hDB, HNDLE hKey, INT level, BOOL
follow_links)

Delete a subtree, using level information (only called internally by db_delete_key())

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 197

For Reeanatess:only.
hDB ODB handle obtained via cm_get_experiment_database().

hKey Key handle to start with, 0 for root
level Recursion level, must be zero when
follow_links Follow links when TRUE called from a user routine

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_OPEN_RECORD

Definition at line 1723 of file odb.c.
Referenced by cm_delete_client_info(), and db_delete_key().

2.47.1.12 INT db_enum_key (HNDLE hDB, HNDLE hKey, INT index, HNDLE
x subkey_handle)

Enumerate subkeys from a key, follow links.

hkey must correspond to a valid ODB directory. The index is usually incremented in a
loop until the last key is reached. Information about the sub-keys can be obtained with
db_get_key(). If a returned key is of type TID_KEY, it contains itself sub-keys. To
scan a whole ODB sub-tree, the function db_scan_tree() can be used.

INT i;
HNDLE hkey, hsubkey;
KEY key;

db_find_key(hdb, 0, "/Runinfo", &hkey);
for (i=0 ; ; i++)

db_enum_key(hdb, hkey, i, &hsubkey);
it ('hSubkey)
break; // end of list reached
// print key name
db_get_key(hdb, hkey, &key);
printf("%s\n", key.name);
3

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

index Subkey index, sould be initially 0, then incremented in each call until subh-
Key becomes zero and the function returns DB_NO_MORE_SUBKEYS

subkey_handle Handle of subkey which can be used in db_get_key() and
db_get_data()

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_NO_MORE_SUBKEYS

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 198

Definition at line 3157 of file odb.c.

Referenced by cm_connect_client(), cm_exist(), cm_set_client_info(), cm_-
shutdown(), cm_transition(), load_fragment(), logger_root(), and update_odb().

2.47.1.13 INT db_find_key (HNDLE hDB, HNDLE hKey, char * key_name, HN-
DLE * subhKey)

Returns key handle for a key with a specific name.

Keys can be accessed by their name including the directory or by a handle. A key
handle is an internal offset to the shared memory where the ODB lives and allows a
much faster access to a key than via its name.

The function db_find_key() must be used to convert a key name to a handle. Most other
database functions use this key handle in various operations.

HNDLE hkey, hsubkey;

// use full name, start from root

db_find_key(hDB, 0, "/Runinfo/Run number™, &hkey);
// start from subdirectory

db_find_key(hDB, 0, "/Runinfo", &hkey);
db_find_key(hdb, hkey, "Run number', &hsubkey);

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.
key name Name of key to search, can contain directories.

subhKey Returned handle of key, zero if key cannot be found.

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_NO_ACCESS, DB_NO_KEY

Definition at line 1926 of file odb.c.

Referenced by al_trigger_alarm(), analyzer_init(), cm_connect_client(), cm_-
deregister_transition(), cm_exist(), cm_get_client_info(), cm_msg_log(), cm_-
msg_logl(), cm_msg_retrieve(), cm_register_deferred_transition(), cm_register_-
transition(), cm_set_client_info(), cm_shutdown(), cm_transition(), db_check_-
record(), db_create_link(), db_create_record(), db_delete_keyl(), db_enum_key(),
db_get_value(), db_paste(), db_paste_xml(), db_set_value(), load_fragment(),
logger_root(), main(), register_equipment(), tr_start(), and update_odb().

2.47.1.14 INT db_get data (HNDLE hDB, HNDLE hKey, void * data, INT x
buf_size, DWORD type)

Get key data from a handle

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 199

The function returns single values or whole arrays which are contained in an ODB
key. Since the data buffer is of type void, no type checking can be performed by the
compiler. Therefore the type has to be explicitly supplied, which is checked against the
type stored in the ODB.

HNLDE hkey;

INT run_number, size;

// get key handle for run number

db_find_key(hDB, 0, "/Runinfo/Run number", &hkey);
// return run number

size = sizeof(run_number);

db_get_data(hDB, hkey, &run_number, &size,TID_INT);

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.
data Pointer to the return data.

buf_size Size of data buffer.

type Type of key, one of TID_xxx (see Midas Data Types).

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_TRUNCATED, DB_TYPE -
MISMATCH

Definition at line 3926 of file odb.c.

Referenced by cm_connect_client(), cm_get_client_info(), cm_set_client_info(), db_-
copy(), db_get_record(), db_save_xml_key(), and tr_start().

2.47.1.15 INT db_get data_index (HNDLE hDB, HNDLE hKey, void * data, INT
x buf_size, INT index, DWORD type)

returns a single value of keys containing arrays of values.

The function returns a single value of keys containing arrays of values.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.
data Size of data buffer.

buf size Return size of the record.

index Index of array [0..n-1].

type Type of key, one of TID_xxx (see Midas Data Types).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 200

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_TRUNCATED, DB_OUT_OF _-
RANGE

Definition at line 4152 of file odb.c.

Referenced by cm_transition().

2.47.1.16 INT db_get_key (HNDLE hDB, HNDLE hKey, KEY x key)
Get key structure from a handle.

KEY structure has following format:

typedef struct {

DWORD type; // TID_xxx type
INT num_values; // number of values
char name[NAME_LENGTH] ; // name of variable
INT data; // Address of variable (offset)
INT total_size; // Total size of data block
INT item_size; // Size of single data item
WORD access_mode; // Access mode
WORD notify_count; // Notify counter
INT next_key; // Address of next key
INT parent_keylist; // keylist to which this key belongs
INT last_written; // Time of last write action
} KEY;

Most of these values are used for internal purposes, the values which are of public
interest are type, num_values, and name. For keys which contain a single value, num_-
values equals to one and total_size equals to item_size. For keys which contain an
array of strings (TID_STRING), item_size equals to the length of one string.

KEY key;

HNDLE hkey;

db_find_key(hDB, 0, "/Runinfo/Run number", &hkey);
db_get_key(hDB, hkey, é&key);

printf("The run number is of type %s\n", rpc_tid_name(key.type));

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

key Pointer to KEY stucture.

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 3489 of file odb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 201

Referenced by cm_check_client(), cm_register_transition(), cm_shutdown(), cm_-
transition(), db_check_record(), db_copy(), db_get_record(), db_get_record_size(),
db_open_record(), db_paste(), db_save_struct(), db_save_xml_key(), db_set_record(),
load_fragment(), tr_start(), and update_odb().

2.47.1.17 INT db_get_key_info (HNDLE hDB, HNDLE hKey, char « name, INT
name_size, INT x type, INT x num_values, INT x item_size)

Get key info (separate values instead of structure)

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle of key to operate on

name Key name

name_size Size of the give name (done with sizeof())
type Key type (see Midas Data Types).

num_values Number of values in key.

item_size Size of individual key value (used for strings)

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 3611 of file odb.c.

2.47.1.18 INT db_get_key_time (HNDLE hDB, HNDLE hKey, DWORD x delta)

Get time when key was last modified

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle of key to operate on

delta Seconds since last update

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 3553 of file odb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 202

2.47.1.19 INT db_get record (HNDLE hDB, HNDLE hKey, void * data, INT x
buf_size, INT align)

Copy a set of keys to local memory.

An ODB sub-tree can be mapped to a C structure automatically via a hot-link using the
function db_open_record() or manually with this function. Problems might occur if the
ODB sub-tree contains values which don’t match the C structure. Although the struc-
ture size is checked against the sub-tree size, no checking can be done if the type and
order of the values in the structure are the same than those in the ODB sub-tree. There-
fore it is recommended to use the function db_create_record() before db_get_record()
is used which ensures that both are equivalent.

struct {
INT levell;
INT level2;
} trigger_settings;
char *trigger_settings_str =
"[Settings]\n\
levell = INT : O\n\
level2 = INT : 0";

main()

{
HNDLE hDB, hkey;
INT size;

cm_get_experiment_database(&hDB, NULL);

db_create_record(hDB, 0, "/Equipment/Trigger", trigger_settings_str);
db_find_key(hDB, 0, "/Equipment/Trigger/Settings", &hkey);

size = sizeof(trigger_settings);

db_get_record(hDB, hkey, &trigger_settings, &size, 0);

, ;
Parameters:

hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

data Pointer to the retrieved data.

buf size Size of data structure, must be obtained via sizeof(RECORD-NAME).

align Byte alignment calculated by the stub and passed to the rpc side to align
data according to local machine. Must be zero when called from user level.

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_STRUCT_SIZE_MISMATCH

Definition at line 6796 of file odb.c.

Referenced by al_trigger_alarm(), cm_transition(), db_open_record(), db_update_-
record(), register_equipment(), and tr_start().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 203

2.47.1.20 INT db_get record_size (HNDLE hDB, HNDLE hKey, INT align, INT
* buf_size)

Calculates the size of a record.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

align Byte alignment calculated by the stub and passed to the rpc side to align
data according to local machine. Must be zero when called from user level

buf_size Size of record structure

Returns:
DB_SUCCESS, DB_INVALID HANDLE, DB_TYPE_MISMATCH, DB_-
STRUCT_SIZE MISMATCH, DB_NO_KEY

Definition at line 6710 of file odb.c.
Referenced by db_get_record(), db_open_record(), and db_set_record().

2.47.1.21 INT db_get value (HNDLE hDB, HNDLE hKeyRoot, char * key name,
void * data, INT « buf_size, DIWORD type, BOOL create)

Get value of a single key.

The function returns single values or whole arrays which are contained in an ODB key.
Since the data buffer is of type void, no type checking can be performed by the com-
piler. Therefore the type has to be explicitly supplied, which is checked against the
type stored in the ODB. key_name can contain the full path of a key (like: "/Equip-
ment/Trigger/Settings/Levell") while hkey is zero which refers to the root, or hkey can
refer to a sub-directory (like: /Equipment/Trigger) and key_name is interpreted relative
to that directory like "Settings/Levell".

INT levell, size;
size = sizeof(levell);
db_get_value(hDB, 0, "/Equipment/Trigger/Settings/Levell",
&levell, &size, TID_INT, 0);

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKeyRoot Handle for key where search starts, zero for root.

key _name Name of key to search, can contain directories.

data Address of data.

buf_size Maximum buffer size on input, number of written bytes on return.

type Type of key, one of TID_xxx (see Midas Data Types)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 204

create If TRUE, create key if not existing

Returns:
DB_SUCCESS, DB_INVALID HANDLE, DB_NO_ACCESS, DB_TYPE -
MISMATCH, DB_TRUNCATED, DB_NO_KEY

Definition at line 2998 of file odb.c.

Referenced by al_trigger_alarm(), ana_end_of_run(), bm_open_buffer(), cm_check_-
client(), cm_connect_experimentl(), cm_exist(), cm_msg_log(), cm_msg_logl(),
cm_msg_retrieve(), cm_register_deferred_transition(), cm_set_client_info(), cm_-
shutdown(), cm_transition(), el_submit(), load_fragment(), logger_root(), main(),
register_equipment(), scheduler(), and tr_start().

2.47.1.22 INT db_load (HNDLE hDB, HNDLE hKeyRoot, char = filename,
BOOL bRemote)

Load a branch of a database from an .ODB file.

This function is used by the ODBEdit command load. For a description of the ASCII
format, see db_copy(). Data can be loaded relative to the root of the ODB (hkey equal
zero) or relative to a certain key.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKeyRoot Handle for key where search starts, zero for root.
filename Filename of .ODB file.

bRemote If TRUE, the file is loaded by the server process on the back-end, if
FALSE, it is loaded from the current process

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_FILE_ERROR

Definition at line 4914 of file odb.c.

2.47.1.23 INT db_lock_database (HNDLE hDB)

Lock a database for exclusive access via system mutex calls.

Parameters:
hDB Handle to the database to lock

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_TIMEOUT

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 205

Definition at line 1312 of file odb.c.

Referenced by cm_check_client(), cm_cleanup(), cm_delete_client_info(), cm_-
get_watchdog_info(), cm_set_client_info(), cm_set_watchdog_params(), db_close_-
database(), db_create_key(), db_create_record(), db_delete_key1(), db_enum_key(),
db_find_key(), db_get_data(), db_get_data_index(), db_get_key(), db_get_key_info(),
db_get_key_time(), db_get_record(), db_get_record_size(), db_get_value(), db_-
open_database(), db_set_data(), db_set_data_index(), db_set_record(), and db_set_-
value().

2.47.1.24 INT db_open_database (char x database_name, INT database_size,
HNDLE « hDB, char x client_name)

Open an online database

Parameters:
database_name Database name.

database_size Initial size of database if not existing
client_name Name of this application

hDB ODB handle obtained via cm_get_experiment_database().

Returns:
DB_SUCCESS, DB_CREATED, DB_INVALID_NAME, DB_NO_MEMORY,
DB_MEMSIZE MISMATCH, DB_NO_MUTEX, DB_INVALID PARAM,
RPC_NET_ERROR

Definition at line 719 of file odb.c.

Referenced by cm_connect_experiment]1().

2.47.1.25 INT db_open_record (HNDLE hDB, HNDLE hKey, void = ptr, INT
rec_size, WORD access_mode, void(x)(INT, INT, void =) dispatcher, void * info)

Open a record. Create a local copy and maintain an automatic update.

This function opens a hot-link between an ODB sub-tree and a local structure. The sub-
tree is copied to the structure automatically every time it is modified by someone else.
Additionally, a callback function can be declared which is called after the structure has
been updated. The callback function receives the database handle and the key handle
as parameters.

Problems might occur if the ODB sub-tree contains values which don’t match the C
structure. Although the structure size is checked against the sub-tree size, no checking
can be done if the type and order of the values in the structure are the same than those in
the ODB sub-tree. Therefore it is recommended to use the function db_create_record()
before db_open_record() is used which ensures that both are equivalent.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 206

The access mode might either be MODE_READ or MODE_WRITE. In read mode,
the ODB sub-tree is automatically copied to the local structure when modified by
other clients. In write mode, the local structure is copied to the ODB sub-tree if
it has been modified locally. This update has to be manually scheduled by calling
db_send_changed_records() periodically in the main loop. The system keeps a copy of
the local structure to determine if its contents has been changed.

If MODE_ALLOC is or’ed with the access mode, the memory for the structure is
allocated internally. The structure pointer must contain a pointer to a pointer to the
structure. The internal memory is released when db_close_record() is called.

* To open a record in write mode.

struct {

INT levell;

INT level2;
} trigger_settings;
char *trigger_settings_str =
"[Settings]\n\
levell = INT : O\n\
level2 = INT : 0";
main()
{

HNDLE hDB, hkey, i=0;

cm_get_experiment_database(&hDB, NULL);

db_create_record(hDB, 0, "/Equipment/Trigger", trigger_settings_str);

db_find_key(hDB, 0,"/Equipment/Trigger/Settings", &hkey);

db_open_record(hDB, hkey, &trigger_settings, sizeof(trigger_settings)
, MODE_WRITE, NULL);

do

{
trigger_settings.levell = i++;
db_send_changed_records()
status = cm_yield(1000);

} while (status !'= RPC_SHUTDOWN && status != SS_ABORT);

T
Parameters:
hDB ODB handle obtained via cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
ptr If access_mode includes MODE_ALLOC: Address of pointer which
points to the record data after the call if access_mode includes not
MODE_ALLOC: Address of record if ptr==NULL, only the dispatcher
is called.
rec_size Record size in bytes
access_mode Mode for opening record, either MODE_READ or MODE_-
WRITE. May be or’ed with MODE_ALLOC to let db_open_record al-
locate the memory for the record.
(xdispatcher) Function which gets called when record is updated.The argu-
ment list composed of: HNDLE hDB, HNDLE hKey, void *info

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 207

info Additional info passed to the dispatcher.

Returns:
DB_SUCCESS, DB_INVALID HANDLE, DB_NO_MEMORY, DB_-
NO_ACCESS, DB_STRUCT_SIZE_MISMATCH
Definition at line 7771 of file odb.c.

Referenced by analyzer_init(), cm_register_deferred_transition(), and register_-
equipment().

2.47.1.26 INT db_paste (HNDLE hDB, HNDLE hKeyRoot, char * buffer)
Copy an ODB subtree in ASCII format from a buffer

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKeyRoot Handle for key where search starts, zero for root.
buffer NULL-terminated buffer

Returns:
DB_SUCCESS, DB_TRUNCATED, DB_NO_MEMORY

Definition at line 5254 of file odb.c.
Referenced by db_create_record(), and db_load().

2.47.1.27 int db_paste node (HNDLE hDB, HNDLE hKeyRoot, PMXML -
NODE node)

Definition at line 5532 of file odb.c.
Referenced by db_paste_xml().

2.47.1.28 INT db_paste_xml (HNDLE hDB, HNDLE hKeyRoot, char * buffer)

Paste an ODB subtree in XML format from a buffer

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().
hKeyRoot Handle for key where search starts, zero for root.

buffer NULL-terminated buffer

Returns:
DB_SUCCESS, DB_INVALID_PARAM, DB_NO_MEMORY, DB_TYPE -
MISMATCH

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 208

Definition at line 5669 of file odb.c.
Referenced by db_load().

2.47.1.29 INT db_protect_database (HNDLE hDB)
Protect a database for read/write access outside of the db_xxx functions

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 1395 of file odb.c.

2.47.1.30 INT db_save (HNDLE hDB, HNDLE hKey, char x filename, BOOL
bRemote)

Save a branch of a database to an .ODB file

This function is used by the ODBEdit command save. For a description of the ASCII
format, see db_copy(). Data of the whole ODB can be saved (hkey equal zero) or only
a sub-tree.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.
filename Filename of .ODB file.

bRemote Flag for saving database on remote server.

Returns:
DB_SUCCESS, DB_FILE_ERROR

Definition at line 5885 of file odb.c.

2.47.1.31 INT db_save struct (HNDLE hDB, HNDLE hKey, char * file_name,
char x struct_name, BOOL append)

Save a branch of a database to a C structure .H file

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.

file_name Filename of .ODB file.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 209

struct_name Name of structure. If struct_name == NULL, the name of the key is
used.

append If TRUE, append to end of existing file

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_FILE_ERROR

Definition at line 6140 of file odb.c.

2.47.1.32 INT db_save_xml (HNDLE hDB, HNDLE hKey, char * filename)
Save a branch of a database to an .xml file

This function is used by the ODBEdit command save to write the contents of the ODB
into a XML file. Data of the whole ODB can be saved (hkey equal zero) or only a
sub-tree.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

filename Filename of .XML file.

Returns:
DB_SUCCESS, DB_FILE_ERROR

Definition at line 6087 of file odb.c.

2.47.1.33 INT db_save xml_key (HNDLE hDB, HNDLE hKey, INT level,
MXML_WRITER x* writer)

Definition at line 5984 of file odb.c.
Referenced by db_copy_xml(), and db_save_xml().

2.47.1.34 INT db_send_changed_records ()

Send all records to the ODB which were changed locally since the last call to this
function.

This function is valid if used in conjunction with db_open_record() under the condition
the record is open as MODE_WRITE access code.

* Full example dbchange.c which can be compiled as follow

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 210

gcc -DOS_LINUX -I1/midas/include -o dbchange dbchange.c
/midas/linux/lib/libmidas.a -lutil}

\begin{verbatim}
/)-—————- dbchange.c
#include "midas.h"
#include "msystem.h"

/) BOF dbchange.c
typedef struct {
INT my_number;

float my_rate;
} MY_STATISTICS;

MY_STATISTICS myrec;

#define MY_STATISTICS(_name) char *_name[] = {\
"My Number = INT : 0",\

"My Rate = FLOAT : 0",\

AN

NULL }

HNDLE hDB, hKey;

// Main
int main(unsigned int argc,char **argv)
{
char host_name[HOST_NAME_LENGTH] ;
char expt_name[HOST_NAME_LENGTH];
INT lastnumber, status, msg;
BOOL debug=FALSE;
char i, ch;
DWORD update_time, mainlast_time;

MY_STATISTICS (my_stat);

// set default
host_name[0] = O;
expt_name[0] = O;

// get default
cm_get_environment(host_name, sizeof(host_name), expt_name, sizeof(expt_name));

// get parameters
for (i=1 ; i<argc ; i++)

if (argv[i][0] == ”-" && argv[i][1] == °d”)
debug = TRUE;
else if (argv[i][0] == *-7)
{
if (i+l >= argc || argv[i+1][0] == *-7)
goto usage;
if (strncmp(argv[i]l,"-e",2) == 0)
strcpy(expt_name, argv[++i]);
else if (strncmp(argv[i],'-h",2)==0)
strcpy(host_name, argv[++i]);

else

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 211

{

usage:
printf("'usage: dbchange [-h <Hostname>] [-e <Experiment>]\n"");
return O;

b

}

// connect to experiment
status = cm_connect_experiment(host_name, expt_name, "dbchange', 0);
if (status !'= CM_SUCCESS)

return 1;

// Connect to DB
cm_get_experiment_database(&hDB, &hKey);

// Create a default structure in ODB
db_create_record(hDB, 0, "My statistics', strcomb(my_stat));

// Retrieve key for that strucutre in ODB
if (db_find_key(hDB, 0, "My statistics", &hKey) != DB_SUCCESS)
{
cm_msg(MERROR, *mychange', "‘cannot find My statistics");
goto error;

}

// Hot link this structure in Write mode
status = db_open_record(hDB, hKey, &myrec
, sizeof(MY_STATISTICS), MODE WRITE, NULL, NULL);
if (status != DB_SUCCESS)
{
cm_msg(MERROR, "mychange', '‘cannot open My statistics record");
goto error;

}

// initialize ss_getchar()
ss_getchar(0);

// Main loop
do
{
// Update local structure
it ((ss_millitime() - update_time) > 100)
{
myrec.my_number += 1;
if (nyrec.my_number - lastnumber) {
myrec.my_rate = 1000.F * (float) (myrec.my_number - lastnumber)
/ (float) (ss_millitime() - update_time);
s
update_time = ss_millitime();
lastnumber = myrec.my_number;

}

// Publish local structure to ODB (db_send_changed_record)
it ((ss_millitime() - mainlast_time) > 5000)

db_send_changed_records(); /) <——————- Call
mainlast_time = ss_millitime();

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 212

}

// Check for keyboard interaction
ch = 0;
while (ss_kbhit())
{
ch = ss_getchar(0);
if (ch == -1)
ch = getchar();
if ((char) ch == 71?)
break;
3

msg = cm_yield(20);
} while (msg !'= RPC_SHUTDOWN && msg != SS_ABORT && ch 1= ”17);

error:
cm_disconnect_experiment();
return 1;

[/———————- EOF dbchange.c

Returns:
DB_SUCCESS

Definition at line 8185 of file odb.c.

Referenced by scan_fragment(), scheduler(), and tr_stop().

2.47.1.35 INT db_set data (HNDLE hDB, HNDLE hKey, void * data, INT buf_-
size, INT num_values, DWORD type)

Set key data from a handle. Adjust number of values if previous data has different size.

HNLDE hkey;

INT run_number;

// get key handle for run number

db_find_key(hDB, 0, "/Runinfo/Run number", &hkey);

// set run number

db_set_data(hDB, hkey, &run_number, sizeof(run_number),TID_INT);

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.
data Buffer from which data gets copied to.

buf size Size of data buffer.

num_values Number of data values (for arrays).

type Type of key, one of TID_xxx (see Midas Data Types).

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_TRUNCATED

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 213

Definition at line 4279 of file odb.c.
Referenced by db_paste(), db_paste_node(), db_set_record(), and update_odb().

2.47.1.36 INT db_set_data_index (HNDLE hDB, HNDLE hKey, void * data, INT
data_size, INT index, DWORD type)

Set key data for a key which contains an array of values.

This function sets individual values of a key containing an array. If the index is larger
than the array size, the array is extended and the intermediate values are set to zero.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.
data Pointer to single value of data.

data_size

index Size of single data element.

type Type of key, one of TID_xxx (see Midas Data Types).

Returns:
DB_SUCCESS, DB_INVALID HANDLE, DB_NO_ACCESS, DB_TYPE -
MISMATCH

Definition at line 4503 of file odb.c.

Referenced by cm_register_transition(), and db_paste_node().

2.47.1.37 INT db_set_record (HNDLE hDB, HNDLE hKey, void * data, INT
buf_size, INT align)

Copy a set of keys from local memory to the database.

An ODB sub-tree can be mapped to a C structure automatically via a hot-link using
the function db_open_record() or manually with this function. Problems might occur
if the ODB sub-tree contains values which don’t match the C structure. Although the
structure size is checked against the sub-tree size, no checking can be done if the type
and order of the values in the structure are the same than those in the ODB sub-tree.
Therefore it is recommended to use the function db_create_record() before using this
function.

memset(&lazyst,0,size);

if (db_find_key(hDB, pLch->hKey, "Statistics",&hKeyst) == DB_SUCCESS)
status = db_set _record(hDB, hKeyst, &lazyst, size, 0);

else
cm_msg(MERROR, ""task',"record %s/statistics not found", pLch->name)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 214

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.
data Pointer where data is stored.
buf_size Size of data structure, must be obtained via sizeof(RECORD-NAME).

align Byte alignment calculated by the stub and passed to the rpc side to align
data according to local machine. Must be zero when called from user level.

Returns:
DB_SUCCESS, DB_INVALID_HANDLE, DB_TYPE_MISMATCH, DB_-
STRUCT_SIZE _MISMATCH

Definition at line 6900 of file odb.c.

Referenced by al_trigger_alarm(), db_open_record(), db_send_changed_records(),
register_equipment(), and update_odb().

2.47.1.38 INT db_set value (HNDLE hDB, HNDLE hKeyRoot, char * key_name,
void * data, INT data_size, INT num_values, DWORD type)

Set value of a single key.

The function sets a single value or a whole array to a ODB key. Since the
data buffer is of type void, no type checking can be performed by the compiler.
Therefore the type has to be explicitly supplied, which is checked against the type
stored in the ODB. key_name can contain the full path of a key (like: "/Equip-
ment/Trigger/Settings/Levell") while hkey is zero which refers to the root, or hkey can
refer to a sub-directory (like /Equipment/Trigger) and key_name is interpreted relative
to that directory like "Settings/Levell".

INT levell;
db_set_value(hDB, 0, "/Equipment/Trigger/Settings/Levell",
&levell, sizeof(levell), 1, TID_INT);

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKeyRoot Handle for key where search starts, zero for root.
key_name Name of key to search, can contain directories.
data Address of data.

data_size Size of data (in bytes).

num_values Number of data elements.

type Type of key, one of TID_xxx (see Midas Data Types)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 215

Returns:
DB_SUCCESS, DB_INVALID HANDLE, DB_NO_ACCESS, DB_TYPE -
MISMATCH

Definition at line 2865 of file odb.c.

Referenced by al_trigger_alarm(), cm_connect_experimentl(), cm_delete_client_-
info(), cm_register_deferred_transition(), cm_register_transition(), cm_set_client_-
info(), cm_set_transition_sequence(), cm_set_watchdog_params(), cm_transition(),
db_create_link(), db_get_value(), register_equipment(), tr_start(), and update_odb().

2.47.1.39 INT db_sprintf (char = string, void = data, INT data_size, INT index,
DWORD type)

Convert a database value to a string according to its type.

This function is a convenient way to convert a binary ODB value into a string depending
on its type if is not known at compile time. If it is known, the normal sprintf() function
can be used.

-%or =0 ; j<key.num_values ; j++)

{
db_sprintf(pbuf, pdata, key.item_size, j, key.type);
strcat(pbuf, "\n");

}

Parameters:
string output ASCII string of data.

data Value data.

data_size Size of single data element.

index Index for array data.

type Type of key, one of TID_xxx (see Midas Data Types).

Returns:
DB_SUCCESS

Definition at line 6314 of file odb.c.
Referenced by db_copy(), and db_save_xml_key().

2.47.1.40 INT db_unlock_database (HNDLE hDB)

Unlock a database via system mutex calls.

Parameters:
hDB Handle to the database to unlock

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

2.47 Midas ODB Functions (db_xxx) 216

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 1366 of file odb.c.

Referenced by cm_check_client(), cm_cleanup(), cm_delete_client_info(), cm_-
get_watchdog_info(), cm_set_client_info(), cm_set_watchdog_params(), db_close_-
database(), db_create_key(), db_create_record(), db_delete_key1(), db_enum_key(),
db_find_key(), db_get_data(), db_get_data_index(), db_get_key(), db_get_key_info(),
db_get_key_time(), db_get_record(), db_get_record_size(), db_get_value(), db_-
open_database(), db_set_data(), db_set_data_index(), db_set_record(), and db_set_-
value().

2.47.1.41 INT db_update_record (INT hDB, INT hKey, int socket)

If called locally, update a record (hDB/hKey) and copy its new contents to the local
copy of it.

If called from a server, send a network notification to the client.

Parameters:
hDB ODB handle obtained via cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

socket optional server socket

Returns:
DB_SUCCESS, DB_INVALID_HANDLE

Definition at line 7977 of file odb.c.

2.47.1.42 BOOL equal_ustring (char = strl, char x str2)
Definition at line 1424 of file odb.c.

Referenced by bm_open_buffer(), cm_connect_client(), cm_connect_experiment1(),
cm_exist(), cm_get_watchdog_info(), cm_list_experiments(), cm_set_client_info(),
cm_shutdown(), db_check_record(), db_create_key(), db_find_key(), db_open_-
database(), db_paste(), db_paste_node(), logger_root(), and register_equipment().

2.47.1.43 charx extract_key (char « key_list, char * key_name)
Definition at line 1412 of file odb.c.
Referenced by db_create_key(), and db_find_key().

2.47.1.44 void xml_encode (char * src, int size)
Definition at line 5941 of file odb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

3 Midas Directory Documentation 217

3 MidasDirectory Documentation

3.1 /home/dagweb/midas/driverscamac/ Directory Reference

Files

¢ file esone.c

3.2 /home/dagweb/midas/examples/custom/ Directory Reference

Files

* file myexpt.html
* file xcustom.odb

3.3 /home/dagweb/midas/drivers Directory Reference

Directories

* directorycamac

3.4 /home/dagweb/midas/examples/eventbuilder/ Directory Refer-
ence

Files

« file ebuser.c
¢ file mevb.c

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

3.5 /home/dagweb/midas/examples/ Directory Reference 218

3.5 /home/dagweb/midas/examples/ Directory Reference
Directories

* directorycustom
* directoryeventbuilder
* directoryexperiment

3.6 /home/dagweb/midas/examples/experiment/ Directory Refer-
ence

Files

e file adccalib.c
* file adcsum.c
* file analyzer.c
* file experim.h
* file frontend.c
e file scaler.c

3.7 /home/dagweb/midas/include/ Directory Reference

Files

* file mcstd.h

* file midas.h

* file mrpc.h

* file msystem.h
* file mvmestd.h
* file ybos.h

3.8 /home/dagweb/midas/src/ Directory Reference

Files

¢ file mfe.c

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4 Midas Data Structure Documentation 219

* file midas.c
* file mrpc.c
* file odb.c

* file system.c
* file ybos.c

4 Midas Data Structure Documentation

41 ADC_CALIBRATION_PARAM Struct Reference

4.1.1 Field Documentation

4.1.1.1 double ADC_CALIBRATION_PARAM::histo_threshold
Definition at line 43 of file experim.h.

Referenced by adc_calib().

4.1.1.2 INT ADC_CALIBRATION_PARAM::pedestal[8]
Definition at line 41 of file experim.h.

Referenced by adc_calib().

4.1.1.3 float ADC_CALIBRATION_PARAM::software_gain[8]
Definition at line 42 of file experim.h.

Referenced by adc_calib().

4.2 ADC_SUMMING_PARAM Struct Reference

4.2.1 Field Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.3 ALARM Struct Reference 220

4.2.1.1 float ADC_SUMMING_PARAM::adc_threshold
Definition at line 77 of file experim.h.

Referenced by adc_summing().

4.3 ALARM Struct Reference
4.3.1 Detailed Description

Alarm structure

Definition at line 1299 of file midas.h.

4.3.2 Field Documentation

4.3.2.1 BOOL ALARM::active
Definition at line 1300 of file midas.h.

Referenced by al_trigger_alarm().

4.3.2.2 char ALARM::alarm_class[32]
Definition at line 1308 of file midas.h.

Referenced by al_trigger_alarm().

4.3.2.3 char ALARM::alarm_message[80]
Definition at line 1309 of file midas.h.

Referenced by al_trigger_alarm().

4.3.2.4 INT ALARM::check_interval
Definition at line 1303 of file midas.h.

Referenced by al_trigger_alarm().

4.3.2.5 DWORD ALARM::checked_last
Definition at line 1304 of file midas.h.

Referenced by al_trigger_alarm().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.4 ALARM_CLASS Struct Reference 221

4.3.2.6 char ALARM::condition[256]
Definition at line 1307 of file midas.h.

4.3.2.7 char ALARM::time_triggered_first[32]
Definition at line 1305 of file midas.h.

Referenced by al_trigger_alarm().

4.3.2.8 char ALARM::time_triggered_last[32]
Definition at line 1306 of file midas.h.

Referenced by al_trigger_alarm().

4.3.29 INT ALARM::triggered
Definition at line 1301 of file midas.h.

Referenced by al_trigger_alarm().

4.3.2.10 INT ALARM::type

Definition at line 1302 of file midas.h.

Referenced by al_trigger_alarm().

44 ALARM _CLASS Struct Reference
4.4.1 Detailed Description

Alarm class structure

Definition at line 1269 of file midas.h.

4.4.2 Field Documentation

4421 char ALARM_CLASS::display_bgcolor[32]
Definition at line 1278 of file midas.h.

4.42.2 char ALARM_CLASS::display_fgcolor[32]
Definition at line 1279 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

45 ANA_MODULE Struct Reference 222

4.4.2.3 char ALARM_CLASS::execute_command[256]
Definition at line 1274 of file midas.h.

4424 INT ALARM_CLASS::execute_interval
Definition at line 1275 of file midas.h.

44.25 DWORD ALARM_CLASS::execute_last
Definition at line 1276 of file midas.h.

4426 BOOL ALARM_CLASS::stop_run
Definition at line 1277 of file midas.h.

4.4.2.7 INT ALARM_CLASS::system_message_interval
Definition at line 1272 of file midas.h.

4.4.28 DWORD ALARM_CLASS::system_message_last
Definition at line 1273 of file midas.h.

4.4.29 BOOL ALARM_CLASS::write_elog_message
Definition at line 1271 of file midas.h.

4.4.2.10 BOOL ALARM_CLASS::write_system_message
Definition at line 1270 of file midas.h.

45 ANA_MODULE Struct Reference

Data Fields

e char name [NAME_LENGTH]

¢ char author NAME_LENGTH]

* INT(x analyzer (EVENT_HEADER x, void)
e INT(x bor)(INT run_number)

e INT(x eor)(INT run_number)

e INT(* init)()

o INT(* exit)()

* void * parameters

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

45 ANA_MODULE Struct Reference 223

o INT param_size
e char *x init_str
¢ BOOL enabled

45.1 Field Documentation

4511 INT(x ANA_MODULE::analyzer)(EVENT_HEADER x, void %)

Pointer to user analyzer routine

45.1.2 char ANA_MODULE::author[NAME_LENGTH]
Author
Definition at line 1046 of file midas.h.

45.1.3 INT(x ANA_MODULE::bor)(INT run_number)

Pointer to begin-of-run routine

45.1.4 BOOL ANA MODULE::enabled
Enabled flag
Definition at line 1056 of file midas.h.

4515 INT(+* ANA_MODULE::eor)(INT run_number)

Pointer to end-of-run routine

4516 INT(x ANA_MODULE::exit)()

Pointer to exit routine

45.1.7 voidx ANA_ MODULE::histo_folder
Definition at line 1057 of file midas.h.

4518 INT(x ANA_MODULE::init)()

Pointer to init routine

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.6 ANA_OUTPUT_INFO Struct Reference 224

45.1.9 charxx ANA_MODULE::init_str
Parameter init string

Definition at line 1055 of file midas.h.

45.1.10 char ANA _MODULE::name[NAME_LENGTH]
Module name

Definition at line 1045 of file midas.h.

45.1.11 INT ANA_MODULE::param_size
Size of parameter structure

Definition at line 1054 of file midas.h.

45.1.12 voidx ANA MODULE::parameters
Pointer to parameter structure

Definition at line 1053 of file midas.h.

46 ANA_OUTPUT_INFO Struct Reference

4.6.1 Field Documentation

4.6.1.1 BOOL ANA_ OUTPUT_INFO::clear_histos
Definition at line 1108 of file midas.h.

4.6.1.2 BOOL ANA OUTPUT _INFO::events to_odb
Definition at line 1110 of file midas.h.

4.6.1.3 char ANA_OUTPUT_INFO::filename[256]
Definition at line 1104 of file midas.h.

4.6.1.4 char ANA_OUTPUT_INFO::global_memory_name[8]
Definition at line 1111 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.7 ANA_TEST Struct Reference 225

4.6.1.5 BOOL ANA OUTPUT_INFO::histo_dump
Definition at line 1106 of file midas.h.

4.6.1.6 char ANA_ OUTPUT_INFO::histo_dump_filename[256]
Definition at line 1107 of file midas.h.

4.6.1.7 char ANA_OUTPUT_INFO::last_histo_filename[256]
Definition at line 1109 of file midas.h.

4.6.1.8 BOOL ANA_OUTPUT_INFO::rwnt
Definition at line 1105 of file midas.h.

4.7 ANA_TEST Struct Reference

4.7.1 Field Documentation

4.7.1.1 DWORD ANA _TEST::count
Definition at line 1130 of file midas.h.

4.7.1.2 char ANA_TEST::name[80]
Definition at line 1128 of file midas.h.

4.7.1.3 DWORD ANA_TEST::previous_count
Definition at line 1131 of file midas.h.

4.7.1.4 BOOL ANA_TEST::registered
Definition at line 1129 of file midas.h.

4.7.15 BOOL ANA TEST::value
Definition at line 1132 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.8 ANALYZE_REQUEST Struct Reference 226

48 ANALYZE_REQUEST Struct Reference
Data Fields

¢ char event_name [NAME_LENGTH]
¢ AR_INFO ar_info
¢ INT(x analyzer (EVENT_HEADER =, void)
¢ ANA_MODULE #*x ana_module
¢ BANK_LIST x bank_list
e INT rwnt_buffer_size
* BOOL use_tests
e INT status
e HNDLE buffer_handle
* HNDLE request_id
* HNDLE hkey_variables
* HNDLE hkey_common
¢ void * addr
e struct {
} number

¢ DWORD events_received
¢ DWORD events_written

4.8.1 Field Documentation

4.8.1.1 voidx ANALYZE REQUEST::addr
Buffer for CWNT filling
Definition at line 1090 of file midas.h.

48.1.2 ANA_MODULE:xx ANALYZE_REQUEST::ana_module
List of analyzer modules

Definition at line 1080 of file midas.h.

4813 INT(+ ANALYZE_REQUEST::analyzer)(EVENT _HEADER =, void =)

Pointer to user analyzer routine

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.8 ANALYZE_REQUEST Struct Reference 227

4.8.1.4 AR _INFO ANALYZE_REQUEST::ar_info
From above

Definition at line 1078 of file midas.h.

4.8.1.5 AR_STATS ANALYZE_REQUEST::ar_stats
Definition at line 1098 of file midas.h.

48.1.6 BANK_LISTx ANALYZE_REQUEST::bank_list

List of banks for event

Definition at line 1081 of file midas.h.

4.8.1.7 HNDLE ANALYZE_REQUEST::buffer_handle
MIDAS buffer handle
Definition at line 1086 of file midas.h.

4.8.1.8 char ANALYZE_REQUEST::event_name[NAME_LENGTH]
Event name

Definition at line 1077 of file midas.h.

4.8.1.9 DWORD ANALYZE_REQUEST::events_received
number of events sent

Definition at line 1096 of file midas.h.

4.8.1.10 DWORD ANALYZE_REQUEST::events_written
number of events written

Definition at line 1097 of file midas.h.

4.8.1.11 HNDLE ANALYZE_REQUEST::hkey common
Key to common subtree

Definition at line 1089 of file midas.h.

4.8.1.12 HNDLE ANALYZE_REQUEST::hkey variables
Key to variables subtree in ODB

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.8 ANALYZE_REQUEST Struct Reference

228

Definition at line 1088 of file midas.h.

4.8.1.13 charxx ANALYZE_REQUEST::init_string
Definition at line 1084 of file midas.h.

4.8.1.14 struct{... } ANALYZE_REQUEST::number
Buffer for event number for CWNT

4.8.1.15 HNDLE ANALYZE_REQUEST::request_id
Event request handle

Definition at line 1087 of file midas.h.

4.8.1.16 DWORD ANALYZE_REQUEST::run
Definition at line 1092 of file midas.h.

4.8.1.17 INT ANALYZE_REQUEST::rwnt_buffer_size

Size in events of RW N-tuple buf
Definition at line 1082 of file midas.h.

4.8.1.18 DWORD ANALYZE_REQUEST::serial
Definition at line 1093 of file midas.h.

4.8.1.19 INT ANALYZE_REQUEST::status
One of FE_xxx
Definition at line 1085 of file midas.h.

4.8.1.20 DWORD ANALYZE_REQUEST::time
Definition at line 1094 of file midas.h.

4.8.1.21 BOOL ANALYZE_REQUEST::use_tests
Use tests for this event

Definition at line 1083 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.9 AR_INFO Struct Reference 229

49 AR_INFO Struct Reference
Data Fields

¢ INT event_id

o INT trigger_mask

o INT sampling_type

* char buffer NAME_LENGTH]

* BOOL enabled

e char client_name [NAME_LENGTH]
* char host NAME_LENGTH]

49.1 Field Documentation

4.9.1.1 char AR_INFO::bufferf[NAME_LENGTH]
Event buffer to send events into

Definition at line 1064 of file midas.h.

4.9.1.2 char AR_INFO::client_name[NAME_LENGTH]
Analyzer name

Definition at line 1066 of file midas.h.

4.9.1.3 BOOL AR_INFO::enabled
Enable flag
Definition at line 1065 of file midas.h.

4.9.1.4 INT AR_INFO::event id
Event ID associated with equipm.

Definition at line 1061 of file midas.h.

49.15 char AR_INFO::hostifNAME_LENGTH]
Host on which analyzer is running

Definition at line 1067 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.10 AR_STATS Struct Reference 230

4.9.1.6 INT AR_INFO::sampling_type
GET_ALL/GET_SOME
Definition at line 1063 of file midas.h.

4.9.1.7 INT AR_INFO::trigger_mask
Trigger mask
Definition at line 1062 of file midas.h.

410 AR_STATS Struct Reference

4.10.1 Field Documentation

4.10.1.1 double AR_STATS::events_per_sec
Definition at line 1072 of file midas.h.

4.10.1.2 double AR_STATS::events_received
Definition at line 1071 of file midas.h.

4.10.1.3 double AR_STATS::events_written
Definition at line 1073 of file midas.h.

411 ASUM_BANK Struct Reference

4.11.1 Field Documentation

41111 float ASUM_BANK::average
Definition at line 110 of file experim.h.

Referenced by adc_summing().

4,11.1.2 float ASUM_BANK::sum

Definition at line 109 of file experim.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

412 BANK Struct Reference 231

Referenced by adc_summing().

412 BANK Struct Reference

Data Fields

e char name [4]
* WORD type
* WORD data_size

4.12.1 Field Documentation

412.1.1 WORD BANK::data_size

Definition at line 1011 of file midas.h.

Referenced by bk_close(), bk_create(), bk_find(), bk_iterate(), bk_locate(), and bk_-
swap().

4.12.1.2 char BANK::name[4]

Definition at line 1009 of file midas.h.

Referenced by bk_close(), bk_create(), bk_find(), bk_list(), bk_locate(), and update_-
odb().

412.1.3 WORD BANK::type

Definition at line 1010 of file midas.h.

Referenced by bk_close(), bk_create(), bk_find(), bk_locate(), bk_swap(), and
update_odb().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

413 BANKRS32 Struct Reference 232

413 BANKS32 Struct Reference

Data Fields

e char name [4]
* DWORD type
e DWORD data_size

4.13.1 Field Documentation

4.13.1.1 DWORD BANK32::data_size

Definition at line 1017 of file midas.h.
Referenced by bk_close(), bk_create(), bk_find(), bk_locate(), and bk_swap().

4.13.1.2 char BANK32::name[4]

Definition at line 1015 of file midas.h.

Referenced by bk_close(), bk_create(), bk_find(), bk_list(), bk_locate(), and update_-
odb().

4.13.1.3 DWORD BANK32::type

Definition at line 1016 of file midas.h.
Referenced by bk_close(), bk_create(), bk_find(), bk_locate(), bk_swap(), and

update_odb().

4.14 BANK_HEADER Struct Reference

Data Fields

e DWORD data_size
* DWORD flags

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.15 BANK_LIST Struct Reference 233

4.14.1 Field Documentation

4.14.1.1 DWORD BANK_ HEADER::data_size
Size in bytes
Definition at line 1004 of file midas.h.

Referenced by bk_find(), bk_swap(), eb_mfragment_add(), eb_yfragment_add(), and
source_scan().

4.14.1.2 DWORD BANK_HEADER::flags
internal flag
Definition at line 1005 of file midas.h.

Referenced by bk_swap().

4.15 BANK_LIST Struct Reference

Data Fields

* char name [9]

* WORD type

e DWORD size

e char *x* init_str

* BOOL output_flag
* void * addr

* DWORD n_data

* HNDLE def_key

4.15.1 Field Documentation

4.151.1 void« BANK_LIST::addr

Definition at line 1032 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.15 BANK_LIST Struct Reference 234

4.15.1.2 HNDLE BANK_LIST::def_key

Definition at line 1034 of file midas.h.

4.15.1.3 charxx BANK_LIST::init_str

Definition at line 1030 of file midas.h.

Referenced by register_equipment().

4.15.1.4 DWORD BANK_LIST::n_data

Definition at line 1033 of file midas.h.

4.15.1.5 char BANK_LIST::name[9]

Definition at line 1027 of file midas.h.

Referenced by register_equipment().

4.15.1.6 BOOL BANK_LIST::output_flag

Definition at line 1031 of file midas.h.

4.15.1.7 DWORD BANK_LIST::size

Definition at line 1029 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

416 BUFFER Struct Reference

235

4.15.1.8 WORD BANK_LIST::type

Definition at line 1028 of file midas.h.

Referenced by register_equipment().

416 BUFFER Struct Reference

Data Fields

* BOOL attached

e INT client_index

¢ BUFFER_HEADER = buffer_header
¢ void * buffer data

e char * read_cache

e INT read_cache_size
* INT read_cache_rp

e INT read_cache_wp
e char * write_cache

e INT write_cache_size
e INT write_cache_rp

* INT write_cache_wp
 HNDLE mutex

e INT shm_handle

e INT index

e BOOL callback

4.16.1 Field Documentation

4.16.1.1 BOOL BUFFER::attached
TRUE if buffer is attached
Definition at line 854 of file midas.h.

Referenced by bm_check_buffers(), bm_close_buffer(), bm_empty_buffers(), bm_-

flush_cache(), bm_open_buffer(), bm_push_event(),

bm_receive_event(),

bm_-

remove_event_request(), bm_send_event(), bm_set_cache_size(), bm_skip_event(),

cm_cleanup(), and cm_set_watchdog_params().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

416 BUFFER Struct Reference 236

4.16.1.2 voidx BUFFER::buffer_data
pointer to buffer data
Definition at line 857 of file midas.h.

Referenced by bm_open_buffer().

4.16.1.3 BUFFER_HEADERx* BUFFER::buffer_header
pointer to buffer header
Definition at line 856 of file midas.h.

Referenced by bm_check_buffers(), bm_close_buffer(), bm_empty_buffers(), bm_-
flush_cache(), bm_open_buffer(), bm_push_event(), bm_receive_event(), bm_-
remove_event_request(), bm_send_event(), bm_skip_event(), bm_validate_client_-
index(), bm_wait_for_free_space(), cm_cleanup(), and cm_set_watchdog_params().

4.16.1.4 BOOL BUFFER::callback
callback defined for this buffer
Definition at line 869 of file midas.h.

Referenced by bm_open_buffer(), and bm_push_event().

4.16.1.5 INT BUFFER::client_index
index to CLIENT str. in buf.
Definition at line 855 of file midas.h.

Referenced by bm_open_buffer(), bm_validate_client_index(), and cm_cleanup().

4.16.1.6 INT BUFFER::index
connection index / tid
Definition at line 868 of file midas.h.

Referenced by bm_check_buffers(), bm_close_buffer(), bm_empty_buffers(), bm_-
open_buffer(), and cm_set_watchdog_params().

4.16.1.7 HNDLE BUFFER::mutex
mutex/semaphore handle

Definition at line 866 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

416 BUFFER Struct Reference 237

4.16.1.8 charx BUFFER::read_cache
cache for burst read
Definition at line 858 of file midas.h.

Referenced by bm_copy_from_cache(), bm_dispatch_from_cache(), bm_push_-
event(), bm_receive_event(), and bm_set_cache_size().

4.16.1.9 INT BUFFER::read_cache_rp
cache read pointer
Definition at line 860 of file midas.h.

Referenced by bm_copy_from_cache(), bm_dispatch_from_cache(), bm_empty_-
buffers(), bm_read_cache_has_events(), bm_set_cache_size(), and bm_skip_event().

4.16.1.10 INT BUFFER::read_cache_size
cache size in bytes
Definition at line 859 of file midas.h.

Referenced by bm_close_buffer(), bm_push_event(), bm_read_cache_has_events(),
bm_receive_event(), and bm_set_cache_size().

4.16.1.11 INT BUFFER::read_cache_wp
cache write pointer
Definition at line 861 of file midas.h.

Referenced by bm_copy_from_cache(), bm_dispatch_from_cache(), bm_empty_-
buffers(), bm_push_event(), bm_read_cache_has_events(), bm_receive_event(), bm_-
set_cache_size(), and bm_skip_event().

4.16.1.12 INT BUFFER::shm_handle
handle to shared memory
Definition at line 867 of file midas.h.

Referenced by bm_close_buffer(), and bm_open_buffer().

4.16.1.13 charx BUFFER::write_cache
cache for burst read
Definition at line 862 of file midas.h.

Referenced by bm_flush_cache(), bm_send_event(), and bm_set_cache_size().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.17 BUFFER_CLIENT Struct Reference 238

4.16.1.14 INT BUFFER::write_cache_rp
cache read pointer
Definition at line 864 of file midas.h.

Referenced by bm_flush_cache(), and bm_set_cache_size().

4.16.1.15 INT BUFFER::write_cache_size
cache size in bytes
Definition at line 863 of file midas.h.

Referenced by bm_close_buffer(), bm_flush_cache(), bm_send_event(), and bm_set_-
cache_size().

4.16.1.16 INT BUFFER::write_cache_wp
cache write pointer
Definition at line 865 of file midas.h.

Referenced by bm_flush_cache(), bm_send_event(), and bm_set_cache_size().

4.17 BUFFER_CLIENT Struct Reference
Data Fields

e char name [NAME_LENGTH]
o INT pid

e INT tid

e INT thandle

* INT port

* INT read_pointer

* INT max_request_index

e INT num_received_events

e INT num_sent_events

* INT num_waiting_events

* float data_rate

¢ BOOL read_wait

o INT write_wait

* BOOL wake_up

* BOOL all_flag

* DWORD last_activity

* DWORD watchdog_timeout

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.17 BUFFER_CLIENT Struct Reference 239

4.17.1 Field Documentation

4.17.1.1 BOOL BUFFER_CLIENT::all_flag
at least one GET_ALL request
Definition at line 829 of file midas.h.

Referenced by bm_remove_event_request().

4.17.1.2 float BUFFER_CLIENT::data_rate
data rate in kB/sec

Definition at line 825 of file midas.h.

4.17.1.3 EVENT_REQUEST BUFFER_CLIENT::event_requestiMAX_-
EVENT REQUESTS]

Definition at line 833 of file midas.h.

Referenced by bm_push_event(), bm_receive_event(), bm_remove_event_request(),
bm_send_event(), and bm_wait_for_free_space().

4.17.1.4 DWORD BUFFER_CLIENT::last_activity
time of last activity
Definition at line 830 of file midas.h.

Referenced by bm_open_buffer(), cm_cleanup(), and cm_set_watchdog_params().

4.17.1.5 INT BUFFER_CLIENT::max_request_index
index of last request
Definition at line 821 of file midas.h.

Referenced by bm_push_event(), bm_receive_event(), bm_remove_event_request(),
bm_send_event(), and bm_wait_for_free_space().

4.17.1.6 char BUFFER_CLIENT::name[NAME_LENGTH]
name of client

Definition at line 815 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.17 BUFFER_CLIENT Struct Reference 240

Referenced by bm_open_buffer(), bm_validate_client_index(), bm_validate_client_-
pointers(), and cm_cleanup().

4.17.1.7 INT BUFFER_CLIENT::num_received_events
no of received events

Definition at line 822 of file midas.h.

4.17.1.8 INT BUFFER_CLIENT::num_sent_events
no of sent events

Definition at line 823 of file midas.h.

4.17.1.9 INT BUFFER_CLIENT::num_waiting_events
no of waiting events
Definition at line 824 of file midas.h.

Referenced by bm_send_event().

4.17.1.10 INT BUFFER_CLIENT::pid
process ID
Definition at line 816 of file midas.h.

Referenced by bm_close_buffer(), bm_flush_cache(), bm_open_buffer(), bm_send_-
event(), bm_update_read_pointer(), bm_validate_client_index(), bm_wait_for_free_-
space(), bm_wakeup_producers(), and cm_cleanup().

4.17.1.11 INT BUFFER_CLIENT::port
UDP port for wake up
Definition at line 819 of file midas.h.

Referenced by bm_close_buffer(), bm_open_buffer(), bm_wait_for_free_space(),
bm_wakeup_producers(), and cm_cleanup().

4.17.1.12 INT BUFFER_CLIENT::read_pointer
read pointer to buffer
Definition at line 820 of file midas.h.

Referenced by bm_empty_buffers(), bm_flush_cache(), bm_open_buffer(), bm_-
push_event(), bm_receive_event(), bm_send_event(), bm_skip_event(), bm_update_-

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.17 BUFFER_CLIENT Struct Reference 241

read_pointer(), bm_validate_client_pointers(), bm_wait_for_free_space(), and bm_-
wakeup_producers().

4.17.1.13 BOOL BUFFER_CLIENT::read_wait
wait for read - flag
Definition at line 826 of file midas.h.

Referenced by bm_close_buffer(), bm_flush_cache(), bm_receive_event(), bm_send_-
event(), bm_wait_for_free_space(), and cm_cleanup().

4.17.1.14 INT BUFFER_CLIENT::thandle
thread handle
Definition at line 818 of file midas.h.

Referenced by bm_open_buffer().

4.17.1.15 INT BUFFER_CLIENT::tid
thread ID
Definition at line 817 of file midas.h.

Referenced by bm_open_buffer(), and bm_wakeup_producers().

417.1.16 BOOL BUFFER_CLIENT::wake_up
client got a wake-up msg

Definition at line 828 of file midas.h.

4,17.1.17 DWORD BUFFER_CLIENT::watchdog_timeout
timeout in ms
Definition at line 831 of file midas.h.

Referenced by bm_open_buffer(), cm_cleanup(), and cm_set_watchdog_params().

4.17.1.18 INT BUFFER_CLIENT::write_wait
wait for write # bytes
Definition at line 827 of file midas.h.

Referenced by bm_close_buffer(), bm_wait_for_free_space(), bm_wakeup_-
producers(), and cm_cleanup().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.18 BUFFER_HEADER Struct Reference 242

418 BUFFER_HEADER Struct Reference

Data Fields

e char name [NAME_LENGTH]

e INT num_clients

e INT max_client_index

e INT size

* INT read_pointer

e INT write_pointer

e INT num_in_events

e INT num_out_events

e BUFFER_CLIENT client [MAX_CLIENTS]

4.18.1 Field Documentation

4.18.1.1 BUFFER_CLIENT BUFFER_HEADER::clientfMAX_CLIENTS]
entries for clients
Definition at line 847 of file midas.h.

Referenced by bm_close_buffer(), bm_flush_cache(), bm_open_buffer(), bm_-
push_event(), bm_receive_event(), bm_send_event(), bm_skip_event(), bm_update_-
read_pointer(), bm_validate_client_index(), bm_wait_for_free_space(), bm_wakeup_-
producers(), cm_cleanup(), and cm_set_watchdog_params().

4.18.1.2 INT BUFFER_HEADER::max_client_index
index of last client
Definition at line 840 of file midas.h.

Referenced by bm_close_buffer(), bm_flush_cache(), bm_open_buffer(), bm_send_-
event(), bm_update_read_pointer(), bm_validate_client_index(), bm_wait_for_free_-
space(), bm_wakeup_producers(), and cm_cleanup().

4.18.1.3 char BUFFER_HEADER::name[NAME_LENGTH]
name of buffer
Definition at line 838 of file midas.h.

Referenced by bm_check_buffers(), bm_close_buffer(), bm_flush_cache(), bm_-
open_buffer(), bm_push_event(), bm_send_event(), bm_validate_client_index(), bm_-
validate_client_pointers(), bm_wait_for_free_space(), and cm_cleanup().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.18 BUFFER_HEADER Struct Reference 243

4.18.1.4 INT BUFFER_HEADER::num_clients
no of active clients
Definition at line 839 of file midas.h.

Referenced by bm_close_buffer(), bm_open_buffer(), and cm_cleanup().

4.18.1.5 INT BUFFER_HEADER::num_in_events
no of received events
Definition at line 844 of file midas.h.

Referenced by bm_flush_cache(), and bm_send_event().

4.18.1.6 INT BUFFER_HEADER::num_out_events
no of distributed events
Definition at line 845 of file midas.h.

Referenced by bm_push_event(), and bm_receive_event().

4.18.1.7 INT BUFFER_HEADER::read_pointer
read pointer
Definition at line 842 of file midas.h.

Referenced by bm_flush_cache(), bm_receive_event(), bm_send_event(), bm_-
update_read_pointer(), bm_validate_client_pointers(), bm_wait_for_free_space(), and
bm_wakeup_producers().

4.18.1.8 INT BUFFER_HEADER::size
size of data area in bytes
Definition at line 841 of file midas.h.

Referenced by bm_flush_cache(), bm_open_buffer(), bm_push_event(), bm_receive_-
event(), bm_send_event(), bm_update_read_pointer(), bm_validate_client_pointers(),
bm_wait_for_free_space(), and bm_wakeup_producers().

4.18.1.9 INT BUFFER_HEADER::write_pointer
write pointer

Definition at line 843 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.19 BUS_DRIVER Struct Reference 244

Referenced by bm_flush_cache(), bm_open_buffer(), bm_push_event(), bm_-
receive_event(), bm_send_event(), bm_skip_event(), bm_update_read_pointer(), bm_-
validate_client_pointers(), bm_wait_for_free_space(), and bm_wakeup_producers().

419 BUS DRIVER Struct Reference
Data Fields

e char name [NAME_LENGTH]
e INT(* bd)(INT cmd,...)
¢ void * bd_info

4.19.1 Field Documentation

419.1.1 INT(+ BUS_DRIVER::bd)(INT cmd,...)

Device driver entry point

4.19.1.2 void« BUS_DRIVER::bd_info
Private info for bus driver

Definition at line 912 of file midas.h.

4.19.1.3 char BUS_DRIVER::name[NAME_LENGTH]
Driver name
Definition at line 910 of file midas.h.

420 DATABASE Struct Reference

4.20.1 Field Documentation

4.20.1.1 BOOL DATABASE::attached

Definition at line 375 of file msystem.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

420 DATABASE Struct Reference 245

Referenced by cm_check_client(), cm_cleanup(), cm_get_watchdog_info(), cm_set_-
watchdog_params(), db_close_database(), db_create_key(), db_delete_key1(), db_-
enum_key(), db_find_key(), db_get_data(), db_get_data_index(), db_get_key(), db_-
get_key_info(), db_get_key_time(), db_get_value(), db_open_database(), db_set_-
data(), and db_set_data_index().

4.20.1.2 INT DATABASE::client_index
Definition at line 376 of file msystem.h.

Referenced by cm_cleanup(), cm_set_watchdog_params(), db_close_database(), and
db_open_database().

4.20.1.3 void« DATABASE::database_data
Definition at line 378 of file msystem.h.

Referenced by db_open_database().

4.20.1.4 DATABASE_HEADERx*x DATABASE::database_header
Definition at line 377 of file msystem.h.

Referenced by cm_check_client(), cm_cleanup(), cm_get_watchdog_info(), cm_-
set_watchdog_params(), db_close_database(), db_create_key(), db_delete_keyl1(),
db_enum_key(), db_find_key(), db_get_data(), db_get_data_index(), db_get_key(),
db_get_key_info(), db_get_key_time(), db_get_value(), db_lock_database(), db_-
open_database(), db_protect_database(), db_set_data(), db_set_data_index(), db_set_-
value(), and db_unlock_database().

4.20.1.5 INT DATABASE::index
Definition at line 382 of file msystem.h.

Referenced by cm_set_watchdog_params(), db_close_database(), and db_open_-
database().

4.20.1.6 INT DATABASE::lock_cnt
Definition at line 380 of file msystem.h.
Referenced by db_lock_database(), db_open_database(), and db_unlock_database().

4.20.1.7 HNDLE DATABASE::mutex

Definition at line 379 of file msystem.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.21 DATABASE_CLIENT Struct Reference 246

4.20.1.8 char DATABASE::name[NAME_LENGTH]

Definition at line 374 of file msystem.h.

4.20.1.9 BOOL DATABASE::protect
Definition at line 383 of file msystem.h.

Referenced by db_lock_database(), db_open_database(), db_protect_database(), and
db_unlock_database().

4.20.1.10 HNDLE DATABASE::shm_handle
Definition at line 381 of file msystem.h.

Referenced by db_close_database(), and db_open_database().

421 DATABASE_CLIENT Struct Reference

4.21.1 Field Documentation

421.1.1 DWORD DATABASE_CLIENT::last_activity
Definition at line 348 of file msystem.h.

Referenced by cm_cleanup(), cm_get_watchdog_info(), cm_set_watchdog_params(),
and db_open_database().

4.21.1.2 INT DATABASE_CLIENT::max_index
Definition at line 350 of file msystem.h.

Referenced by db_close_database(), and db_open_database().

4.21.1.3 char DATABASE_CLIENT::name[NAME_LENGTH]
Definition at line 342 of file msystem.h.

Referenced by cm_cleanup(), cm_get_watchdog_info(), cm_transition(), and db_-
open_database().

4.21.1.4 INT DATABASE_CLIENT::num_open_records
Definition at line 347 of file msystem.h.

Referenced by db_open_database().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.22 DATABASE_HEADER Struct Reference 247

42115 OPEN_RECORD DATABASE_CLIENT::0pen_record[MAX_OPEN._-
RECORDS]

Definition at line 352 of file msystem.h.

Referenced by cm_cleanup(), db_close_database(), and db_open_database().

4.21.1.6 INT DATABASE_CLIENT::pid
Definition at line 343 of file msystem.h.

Referenced by cm_cleanup(), cm_get_watchdog_info(), db_close_database(), and
db_open_database().

4.21.1.7 INT DATABASE_CLIENT::port
Definition at line 346 of file msystem.h.

Referenced by db_open_database().

4.21.1.8 INT DATABASE_CLIENT::thandle
Definition at line 345 of file msystem.h.

Referenced by db_open_database().

4.21.1.9 INT DATABASE_CLIENT::tid
Definition at line 344 of file msystem.h.

Referenced by cm_check_client(), cm_cleanup(), and db_open_database().

4.21.1.10 DWORD DATABASE_CLIENT::watchdog_timeout
Definition at line 349 of file msystem.h.

Referenced by cm_cleanup(), cm_get_watchdog_info(), cm_set_watchdog_params(),
and db_open_database().

4.22 DATABASE_HEADER Struct Reference

4.22.1 Field Documentation

42211 DATABASE_CLIENT DATABASE_HEADER::client[MAX_-
CLIENTS]

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.22 DATABASE_HEADER Struct Reference 248

Definition at line 367 of file msystem.h.

Referenced by cm_check_client(), cm_cleanup(), cm_get_watchdog_info(), cm_set_-
watchdog_params(), db_close_database(), and db_open_database().

4.22.1.2 INT DATABASE_HEADER::data_size
Definition at line 362 of file msystem.h.
Referenced by db_close_database(), and db_open_database().

4.22.1.3 INT DATABASE_HEADER::first_free_data
Definition at line 365 of file msystem.h.

Referenced by db_open_database().

4.22.1.4 INT DATABASE_HEADER::first_free_key
Definition at line 364 of file msystem.h.

Referenced by db_open_database().

4.22.15 INT DATABASE_HEADER::key size
Definition at line 361 of file msystem.h.

Referenced by db_open_database().

4.22.1.6 INT DATABASE_HEADER::max_client_index
Definition at line 360 of file msystem.h.

Referenced by cm_check_client(), cm_cleanup(), cm_get_watchdog_info(), db_-
close_database(), and db_open_database().

4.22.1.7 char DATABASE_HEADER::name[NAME_LENGTH]
Definition at line 357 of file msystem.h.

Referenced by cm_cleanup(), db_close_database(), and db_open_database().

4.22.1.8 INT DATABASE_HEADER::num_clients
Definition at line 359 of file msystem.h.

Referenced by cm_cleanup(), db_close_database(), and db_open_database().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.23 DD_MT_BUFFER Struct Reference 249

422.1.9 INT DATABASE_HEADER::root_key
Definition at line 363 of file msystem.h.

Referenced by db_create_key(), db_delete_keyl(), db_enum_key(), db_find_key(),
db_get_key(), and db_open_database().

4.22.1.10 INT DATABASE_HEADER::version
Definition at line 358 of file msystem.h.

Referenced by db_open_database().

423 DD_MT_BUFFER Struct Reference

Data Fields

¢ INT n_channels

e midas_thread_t thread_id

e INT status

DD _MT_ CHANNEL * channel

4.23.1 Field Documentation

4.23.1.1 DD_MT_CHANNELx* DD_MT_BUFFER::channel
One data set for each channel
Definition at line 924 of file midas.h.

Referenced by device_driver(), and sc_thread().

4.23.1.2 INT DD_MT_BUFFER::n_channels
Number of channels
Definition at line 921 of file midas.h.

Referenced by device_driver().

4.23.1.3 INT DD_MT_BUFFER::status
Status passed from device thread
Definition at line 923 of file midas.h.

Referenced by device_driver(), and sc_thread().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

424 DD_MT_CHANNEL Struct Reference 250

4.23.1.4 midas_thread t DD_MT_BUFFER::thread_id
Thread ID
Definition at line 922 of file midas.h.

Referenced by device_driver().

424 DD _MT_CHANNEL Struct Reference

Data Fields

* float array [CMD_GET_LAST]
e char label [NAME_LENGTH]

4241 Field Documentation

4.241.1 float DD_MT_CHANNEL::array[CMD_GET_LAST]
Array for various values
Definition at line 916 of file midas.h.

Referenced by device_driver(), and sc_thread().

4.24.1.2 char DD_MT_CHANNEL::label[NAME_LENGTH]
Array for channel labels
Definition at line 917 of file midas.h.

Referenced by device_driver().

4.25 DEF_RECORD Struct Reference

4.25.1 Field Documentation

4.25.1.1 DWORD DEF_RECORD::def offset
Definition at line 1166 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.26 DEVICE_DRIVER Struct Reference 251

4.25.1.2 DWORD DEF_RECORD::event _id
Definition at line 1164 of file midas.h.

4.25.1.3 char DEF_RECORD::event_name[NAME_LENGTH]
Definition at line 1165 of file midas.h.

426 DEVICE_DRIVER Struct Reference

Data Fields

e char name [NAME_LENGTH]
e INT(* dd)(INT cmd,...)

e INT channels

e INT(* bd)(INT cmd,...)

* DWORD flags

* void * dd_info

e DD_MT_BUFFER * mt_buffer
* INT stop_thread

 HNDLE mutex

4.26.1 Field Documentation

4.26.1.1 INT(x DEVICE_DRIVER::bd)(INT cmd,...)
Bus driver entry point

Referenced by device_driver().

4.26.1.2 INT DEVICE_DRIVER::channels
Number of channels
Definition at line 931 of file midas.h.

Referenced by device_driver(), and sc_thread().

4.26.1.3 INT(x DEVICE_DRIVER::dd)(INT cmd,...)
Device driver entry point

Referenced by device_driver(), and sc_thread().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.26 DEVICE_DRIVER Struct Reference 252

4.26.1.4 voidx DEVICE_DRIVER::dd_info
Private info for device driver
Definition at line 934 of file midas.h.

Referenced by device_driver(), and sc_thread().

4.26.1.5 DWORD DEVICE_DRIVER::flags
Combination of DF_xx
Definition at line 933 of file midas.h.

Referenced by device_driver(), and main().

4.26.1.6 DD_MT_BUFFERx« DEVICE_DRIVER::mt_buffer
pointer to multithread buffer
Definition at line 935 of file midas.h.

Referenced by device_driver(), and sc_thread().

4.26.1.7 HNDLE DEVICE_DRIVER::mutex
mutex/semaphore handle for buffer
Definition at line 937 of file midas.h.

Referenced by device_driver(), and sc_thread().

4.26.1.8 char DEVICE_DRIVER::name[NAME_LENGTH]
Driver name
Definition at line 929 of file midas.h.

Referenced by device_driver(), main(), and register_equipment().

4.26.1.9 INT DEVICE_DRIVER::stop_thread
flag used to stop the thread
Definition at line 936 of file midas.h.

Referenced by device_driver(), and sc_thread().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.27 egpmnt Struct Reference 253

4.27 egpmnt Struct Reference

Data Fields

¢ char name [NAME_LENGTH]
¢ EQUIPMENT_INFO info

e INT(* readout)(char %, INT)

e INT(x cd)YANT cmd, PEQUIPMENT)
e DEVICE_DRIVER x driver

* void * event_descrip

* void * cd_info

e INT status

e DWORD last_called

* DWORD last_idle

* DWORD poll_count

¢ INT format

e HNDLE buffer_handle

* HNDLE hkey_variables

¢ DWORD serial_number

¢ DWORD subevent_number

¢ DWORD odb_out

e DWORD odb_in

* DWORD bytes_sent

e DWORD events_sent

4.27.1 Field Documentation

4.27.1.1 HNDLE egpmnt::buffer_handle
MIDAS buffer handle
Definition at line 981 of file midas.h.

Referenced by receive_trigger_event(), register_equipment(), scheduler(), send_-
event(), and tr_stop().

4.27.1.2 DWORD egpmnt::bytes_sent
number of bytes sent
Definition at line 987 of file midas.h.

Referenced by receive_trigger_event(), scan_fragment(), scheduler(), send_event(),
source_scan(), and tr_stop().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.27 egpmnt Struct Reference 254

4.27.1.3 INT(x eqpmnt::cd)(INT cmd, PEQUIPMENT)
Class driver routine

Referenced by main(), register_equipment(), and scheduler().

4.27.1.4 voidx eqpmnt::cd_info
private data for class driver

Definition at line 975 of file midas.h.

4.27.1.5 DEVICE_DRIVERx egpmnt::driver
Device driver list
Definition at line 973 of file midas.h.

Referenced by main(), and register_equipment().

4.27.1.6 voidx eqpmnt::event_descrip
Init string for fixed events or bank list
Definition at line 974 of file midas.h.

Referenced by register_equipment().

4.27.1.7 DWORD egpmnt::events_sent
number of events sent
Definition at line 988 of file midas.h.

Referenced by display(), receive_trigger_event(), scan_fragment(), scheduler(), send_-
event(), source_scan(), and tr_stop().

4.27.1.8 INT egpmnt::format
FORMAT_xxx
Definition at line 980 of file midas.h.

Referenced by load_fragment(), receive_trigger_event(), register_equipment(), and
scheduler().

4.27.1.9 HNDLE eqpmnt::hkey variables
Key to variables subtree in ODB
Definition at line 982 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.27 egpmnt Struct Reference 255

Referenced by receive_trigger_event(), register_equipment(), and scheduler().

4.27.1.10 EQUIPMENT_INFO egpmnt::info
From above
Definition at line 970 of file midas.h.

Referenced by display(), interrupt_routine(), load_fragment(), main(), readout_-
thread(), receive_trigger_event(), register_equipment(), scan_fragment(), scheduler(),
send_all_periodic_events(), send_event(), tr_start(), and tr_stop().

4.27.1.11 DWORD egpmnt::last_called
Last time event was read
Definition at line 977 of file midas.h.

Referenced by scheduler(), and send_event().

4.27.1.12 DWORD egpmnt::last_idle
Last time idle func was called
Definition at line 978 of file midas.h.

Referenced by scheduler().

4.27.1.13 char egpmnt::name[NAME_LENGTH]
Equipment name
Definition at line 969 of file midas.h.

Referenced by display(), main(), register_equipment(), scheduler(), send_all_-
periodic_events(), send_event(), tr_start(), and tr_stop().

4.27.1.14 DWORD egpmnt::odb_in
updated ODB -> FE
Definition at line 986 of file midas.h.

Referenced by tr_start().

4.27.1.15 DWORD egpmnt::odb_out
updates FE -> ODB
Definition at line 985 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.27 egpmnt Struct Reference 256

Referenced by scheduler(), send_event(), and tr_start().

4.27.1.16 DWORD egpmnt::poll_count
Needed to poll ’period’
Definition at line 979 of file midas.h.

Referenced by readout_thread(), register_equipment(), and scheduler().

4.27.1.17 INT(x egpmnt::readout)(char %, INT)
Pointer to user readout routine

Referenced by interrupt_routine(), readout_thread(), scheduler(), and send_event().

4.27.1.18 DWORD egpmnt::serial_number
event serial number
Definition at line 983 of file midas.h.

Referenced by eb_user(), interrupt_routine(), readout_thread(), scheduler(), send_-
event(), source_scan(), and tr_start().

4.27.1.19 EQUIPMENT_STATS egpmnt::stats
Definition at line 989 of file midas.h.

Referenced by close_buffers(), display(), register_equipment(), scan_fragment(),
scheduler(), send_event(), tr_start(), and tr_stop().

4.27.1.20 INT egpmnt::status
One of FE_xxx
Definition at line 976 of file midas.h.

Referenced by display(), main(), register_equipment(), scheduler(), and send_all_-
periodic_events().

4.27.1.21 DWORD egpmnt::subevent_number
subevent number
Definition at line 984 of file midas.h.

Referenced by receive_trigger_event(), scheduler(), and tr_start().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.28 EQUIPMENT_INFO Struct Reference 257

4.28 EQUIPMENT_INFO Struct Reference

Data Fields

¢ WORD event_id

* WORD trigger_mask

e char buffer NAME_LENGTH]

* INT eq_type

e INT source

¢ char format [8]

* BOOL enabled

e INT read_on

* INT period

¢ double event_limit

¢« DWORD num_subevents

e INT history

e char frontend_host [NAME_LENGTH]
e char frontend_name [NAME_LENGTH]
 char frontend_file_name [256]

4.28.1 Field Documentation

4.28.1.1 char EQUIPMENT_INFO::buffer[NAME_LENGTH]
Event buffer to send events into
Definition at line 945 of file midas.h.

Referenced by register_equipment().

4.28.1.2 BOOL EQUIPMENT _INFO::enabled
Enable flag
Definition at line 949 of file midas.h.

Referenced by display(), register_equipment(), scheduler(), send_all_periodic_-
events(), and tr_start().

4.28.1.3 INT EQUIPMENT _INFO::eq_type
One of EQ_xxx
Definition at line 946 of file midas.h.

Referenced by main(), register_equipment(), scheduler(), send_event(), and tr_stop().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.28 EQUIPMENT_INFO Struct Reference 258

4.28.1.4 WORD EQUIPMENT_INFO::event_id
Event ID associated with equipm.
Definition at line 943 of file midas.h.

Referenced by interrupt_routine(), readout_thread(), register_equipment(), sched-
uler(), send_event(), and source_scan().

4.28.1.5 double EQUIPMENT _INFO::event_limit
Stop run when limit is reached
Definition at line 952 of file midas.h.

Referenced by register_equipment(), and scheduler().

4.28.1.6 char EQUIPMENT _INFO::format[8]

Data format to produce
Definition at line 948 of file midas.h.

Referenced by load_fragment(), and register_equipment().

4.28.1.7 char EQUIPMENT _INFO::frontend_file_name[256]

Source file used for user FE
Definition at line 957 of file midas.h.

Referenced by register_equipment().

4.28.1.8 char EQUIPMENT_INFO::frontend_hostiNAME_LENGTH]
Host on which FE is running
Definition at line 955 of file midas.h.

Referenced by register_equipment().

4.28.1.9 char EQUIPMENT _INFO::frontend_name[NAME_LENGTH]
Frontend name
Definition at line 956 of file midas.h.

Referenced by register_equipment().

4.28.1.10 INT EQUIPMENT_INFO::history
Log history

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.29 EQUIPMENT_STATS Struct Reference 259

Definition at line 954 of file midas.h.

Referenced by scheduler(), and send_event().

4.28.1.11 DWORD EQUIPMENT _INFO::num_subevents
Number of events in super event
Definition at line 953 of file midas.h.

Referenced by receive_trigger_event(), and scheduler().

4.28.1.12 INT EQUIPMENT_INFO::period
Readout interval/Polling time in ms
Definition at line 951 of file midas.h.

Referenced by register_equipment(), and scheduler().

4.28.1.13 INT EQUIPMENT _INFO::read_on
Combination of Read-On flags RO_xxx
Definition at line 950 of file midas.h.

Referenced by scheduler(), send_all_periodic_events(), and send_event().

4.28.1.14 INT EQUIPMENT _INFO::source
Event source (LAM/IRQ)
Definition at line 947 of file midas.h.

Referenced by main(), readout_thread(), register_equipment(), and scheduler().

4.28.1.15 WORD EQUIPMENT_INFO::trigger_mask
Trigger mask
Definition at line 944 of file midas.h.

Referenced by interrupt_routine(), readout_thread(), scheduler(), send_event(), and
source_scan().

429 EQUIPMENT_STATS Struct Reference

4.29.1 Field Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

430 EVENT_HEADER Struct Reference 260

4.29.1.1 double EQUIPMENT _STATS::events_per_sec
Definition at line 962 of file midas.h.

Referenced by register_equipment(), scan_fragment(), and scheduler().

4.29.1.2 double EQUIPMENT _STATS::events_sent
Definition at line 961 of file midas.h.

Referenced by close_buffers(), display(), register_equipment(), scan_fragment(),
scheduler(), send_event(), tr_start(), and tr_stop().

4.29.1.3 double EQUIPMENT _STATS::kbytes per_sec
Definition at line 963 of file midas.h.

Referenced by register_equipment(), scan_fragment(), and scheduler().

430 EVENT_HEADER Struct Reference
4.30.1 Detailed Description

Event header

Definition at line 749 of file midas.h.

Data Fields

 short int event_id

* short int trigger_mask

e DWORD serial_number
* DWORD time_stamp
DWORD data_size

4.30.2 Field Documentation

4.30.2.1 DWORD EVENT_HEADER::data_size
size of event in bytes w/o header

Definition at line 754 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.31 EVENT_REQUEST Struct Reference 261

Referenced by bm_compose_event(), bm_convert_event_header(), bm_copy_from_-
cache(), bm_dispatch_from_cache(), bm_flush_cache(), bm_push_event(), bm_-
receive_event(), cm_msg(), cm_msgl(), eb_user(), interrupt_routine(), readout_-
thread(), receive_trigger_event(), scheduler(), and send_event().

4.30.2.2 shortint EVENT_HEADER::event _id
event ID starting from one
Definition at line 750 of file midas.h.

Referenced by bm_compose_event(), bm_convert_event_header(), bm_dispatch_-
event(), bm_match_event(), interrupt_routine(), readout_thread(), scheduler(), and
send_event().

4.30.2.3 DWORD EVENT_HEADER::serial_number
serial number starting from one
Definition at line 752 of file midas.h.

Referenced by bm_compose_event(), bm_convert_event_header(), eb_user(),
interrupt_routine(), readout_thread(), receive_trigger_event(), scheduler(), and
send_event().

4.30.2.4 DWORD EVENT_HEADER::time_stamp
time of production of event
Definition at line 753 of file midas.h.

Referenced by bm_compose_event(), bm_convert_event_header(), interrupt_routine(),
readout_thread(), scheduler(), and send_event().

4.30.2.5 shortint EVENT_HEADER::trigger_mask
hardware trigger mask
Definition at line 751 of file midas.h.

Referenced by bm_compose_event(), bm_convert_event_header(), bm_match_event(),
interrupt_routine(), readout_thread(), scheduler(), and send_event().

431 EVENT_REQUEST Struct Reference
4.31.1 Detailed Description

Buffer structure

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.31 EVENT_REQUEST Struct Reference 262

Definition at line 804 of file midas.h.

Data Fields

* INTid

* BOOL valid

¢ short int event_id

* short int trigger_mask
e INT sampling_type

4.31.2 Field Documentation

4.31.2.1 void(x EVENT_REQUEST::dispatch)(HNDLE, HNDLE,
EVENT_HEADER , void)

4.31.2.2 shortint EVENT_REQUEST::event_id
event ID
Definition at line 807 of file midas.h.

Referenced by bm_push_event(), bm_receive_event(), bm_send_event(), and bm_-
wait_for_free_space().

4.31.2.3 INT EVENT_REQUEST::id
request id
Definition at line 805 of file midas.h.

Referenced by bm_remove_event_request(), bm_send_event(), and bm_wait_for_-
free_space().

4.31.24 INT EVENT_REQUEST::sampling_type
dispatch function
Definition at line 809 of file midas.h.

Referenced by bm_remove_event_request(), bm_send_event(), and bm_wait_for_-
free_space().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.32 EXP_PARAM Struct Reference 263

4.31.25 shortint EVENT_REQUEST::trigger_mask
trigger mask
Definition at line 808 of file midas.h.

Referenced by bm_push_event(), bm_receive_event(), bm_send_event(), and bm_-
wait_for_free_space().

4.31.26 BOOL EVENT_REQUEST::valid
indicating a valid entry
Definition at line 806 of file midas.h.

Referenced by bm_push_event(), bm_receive_event(), bm_remove_event_request(),
bm_send_event(), and bm_wait_for_free_space().

4.32 EXP_PARAM Struct Reference

4.32.1 Field Documentation

4.32.1.1 char EXP_PARAM::comment[80]
Definition at line 27 of file experim.h.

Referenced by ana_end_of_run().

4.33 FREE_DESCRIP Struct Reference

Data Fields
e INT size
e INT next_free

4.33.1 Field Documentation

4.33.1.1 INT FREE_DESCRIP::next_free
Address of next free block

Definition at line 331 of file msystem.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.34 GLOBAL_PARAM Struct Reference 264

Referenced by db_open_database().

4.33.1.2 INT FREE_DESCRIP::size
size in bytes

Definition at line 330 of file msystem.h.
Referenced by db_open_database().

434 GLOBAL_PARAM Struct Reference

4.34.1 Field Documentation

4.34.1.1 float GLOBAL_PARAM::adc_threshold

Definition at line 93 of file experim.h.

435 HIST_RECORD Struct Reference

4.35.1 Field Documentation

4.35.1.1 DWORD HIST_RECORD::data_size
Definition at line 1160 of file midas.h.

4.35.1.2 DWORD HIST_RECORD::def offset
Definition at line 1159 of file midas.h.

4.35.1.3 DWORD HIST_RECORD::event _id
Definition at line 1157 of file midas.h.

4.35.1.4 DWORD HIST_RECORD::record_type
Definition at line 1156 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

436 HISTORY Struct Reference 265

4.35.1.5 DWORD HIST_RECORD::time
Definition at line 1158 of file midas.h.

436 HISTORY Struct Reference

4.36.1 Field Documentation

4.36.1.1 DWORD HISTORY::base_time
Definition at line 1183 of file midas.h.

4.36.1.2 DWORD HISTORY::def _fh
Definition at line 1182 of file midas.h.

4.36.1.3 DWORD HISTORY::def offset
Definition at line 1184 of file midas.h.

4.36.1.4 DWORD HISTORY::event id
Definition at line 1176 of file midas.h.

4.36.1.5 char HISTORY::event_name[NAME_LENGTH]
Definition at line 1177 of file midas.h.

4.36.1.6 DWORD HISTORY::hist_fh
Definition at line 1180 of file midas.h.

4.36.1.7 DWORD HISTORY::index_fh

Definition at line 1181 of file midas.h.

4.36.1.8 DWORD HISTORY::n_tag
Definition at line 1178 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

4.37 INDEX_RECORD Struct Reference 266

4.36.1.9 TAGx HISTORY::tag
Definition at line 1179 of file midas.h.

4.37 INDEX_RECORD Struct Reference

4.37.1 Field Documentation

4.37.1.1 DWORD INDEX_RECORD::event id
Definition at line 1170 of file midas.h.

4.37.1.2 DWORD INDEX_RECORD::offset
Definition at line 1172 of file midas.h.

4.37.1.3 DWORD INDEX_RECORD::time
Definition at line 1171 of file midas.h.

438 KEY Struct Reference

Data Fields

* DWORD type

¢ INT num_values

¢ char name [NAME_LENGTH]
¢ INT data

o INT total_size

e INT item_size

¢ WORD access_mode
* WORD notify_count
e INT next_key

* INT parent_keylist

e INT last_written

4.38.1 Field Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

438 KEY Struct Reference 267

4.38.1.1 WORD KEY::access_mode
Access mode
Definition at line 880 of file midas.h.

Referenced by cm_cleanup(), db_create_key(), db_delete_key1(), db_find_key(), db_-
get_data(), db_get_data_index(), db_get_value(), db_open_database(), db_open_-
record(), db_set_data(), db_set_data_index(), and db_set_value().

4.38.1.2 INT KEY::data
Address of variable (offset)
Definition at line 877 of file midas.h.

Referenced by db_create_key(), db_delete_keyl(), db_enum_key(), db_find_key(),
db_get_data(), db_get_data_index(), db_get_key_info(), db_get_value(), db_open_-
database(), db_set_data(), db_set_data_index(), and db_set_value().

4.38.1.3 INT KEY::item_size
Size of single data item
Definition at line 879 of file midas.h.

Referenced by db_copy(), db_create_key(), db_get_data(), db_get_data_index(), db_-
get_key_info(), db_get_record(), db_get_record_size(), db_get_value(), db_open_-
database(), db_save_xml_key(), db_set_data(), db_set_data_index(), db_set_record(),
db_set_value(), and update_odb().

4.38.1.4 INT KEY::last_written
Time of last write action
Definition at line 884 of file midas.h.

Referenced by db_get_key_time(), db_set_data(), db_set_data_index(), and db_set_-
value().

4.38.1.5 char KEY::name[NAME_LENGTH]
name of variable
Definition at line 876 of file midas.h.

Referenced by cm_check_client(), cm_shutdown(), cm_transition(), db_check_-
record(), db_copy(), db_create_key(), db_find_key(), db_get_data(), db_get_data_-
index(), db_get_key_info(), db_get_record(), db_open_database(), db_save_struct(),
db_save_xml_key(), db_set_data(), db_set_data_index(), db_set_record(), load_-
fragment(), and update_odb().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

438 KEY Struct Reference 268

4.38.1.6 INT KEY::next_key
Address of next key
Definition at line 882 of file midas.h.

Referenced by db_create_key(), db_delete_keyl(), db_enum_key(), and db_find_-
key().

4.38.1.7 WORD KEY::notify_count
Notify counter
Definition at line 881 of file midas.h.

Referenced by cm_cleanup(), db_delete_key1(), and db_open_database().

4.38.1.8 INT KEY::num_values
number of values
Definition at line 875 of file midas.h.

Referenced by cm_register_transition(), cm_transition(), db_check_record(), db_-
copy(), db_create_key(), db_get_data(), db_get_data_index(), db_get_key_info(), db_-
get_record(), db_get_record_size(), db_get_value(), db_open_database(), db_save_-
xml_key(), db_set_data(), db_set_data_index(), db_set_record(), db_set_value(), tr_-
start(), and update_odb().

4.38.1.9 INT KEY::parent_keylist
keylist to which this key belongs
Definition at line 883 of file midas.h.

Referenced by db_create_key(), db_delete_keyl(), db_enum_key(), db_find_key(),
and db_open_database().

4.38.1.10 INT KEY::total_size
Total size of data block
Definition at line 878 of file midas.h.

Referenced by db_copy(), db_create_key(), db_delete_keyl(), db_open_database(),
db_save_xml_key(), db_set_data(), db_set_data_index(), db_set_record(), db_set_-
value(), and tr_start().

4.38.1.11 DWORD KEY::type
TID_xxx type

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

439 KEYLIST Struct Reference 269

Definition at line 874 of file midas.h.

Referenced by cm_transition(), db_check_record(), db_copy(), db_create_key(), db_-
delete_keyl(), db_enum_key(), db_find_key(), db_get_data(), db_get_data_index(),
db_get_key(), db_get_key_info(), db_get_record(), db_get_record_size(), db_get_-
value(), db_open_database(), db_paste(), db_save_xml_key(), db_set_data(), db_set_-
data_index(), db_set_record(), db_set_value(), load_fragment(), and update_odb().

439 KEYLIST Struct Reference

Data Fields

e INT parent
o INT num_keys
o INT first_key

4.39.1 Field Documentation

4.39.1.1 INT KEYLIST::first_key
Address of first key
Definition at line 890 of file midas.h.

Referenced by db_create_key(), db_delete_keyl(), db_enum_key(), db_find_key(),
and db_open_database().

4.39.1.2 INT KEYLIST::num_keys
number of keys
Definition at line 889 of file midas.h.

Referenced by db_create_key(), db_delete_keyl(), db_enum_key(), db_find_key(),
db_get_key_info(), and db_open_database().

4.39.1.3 INT KEYLIST::parent
Address of parent key
Definition at line 888 of file midas.h.

Referenced by db_create_key(), db_delete_key1(), db_enum_key(), db_find_key(),
and db_open_database().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

440 MVME_INTERFACE Struct Reference 270

440 MVME_INTERFACE Struct Reference

Data Fields

e int handle

¢ int index

¢ void * info

e int am

¢ int dmode

¢ int blt_mode
¢ void * table

4.40.1 Field Documentation

4.40.1.1 int MVME_INTERFACE::am
Address modifier

Definition at line 139 of file mvmestd.h.

4.40.1.2 int MVME_INTERFACE::blt_mode
Block transfer mode

Definition at line 141 of file mvmestd.h.

4.40.1.3 int MVME_INTERFACE::dmode
Data mode (D8,D16,D32,D64)

Definition at line 140 of file mvmestd.h.

4.40.1.4 int MVME_INTERFACE::handle
internal handle

Definition at line 136 of file mvmestd.h.

4.40.15 int MVME_INTERFACE::index
index of interface 0..n

Definition at line 137 of file mvmestd.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

441 OPEN_RECORD Struct Reference 271

4.40.1.6 voidx MVME_INTERFACE::info
internal info structure

Definition at line 138 of file mvmestd.h.

4.40.1.7 void+« MVME_INTERFACE::table
Optional table for some drivers

Definition at line 142 of file mvmestd.h.

441 OPEN_RECORD Struct Reference

Data Fields

e INT handle
* WORD access_mode
* WORD flags

4.41.1 Field Documentation

44111 WORD OPEN_RECORD::access_mode
R/W flags
Definition at line 336 of file msystem.h.

Referenced by cm_cleanup(), and db_open_database().

4.41.1.2 WORD OPEN_RECORD::flags
Data format, ...

Definition at line 337 of file msystem.h.

4.41.1.3 INT OPEN_RECORD::handle
Handle of record base key
Definition at line 335 of file msystem.h.

Referenced by cm_cleanup(), db_close_database(), and db_open_database().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

442 PROGRAM_INFO Struct Reference 272

442 PROGRAM INFO Struct Reference
4.42.1 Detailed Description
Program information structure

Definition at line 1235 of file midas.h.

4.42.2 Field Documentation

4.42.2.1 char PROGRAM_INFO::alarm_class[32]
Definition at line 1243 of file midas.h.

4.42.2.2 BOOL PROGRAM _INFO::auto_restart
Definition at line 1242 of file midas.h.

4.42.2.3 BOOL PROGRAM_INFO::auto_start
Definition at line 1240 of file midas.h.

Referenced by cm_transition().

4.42.2.4 BOOL PROGRAM_INFO::auto_stop
Definition at line 1241 of file midas.h.

Referenced by cm_transition().

4.42.25 DWORD PROGRAM_INFO::check_interval
Definition at line 1238 of file midas.h.

4422.6 DWORD PROGRAM_INFO::first_failed
Definition at line 1244 of file midas.h.

4.42.2.7 BOOL PROGRAM_INFO::required
Definition at line 1236 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

443 RECORD_LIST Struct Reference 273

4.42.2.8 char PROGRAM_INFO::start command[256]
Definition at line 1239 of file midas.h.

Referenced by cm_transition().

4.42.2.9 INT PROGRAM_INFO::watchdog_timeout
Definition at line 1237 of file midas.h.

443 RECORD_LIST Struct Reference

4.43.1 Field Documentation

4.43.1.1 WORD RECORD_LIST::access_mode
Definition at line 392 of file msystem.h.

Referenced by db_close_all_records(), db_close_record(), db_open_record(), db_-
send_changed_records(), and db_update_record().

4.43.1.2 INT RECORD_LIST::buf_size
Definition at line 395 of file msystem.h.

Referenced by db_open_record(), db_send_changed_records(), and db_update_-
record().

4.43.1.3 voidx RECORD_LIST::copy
Definition at line 394 of file msystem.h.

Referenced by db_open_record(), and db_send_changed_records().

4.43.1.4 voidx RECORD_LIST::data
Definition at line 393 of file msystem.h.

Referenced by db_open_record(), db_send_changed_records(), and db_update_-
record().

4.43.15 void(*x RECORD_LIST::dispatcher)(INT, INT, void x)
Referenced by db_open_record(), and db_update_record().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

444 REQUEST_LIST Struct Reference 274

44316 HNDLE RECORD_LIST::handle
Definition at line 390 of file msystem.h.

Referenced by db_close_all_records(), db_close_record(), db_open_record(), and db_-
update_record().

4.43.1.7 HNDLE RECORD_LIST::hDB
Definition at line 391 of file msystem.h.

Referenced by db_close_record(), and db_open_record().

4.43.1.8 void+« RECORD_LIST::info
Definition at line 397 of file msystem.h.

Referenced by db_open_record().

444 REQUEST_LIST Struct Reference

4.44.1 Field Documentation

44411 INT REQUEST_LIST::buffer_handle
Definition at line 404 of file msystem.h.

Referenced by bm_close_buffer(), bm_dispatch_event(), and bm_request_event().

4.44.1.2 void(x REQUEST_LIST::dispatcher)(HNDLE, HNDLE,
EVENT_HEADER , void)

Referenced by bm_dispatch_event(), and bm_request_event().

4.44.1.3 shortint REQUEST LIST::event_id
Definition at line 405 of file msystem.h.

Referenced by bm_request_event().

4.44.1.4 shortint REQUEST _LIST::trigger_mask
Definition at line 406 of file msystem.h.

Referenced by bm_request_event().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

445 RUNINFO Struct Reference 275

4.45 RUNINFO Struct Reference
4.45.1 Detailed Description
Contains the main parameters regarding the run status. The containt reflects the current

system ONLY if Midas clients are connected. Otherwise the status is erroneous.

Definition at line 1198 of file midas.h.

Data Fields

e INT state

¢ INT online_mode

e INT run_number

¢ INT transition_in_progress
* INT requested_transition

e char start_time [32]

* DWORD start_time_binary
* char stop_time [32]

* DWORD stop_time_binary

4.45.2 Field Documentation

4.45.2.1 INT RUNINFO::online_mode
Mode of operation online/offline
Definition at line 1200 of file midas.h.

Referenced by ana_end_of_run().

4.45.2.2 INT RUNINFO::requested_transition
Deferred transition request

Definition at line 1203 of file midas.h.

4.45.2.3 INT RUNINFO::run_number
Current processing run number
Definition at line 1201 of file midas.h.

Referenced by ana_end_of_run().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

446 SCALER_COMMON Struct Reference 276

4.45.2.4 char RUNINFO::start_time[32]
ASCII of the last start time
Definition at line 1204 of file midas.h.

Referenced by ana_end_of_run().

44525 DWORD RUNINFO::start_time_binary
Bin of the last start time
Definition at line 1205 of file midas.h.

4.45.2.6 INT RUNINFO::state
Current run condition

Definition at line 1199 of file midas.h.

4.45.2.7 char RUNINFO::stop_time[32]
ASCII of the last stop time
Definition at line 1206 of file midas.h.

4.45.2.8 DWORD RUNINFO::stop_time_binary
ASCII of the last stop time
Definition at line 1207 of file midas.h.

4.45.2.9 INT RUNINFO::transition_in_progress
Intermediate state during transition

Definition at line 1202 of file midas.h.

446 SCALER_COMMON Struct Reference

4.46.1 Field Documentation

4.46.1.1 char SCALER_COMMON::buffer[32]

Definition at line 181 of file experim.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

446 SCALER_COMMON Struct Reference 277

4.46.1.2 BOOL SCALER_COMMON::enabled

Definition at line 185 of file experim.h.

4.46.1.3 WORD SCALER_COMMON::event_id

Definition at line 179 of file experim.h.

4.46.1.4 double SCALER_COMMON::event_limit

Definition at line 188 of file experim.h.

4.46.1.5 char SCALER_COMMON::format[8]

Definition at line 184 of file experim.h.

4.46.1.6 char SCALER_COMMON::frontend_file_name[256]

Definition at line 193 of file experim.h.

4.46.1.7 char SCALER_COMMON::frontend_host[32]

Definition at line 191 of file experim.h.

4.46.1.8 char SCALER_COMMON::frontend_name[32]

Definition at line 192 of file experim.h.

4.46.1.9 INT SCALER_COMMON::log_history

Definition at line 190 of file experim.h.

4.46.1.10 DWORD SCALER_COMMON::num_subevents

Definition at line 189 of file experim.h.

4.46.1.11 INT SCALER_COMMON::period

Definition at line 187 of file experim.h.

4.46.1.12 INT SCALER_COMMON::read_on

Definition at line 186 of file experim.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

447 TAG Struct Reference 278

4.46.1.13 INT SCALER_COMMON::source

Definition at line 183 of file experim.h.

4.46.1.14 WORD SCALER_COMMON::trigger_mask

Definition at line 180 of file experim.h.

4.46.1.15 INT SCALER_COMMON::type

Definition at line 182 of file experim.h.

447 TAG Struct Reference

Data Fields

e char name [NAME_LENGTH]
* DWORD type
¢ DWORD n_data

4.47.1 Field Documentation

44711 DWORD TAG::n_data

Definition at line 1023 of file midas.h.

4.47.1.2 char TAG::name[NAME_LENGTH]

Definition at line 1021 of file midas.h.

4.47.1.3 DWORD TAG::type

Definition at line 1022 of file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

448 TR_CLIENT Struct Reference 279

448 TR_CLIENT Struct Reference
4.48.1 Detailed Description
AOX skttt sk s ook sk sk sk sk sk sk sk skt s s ook ok sk sk sk sk sk sk skt ok sk ook ok sk sk sk sk sk sk kot ok skokokok sk ok ok ok

Definition at line 2943 of file midas.c.

4.48.2 Field Documentation

4.48.2.1 char TR_CLIENT::client_ name[NAME_LENGTH]

Definition at line 2946 of file midas.c.

4.48.2.2 char TR_CLIENT::host name[HOST_NAME_LENGTH]

Definition at line 2945 of file midas.c.

4.48.2.3 int TR_CLIENT::port
Definition at line 2947 of file midas.c.

Referenced by cm_transition().

4.48.2.4 int TR_CLIENT::sequence_number
Definition at line 2944 of file midas.c.
Referenced by cm_transition().

449 TRIGGER_COMMON Struct Reference

4.49.1 Field Documentation

4.49.1.1 char TRIGGER_COMMON::buffer[32]

Definition at line 125 of file experim.h.

4.49.1.2 BOOL TRIGGER_COMMON::enabled

Definition at line 129 of file experim.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

449 TRIGGER_COMMON Struct Reference 280

4.49.1.3 WORD TRIGGER_COMMON::event_id

Definition at line 123 of file experim.h.

4.49.1.4 double TRIGGER_COMMON::event_limit

Definition at line 132 of file experim.h.

4.49.1.5 char TRIGGER_COMMON::format[8]

Definition at line 128 of file experim.h.

4.49.1.6 char TRIGGER_COMMON::frontend_file_name[256]

Definition at line 137 of file experim.h.

4.49.1.7 char TRIGGER_COMMON::frontend_host[32]

Definition at line 135 of file experim.h.

4.49.1.8 char TRIGGER_COMMON::frontend_name[32]

Definition at line 136 of file experim.h.

449.19 INT TRIGGER_COMMON::log_history

Definition at line 134 of file experim.h.

4.49.1.10 DWORD TRIGGER_COMMON::num_subevents

Definition at line 133 of file experim.h.

4.49.1.11 INT TRIGGER_COMMON::period

Definition at line 131 of file experim.h.

449.1.12 INT TRIGGER_COMMON::read_on

Definition at line 130 of file experim.h.

4.49.1.13 INT TRIGGER_COMMON::source

Definition at line 127 of file experim.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

450 TRIGGER_SETTINGS Struct Reference 281

4.49.1.14 WORD TRIGGER_COMMON::trigger_mask

Definition at line 124 of file experim.h.

449.1.15 INT TRIGGER_COMMON::type

Definition at line 126 of file experim.h.

450 TRIGGER_SETTINGS Struct Reference

450.1 Field Documentation

450.1.1 BYTE TRIGGER_SETTINGS::i0506

Definition at line 163 of file experim.h.

5 MidasFile Documentation

5.1 adccalib.c File Reference

5.1.1 Define Documentation

5.1.1.1 #define ADC_N_BINS 500

Definition at line 67 of file adccalib.c.

5.1.1.2 #define ADC_X_HIGH 4000

Definition at line 69 of file adccalib.c.

5.1.1.3 #define ADC_X_LOW 0

Definition at line 68 of file adccalib.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.1 adccalib.c File Reference 282

5.1.2 Function Documentation

5.1.2.1 INT adc_calib (EVENT_HEADER x, void x)
Definition at line 106 of file adccalib.c.

5.1.2.2 INT adc_calib_bor (INT run_number)

Definition at line 92 of file adccalib.c.

5.1.2.3 INT adc_calib_eor (INT run_number)

Definition at line 99 of file adccalib.c.

5.1.2.4 INT adc_calib_init (void)

Definition at line 71 of file adccalib.c.

5.1.25 ADC_CALIBRATION_PARAM STR (adc_calibration_param_str)

5.1.3 Variable Documentation

5.1.3.1 ANA_MODULE adc_calib_module

Initial value:

"ADC calibration”,

"Stefan Ritt",

adc_calib,

adc_calib_bor,
adc_calib_eor,
adc_calib_init,

NULL,

&adccalib_param,
sizeof(adccalib_param),
adc_calibration_param_str,

Definition at line 48 of file adccalib.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.2 adcsum.c File Reference 283

5.1.3.2 ADC_CALIBRATION_PARAM adccalib_param
Definition at line 35 of file adccalib.c.

Referenced by adc_calib().

5.1.3.3 EXP_PARAM exp_param
Definition at line 51 of file analyzer.c.

Referenced by ana_end_of_run(), and analyzer_init().

5.1.3.4 THI1Dx hAdcHists[IN_ADC] [stati c]
Definition at line 63 of file adccalib.c.

Referenced by adc_calib(), and adc_calib_init().

5.1.3.5 RUNINFO runinfo
Definition at line 49 of file analyzer.c.

Referenced by ana_end_of_run(), and analyzer_init().

5.2 adcsum.c File Reference

5.2.1 Define Documentation

5.2.1.1 #define DEFINE_TESTS

Definition at line 22 of file adcsum.c.

5.2.1.2 #define Pl 3.14159265359

Definition at line 33 of file adcsum.c.

5.2.2 Function Documentation

5.2.2.1 INT adc_summing (EVENT_HEADER x, void %)

Definition at line 87 of file adcsum.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.2 adcsum.c File Reference 284

5.2.2.2 INT adc_summing_bor (INT run_number)

5.2.2.3 INT adc_summing_init (void)

Definition at line 72 of file adcsum.c.

5.2.2.4 ADC_SUMMING_PARAM_STR (adc_summing_param_str)

5.2.25 DEF_TEST (high_sum)

52.2.6 DEF_TEST (low_sum)

5.2.3 Variable Documentation

5.2.3.1 ANA_MODULE adc_summing_module

Initial value:

{

"ADC summing',

"Stefan Ritt",
adc_summing,

NULL,

NULL,

adc_summing_init,

NULL,

&adc_summing_param,
sizeof(adc_summing_param),
adc_summing_param_str,

Definition at line 53 of file adcsum.c.

5.2.3.2 ADC_SUMMING_PARAM adc_summing_param
Definition at line 38 of file adcsum.c.

Referenced by adc_summing().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.3 analyzer.c File Reference 285

5.2.3.3 THI1D x hAdcAvg [static]
Definition at line 68 of file adcsum.c.

Referenced by adc_summing(), and adc_summing_init().

5.2.3.4 THI1Dx hAdcSum [static]
Definition at line 68 of file adcsum.c.

Referenced by adc_summing(), and adc_summing_init().

5.3 analyzer.c File Reference

5.3.1 Function Documentation

5.3.1.1 INT ana_begin_of run (INT run_number, char x error)

Definition at line 199 of file analyzer.c.

5.3.1.2 INT ana_end_of run (INT run_number, char x error)

Definition at line 206 of file analyzer.c.

5.3.1.3 INT ana_pause_run (INT run_number, char « error)

Definition at line 263 of file analyzer.c.

5.3.1.4 INT ana_resume_run (INT run_number, char x error)

Definition at line 270 of file analyzer.c.

5.3.1.5 INT analyzer_exit ()

Definition at line 192 of file analyzer.c.

5.3.1.6 INT analyzer_init ()

Definition at line 137 of file analyzer.c.

5.3.1.7 INT analyzer_loop ()

Definition at line 277 of file analyzer.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.3 analyzer.c File Reference 286

5.3.1.8 ASUM_BANK_STR (asum_bank_str)

5.3.2 Variable Documentation

5.3.2.1 ANA_MODULE adc_calib_module

Definition at line 48 of file adccalib.c.

5.3.22 ANA_MODULE adc_summing_module

Definition at line 53 of file adcsum.c.

5.3.2.3 BANK LIST ana_scaler_bank_list[]

Initial value:

{"SCLR", TID_DWORD, N_ADC, NULL},

{"ACUM"™, TID_DOUBLE, N_ADC, NULL},
oy,
}

Definition at line 88 of file analyzer.c.

5.3.2.4 BANK _LIST ana_trigger_bank_list[]

Initial value:

{"'ADCO", TID_WORD, N_ADC, NULL},
{'TDCO", TID_WORD, N_TDC, NULL},

{"CADC", TID_FLOAT, N_ADC, NULL},
{""ASUM", TID_STRUCT, sizeof(ASUM_BANK), asum_bank_str},

{3,
¥

Definition at line 75 of file analyzer.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.3 analyzer.c File Reference 287

5.3.25 ANALYZE_REQUEST analyze request[]

Definition at line 99 of file analyzer.c.

5.3.2.6 INT analyzer_loop_period =0

Definition at line 43 of file analyzer.c.

5.3.2.7 charx analyzer_name = "Analyzer"
Definition at line 40 of file analyzer.c.

Referenced by analyzer_init().

5.3.2.8 EXP_PARAM exp_param
Definition at line 51 of file analyzer.c.

Referenced by ana_end_of_run(), and analyzer_init().

5.3.29 GLOBAL_PARAM global_param

Definition at line 50 of file analyzer.c.

5.3.2.10 INT odb_size = DEFAULT_ODB_SIZE
Definition at line 46 of file analyzer.c.

Referenced by cm_connect_experiment]1().

5.3.2.11 RUNINFO runinfo
Definition at line 49 of file analyzer.c.

Referenced by ana_end_of_run(), and analyzer_init().

5.3.2.12 ANA_MODULE scaler_accum_module

Definition at line 32 of file scaler.c.

5.3.2.13 ANA_MODULE=x scaler_module[]

Initial value:

{

&scaler_accum_module,
NULL

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.4 analyzer.dox File Reference 288

Definition at line 60 of file analyzer.c.

5.3.2.14 ANA_MODULE=x trigger_module[]

Initial value:

&adc_calib_module,
&adc_summing_module,
NULL

Definition at line 65 of file analyzer.c.

53.2.15 TRIGGER_SETTINGS trigger_settings

Definition at line 52 of file analyzer.c.

5.4 analyzer.dox File Reference

5.5 appendixA.dox File Reference

5.6 appendixB.dox File Reference

5.7 appendixC.dox File Reference

5.8 appendixD.dox File Reference

5.9 appendixE.dox File Reference

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.10 appendixG.dox File Reference 289

5.10 appendixG.dox File Reference

5.11 components.dox File Reference

5.12 ebuser.c File Reference
5.12.1 Detailed Description

The Event builder user file

Definition in file ebuser.c.

Functions

* INT eb_begin_of_run (INT, char %, char)

e INT eb_end_of run (INT, char x)

* INT eb_user (INT nfrag, BOOL mismatch, EBUILDER_CHANNEL =xebch,
EVENT_HEADER sxpheader, void *pevent, INT xdest_size)

Variables

e INT IModulo = 100

5.12.2 Function Documentation

5.12.2.1 INT eb_begin_of run (INT rn, char x UserField, char * error)
Hook to the event builder task at PreStart transition.
Parameters:

rn run number

UserField argument from /Ebuilder/Settings

error error string to be passed back to the system.

Returns:
EB_SUCCESS

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.12 ebuser.c File Reference 290

Referenced by tr_start().

5.12.2.2 INT eb_end_of _run (INT rn, char x error)

Hook to the event builder task at completion of event collection after receiving the Stop
transition.

Parameters:
rn run number

error error string to be passed back to the system.

Returns:
EB_SUCCESS

Referenced by close_buffers().

5.12.2.3 INT eb_user (INT nfrag, BOOL mismatch, EBUILDER_CHANNEL x
ebch, EVENT_HEADER x pheader, void x pevent, INT x dest_size)

Hook to the event builder task after the reception of all fragments of the same serial
number. The destination event has already the final EVENT_HEADER setup with the
data size set to 0. It is than possible to add private data at this point using the proper
bank calls.

The ebch[] array structure points to nfragment channel structure with the following
content:

typedef struct {

char name[32]; // Fragment name (Buffer name).
DWORD serial; // Serial fragment number.
char *pfragment; // Pointer to fragment (EVENT_HEADER *)

} EBUILDER_CHANNEL;

The correct code for including your own MIDAS bank is shown below where TID_xxx
is one of the valid Bank type starting with TID_ for midas format or xxx_BKTYPE
for Ybos data format. bank_name is a 4 character descriptor. pdata has to be de-
clared accordingly with the bank type. Refers to the ebuser.c source code for further
description.

It is not possible to mix within the same destination event different event format!

// Event is empty, fill it with BANK_HEADER
// 1f you need to add your own bank at this stage

bk_init(pevent);

bk_create(pevent, bank_name, TID_xxxx, &pdata);
*pdata++ = _._;

*dest_size = bk_close(pevent, pdata);
pheader->data_size = *dest_size + sizeof(EVENT_HEADER);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.12 ebuser.c File Reference

291

For YBOS format, use the following example.

ybk_init(pevent);

ybk_create(pevent, "EBBK"™, 14 _BKTYPE, &pdata);

*pdata++ = 0x12345678;

*pdata++ = 0x87654321;

*dest_size = ybk_close(pevent, pdata);

*dest_size *= 4;

pheader->data_size = *dest_size + sizeof(YBOS_BANK_HEADER);

Parameters:
nfrag Number of fragment.

mismatch Midas Serial number mismatch flag.
ebch Structure to all the fragments.

pheader Destination pointer to the header.
pevent Destination pointer to the bank header.

dest_size Destination event size in bytes.

Returns:
EB_SUCCESS

Definition at line 187 of file ebuser.c.

Referenced by source_scan().

5.12.2.4 INT ebuilder_exit ()

5.12.2.5 INT ebuilder_init ()

5.12.2.6 INT ebuilder_loop ()

5.12.2.7 INT ebuser (INT, BOOL mismatch, EBUILDER_CHANNEL x,

EVENT_HEADER x, void *, INT x)

5.12.2.8 INT read_scaler_event (char * pevent, INT off)

Definition at line 341 of file frontend.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.12 ebuser.c File Reference 292

5.12.3 Variable Documentation

5.12.3.1 BOOL debug

Definition at line 68 of file mfe.c.

5.12.3.2 INT display_period = 3000

Definition at line 32 of file ebuser.c.

5.12.3.3 EBUILDER_SETTINGS ebset
Definition at line 29 of file mevb.c.

Referenced by eb_user(), handFlush(), main(), source_booking(), source_scan(), and
tr_start().

5.12.3.4 BOOL ebuilder_call_loop = FALSE

Definition at line 29 of file ebuser.c.

5.12.3.5 EQUIPMENT equipment[]

Initial value:

€
es,

1,
"SYSTEM™,
0,
0,
"MIDAS",
TRUE,
3.

%,

{3
¥

Definition at line 59 of file ebuser.c.

5.12.3.6 INT event_buffer_size = 10 x 10000

Definition at line 41 of file ebuser.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 293

5.12.3.7 charx frontend_file_ name=__ FILE _

Definition at line 26 of file ebuser.c.

5.12.3.8 charx frontend_name = ""Ebuilder"

Definition at line 23 of file ebuser.c.

5.12.3.9 INT IModulo =100
Global var for testing passed at BOR.
Globals

Definition at line 45 of file ebuser.c.

Referenced by eb_begin_of_run().

5.12.3.10 INT max_event size = 10000

Definition at line 35 of file ebuser.c.

5.12.3.11 INT max_event_size frag =5 x 1024 x 1024

Definition at line 38 of file ebuser.c.

5.13 esone.c File Reference
5.13.1 Detailed Description

The ESONE CAMAC standard call file

Definition in file esone.c.

Functions

¢ INLINE void ccinit (void)

¢ INLINE int fccinit (void)

* INLINE void cdreg (int *ext, const int b, const int ¢, const int n, const int a)
* INLINE void cssa (const int f, int ext, unsigned short *d, int xq)

* INLINE void cfsa (const int f, const int ext, unsigned long *d, int xq)

e INLINE void cccc (const int ext)

e INLINE void cccz (const int ext)

e INLINE void ccci (const int ext, int 1)

e INLINE void ctci (const int ext, int *I)

e INLINE void cccd (const int ext, int 1)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 294

¢ INLINE void ctcd (const int ext, int 1)

e INLINE void cdlam (int xlam, const int b, const int ¢, const int n, const int a,
const int inta[2])

* INLINE void ctgl (const int ext, int *I)

e INLINE void cclm (const int lam, int 1)

e INLINE void cclnk (const int lam, void(xisr)(void))

e INLINE void cculk (const int lam)

» INLINE void ccrgl (const int lam)

e INLINE void cclc (const int lam)

e INLINE void ctlm (const int lam, int *I)

» INLINE void cfga (int f[|, int exta[], int intc[], int qa[], int cb[])

» INLINE void csga (int f[], int exta[], int intc[], int qa[], int cb[])

e INLINE void cfmad (int f, int extb[], int intc[], int cb[])

e INLINE void csmad (int f, int extb[], int intc[], int cb[])

e INLINE void cfubc (const int f, int ext, int intc[], int cb[])

e INLINE void csubc (const int f, int ext, int intc[], int cb[])

e INLINE void cfubr (const int f, int ext, int intc[], int cb[])

e INLINE void csubr (const int f, int ext, int intc[], int cb[])

5.13.2 Function Documentation

5.13.2.1 INLINE void cccc (const int ext)
Control Crate Clear.

Generate Crate Clear function. Execute cam_crate_clear()

Parameters:
ext external address

Returns:
void

Definition at line 188 of file esone.c.

5.13.2.2 INLINE void cccd (const int ext, int I)
Control Crate D.

Enable or Disable Crate Demand.

Parameters:
ext external address

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 295

| action 1=0 -> Clear D, 1=1 -> Set D

Returns:
void

Definition at line 262 of file esone.c.

5.13.2.3 INLINE void ccci (const int ext, int I)
Control Crate I.
Set or Clear Dataway Inhibit, Execute cam_inhinit_set() /clear()

Parameters:
ext external address

| action 1=0 -> Clear I, 1=1 -> Set I

Returns:
void

Definition at line 223 of file esone.c.

5.13.2.4 INLINE void cccz (const int ext)
Control Crate Z.

Generate Dataway Initialize. Execute cam_crate_zinit()

Parameters:
ext external address

Returns:
void

Definition at line 205 of file esone.c.
5.13.2.5 INLINE void ccinit (void)

CAMAC initialization
CAMAC initialization must be called before any other ESONE subroutine call.

Returns:
void

Definition at line 67 of file esone.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 296

5.13.2.6 INLINE void cclc (const int lam)
Control Clear LAM.
Clear the LAM of the station pointer by the lam address.

Parameters:
lam external address

Returns:
void

Definition at line 423 of file esone.c.

5.13.2.7 INLINE void cclm (const int lam, int I)
Control Crate LAM.
Enable or Disable LAM. Execute F24 for disable, F26 for enable.

Parameters:
lam external address

| action 1=0 -> disable LAM , I=1 -> enable LAM

Returns:
void

Definition at line 343 of file esone.c.

5.13.2.8 INLINE void cclnk (const int lam, void(x)(void) isr)
Link LAM to service procedure

Link a specific service routine to a LAM. Since this routine is executed asynchronously,
care must be taken on re-entrancy.

Parameters:
lam external address

isr name of service procedure

Returns:
void

Definition at line 366 of file esone.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 297

5.13.2.9 INLINE void ccrgl (const int lam)
Relink LAM
Re-enable LAM in the controller

Parameters:
lam external address

Returns:
void

Definition at line 403 of file esone.c.

5.13.2.10 INLINE void cculk (const int lam)
Unlink LAM from service procedure
Performs complementary operation to cclnk.

Parameters:
lam external address

Returns:
void

Definition at line 386 of file esone.c.

5.13.2.11 INLINE void cdlam (int « lam, const int b, const int ¢, const int n, const
int a, const int inta[2])

Control Declare LAM.
Declare LAM, Identical to cdreg.

Parameters:
lam external LAM address

b branch number (0..7)
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

inta implementation dependent

Returns:
void

Definition at line 306 of file esone.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 298

5.13.2.12 INLINE void cdreg (int * ext, const int b, const int ¢, const int n, const
int a)

Control Declaration REGister.

Compose an external address from BCNA for later use. Accessing CAMAC
through ext could be faster if the external address is memory mapped to the pro-
cessor (hardware dependent). Some CAMAC controller do not have this option see
Supported hardware.

Parameters:
ext external address

b branch number (0..7)
¢ crate number (0..)

n station number (0..30)
a sub-address (0..15)

Returns:
void

Definition at line 104 of file esone.c.

Referenced by cdlam().

5.13.2.13 INLINE void cfga (int f[], int exta[], int intc[], int ga[], int cb[])
Control Full (24bit) word General Action.

Parameters:
f function code

exta[] external address array
intc[] data array
ga[] Q response array

cb[] control block array
¢b[0] : number of function to perform
cb[1] : returned number of function performed

Returns:
void

Definition at line 462 of file esone.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 299

5.13.2.14 INLINE void cfmad (int f, int extb[], int intc[], int cb[])
Control Full (24bit) Address Q scan.

Scan all sub-address while Q=1 from a0..al15 max from address extb[0] and store cor-
responding data in intc[]. If Q=0 while A<15 or A=15 then cross station boundary
is applied (n-> n+1) and sub-address is reset (a=0). Perform action until either cb[0]
action are performed or current external address exceeds extb[1].

implementation of cb[2] for LAM recognition is not implemented.

Parameters:
f function code

extb[] external address array
extb[0] : first valid external address
extb[1] : last valid external address
intc[] data array
cb[] control block array
¢b[0] : number of function to perform
cb[1] : returned number of function performed

Returns:
void

Definition at line 516 of file esone.c.

5.13.2.15 INLINE void cfsa (const int f, const int ext, unsigned long = d, int * q)

Control Full Operation.
24 bit operation on a given external CAMAC address.

The range of the f is hardware dependent. The number indicated below are for standard
ANSI/IEEE Std (758-1979) Execute cam24i for <8, cam24o for f>15, camc_q for
(>7 or £>23)

Parameters:
f function code (0..31)

ext external address
d data long word
g Q response

Returns:
void

Definition at line 160 of file esone.c.

Referenced by cfga(), cfubc(), and cfubr().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 300

5.13.2.16 INLINE void cfubc (const int f, int ext, int intc[], int cb[])
Control Full (24bit) Block Repeat with Q-stop.

Execute function f on address ext with data intc[] while Q.

Parameters:
f function code

ext external address array
intc[] data array

cb[] control block array
¢b[0] : number of function to perform
cb[1] : returned number of function performed

Returns:
void

Definition at line 613 of file esone.c.

5.13.2.17 INLINE void cfubr (const int f, int ext, int intc[], int cb[])
Repeat Mode Block Transfer (24bit).

Execute function f on address ext with data intc[] if Q. If noQ keep current intc[] data.
Repeat cb[0] times.

Parameters:
f function code

ext external address array
intc[] data array

cb[] control block array
¢b[0] : number of function to perform
cb[1] : returned number of function performed

Returns:
void

Definition at line 676 of file esone.c.

5.13.2.18 INLINE void csga (int f[], intexta[], int intc[], int ga[], int cb[])

Control (16bit) word General Action.

Parameters:
f function code

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 301

exta[] external address array
intc[] data array
ga[] Q response array

cb[] control block array
¢b[0] : number of function to perform
cb[1] : returned number of function performed

Returns:
void

Definition at line 485 of file esone.c.

5.13.2.19 INLINE void csmad (int f, int extb[], int intc[], int cb[])
Control (16bit) Address Q scan.

Scan all sub-address while Q=1 from a0..al5 max from address extb[0] and store cor-
responding data in intc[]. If Q=0 while A<15 or A=15 then cross station boundary
is applied (n-> n+1) and sub-address is reset (a=0). Perform action until either cb[0]
action are performed or current external address exceeds extb[1].

implementation of cb[2] for LAM recognition is not implemented.

Parameters:
f function code

extb[] external address array
extb[0] : first valid external address
extb[1] : last valid external address

intc[] data array

cb[] control block array
¢b[0] : number of function to perform
cb[1] : returned number of function performed

Returns:
void

Definition at line 568 of file esone.c.
5.13.2.20 INLINE void cssa (const int f, int ext, unsigned short * d, int x q)

Control Short Operation.

16 bit operation on a given external CAMAC address.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 302

The range of the f is hardware dependent. The number indicated below are for standard
ANSI/IEEE Std (758-1979) Execute cam16i for <8, cam160o for f>15, camc_q for
(>7 or £>23)

Parameters:
f function code (0..31)

ext external address
d data word

g Q response

Returns:
void
Definition at line 125 of file esone.c.

Referenced by csga(), csubc(), and csubr().

5.13.2.21 INLINE void csubc (const int f, int ext, int intc[], int cb[])
Control (16bit) Block Repeat with Q-stop.
Execute function f on address ext with data intc[] while Q.

Parameters:
f function code

ext external address array
intc[] data array

cb[] control block array
¢cb[0] : number of function to perform
cb[1] : returned number of function performed

Returns:
void

Definition at line 644 of file esone.c.

5.13.2.22 INLINE void csubr (const int f, int ext, int intc[], int cb[])
Repeat Mode Block Transfer (16bit).
Execute function f on address ext with data intc[] if Q. If noQ keep current intc[] data.

Repeat cb[0] times.

Parameters:
f function code

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.13 esone.c File Reference 303

ext external address array
intc[] data array

cb[] control block array
¢cb[0] : number of function to perform
cb[1] : returned number of function performed

Returns:
void

Definition at line 707 of file esone.c.

5.13.2.23 INLINE void ctcd (const int ext, int x [)
Control Test Crate D.

Test Crate Demand.

Parameters:
ext external address

| D cleared -> 1=0, D set -> 1=1

Returns:
void

Definition at line 284 of file esone.c.
5.13.2.24 INLINE void ctci (const int ext, int x I)

Test Crate 1.

Test Crate Inhibit, Execute cam_inhibit_test()

Parameters:
ext external address

| action 1=0 -> Clear I, 1=1 -> Set I

Returns:
void

Definition at line 244 of file esone.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.14 eventbuilder.dox File Reference 304

5.13.2.25 INLINE void ctgl (const int ext, int x I)
Control Test Demand Present.

Test the LAM register.

Parameters:
ext external LAM register address

| 1!=0if any LAM is set.

Returns:
void

Definition at line 323 of file esone.c.
5.13.2.26 INLINE void ctlm (const int lam, int « I)

Test LAM.
Test the LAM of the station pointed by lam. Performs an F8

Parameters:
lam external address

| No LAM-> 1=0, LAM present-> 1=1

Returns:
void

Definition at line 441 of file esone.c.

5.13.2.27 INLINE int fccinit (void)
CAMAC initialization with return status

fccinit can be called instead of ccinit to determine if the initialization was successful

Returns:
1 for success, 0 for failure

Definition at line 81 of file esone.c.

5.14 eventbuilder.dox File Reference

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.15 experim.h File Reference

305

5.15 experim.h File Reference

Data Structures

e struct EXP_PARAM

e struct ADC_CALIBRATION_PARAM
e struct ADC_SUMMING_PARAM

* struct GLOBAL_PARAM

¢ struct ASUM_BANK

e struct TRIGGER_COMMON

e struct TRIGGER_SETTINGS

e struct SCALER_COMMON

5.15.1 Define Documentation

5.15.1.1 #define ADC_CALIBRATION_PARAM_DEFINED

Definition at line 38 of file experim.h.

5.15.1.2 #define ADC_CALIBRATION_PARAM_STR(_name)

Value:

char *_name[] = {\
“[.1°N

""Pedestal
"[0] 174",

INT[8] :",\

\
"[1] 194"\
"[2] 176",\
"[3] 182",\
"[4] 185",\
"[5] 215",\
"[6] 202",\
"[7] 202",\
"Software G
“[0] 1",
“[1]
“[2]
"[3]
“[4]
"[5]
“[6]
“[7] 1,
"Histo threshold = DOUBLE : 20",\
e\

NULL }

ain = FLOAT[8] :".\

RRrRrRRR
o,

Definition at line 46 of file experim.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.15 experim.h File Reference 306

5.15.1.3 #define ADC_SUMMING_PARAM_DEFINED

Definition at line 74 of file experim.h.

5.15.1.4 #define ADC_SUMMING_PARAM_STR(_name)

Value

char *_name[] = {\

“[17N\

"ADC threshold = FLOAT : 5",\
AN

NULL }

Definition at line 80 of file experim.h.

5.15.1.5 #define ASUM_BANK_DEFINED

Definition at line 106 of file experim.h.

5.15.1.6 #define ASUM_BANK_STR(_name)

Value

char *_name[] = {\
"1\

"Sum = FLOAT : 0",\
"Average = FLOAT : 0",\
RN

NULL }

Definition at line 113 of file experim.h.

5.15.1.7 #define EXP_PARAM_DEFINED

Definition at line 24 of file experim.h.

5.15.1.8 #define EXP_PARAM_STR(_name)

Value

char *_name[] = {\

L1\

"Comment = STRING : [80] Test",\
RN

NULL }

Definition at line 30 of file experim.h.

Referenced by analyzer_init().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.15 experim.h File Reference 307

5.15.1.9 #define GLOBAL_PARAM_DEFINED

Definition at line 90 of file experim.h.

5.15.1.10 #define GLOBAL_PARAM_STR(_name)

Value:

char *_name[] = {\

“[17N\

"ADC Threshold = FLOAT : 5",\
e\

NULL }

Definition at line 96 of file experim.h.

Referenced by analyzer_init().

5.15.1.11 #define SCALER_COMMON_DEFINED

Definition at line 176 of file experim.h.

5.15.1.12 #define SCALER_COMMON_STR(_name)

Value:

char *_name[] = {\

"1\

“"Event ID = WORD : 2",\

"Trigger mask = WORD : 0",\

"Buffer = STRING : [32] SYSTEM",\

“Type = INT : 17",\

"Source = INT : 0",\

"Format = STRING : [8] MIDAS",\

"Enabled BOOL : y",\

"Read on INT : 377",\

"Period = INT : 10000",\

"Event limit = DOUBLE : 0",\

“Num subevents = DWORD : 0",\

"Log history = INT : 0",\

"Frontend host = STRING : [32] pc810",\

"Frontend name = STRING : [32] Sample Frontend",\
"Frontend file name = STRING : [256] C:\Midas\examples\experiment\frontend.c",\
e\

NULL }

Definition at line 196 of file experim.h.

5.15.1.13 #define TRIGGER_COMMON_DEFINED

Definition at line 120 of file experim.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.16 frontend.c File Reference 308

5.15.1.14 #define TRIGGER_COMMON_STR(_name)

Value:

char *_name[] = {\

20 AN

"Event ID = WORD : 1",\

"Trigger mask = WORD : 0",\
"Buffer = STRING : [32] SYSTEM",\
"Type = INT o 2",\

"Source = INT : 16777215",\

"Format = STRING : [8] MIDAS",\
"Enabled = BOOL : y",\
"Read on = INT : 257",\

"Period = INT : 500",\

"Event limit = DOUBLE : 0",\

“Num subevents = DWORD : 0",\

"Log history = INT : 0",\

"Frontend host = STRING : [32] pc810",\

"Frontend name = STRING : [32] Sample Frontend",\

"Frontend file name = STRING : [256] C:\Midas\examples\experiment\frontend.c",\
e\

NULL }

Definition at line 140 of file experim.h.

5.15.1.15 #define TRIGGER_SETTINGS_DEFINED

Definition at line 160 of file experim.h.

5.15.1.16 #define TRIGGER_SETTINGS_STR(_name)
Value:

char *_name[] = {\
[0\

10506 = BYTE : 7",\
e\

NULL }

Definition at line 166 of file experim.h.

Referenced by analyzer_init().

5.16 frontend.c File Reference

5.16.1 Define Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.16 frontend.c File Reference 309

5.16.1.1 #define CRATE 0O
Definition at line 56 of file frontend.c.

Referenced by frontend_init(), read_scaler_event(), and read_trigger_event().

5.16.1.2 #define N_ADC 4
Definition at line 51 of file frontend.c.

Referenced by adc_calib().

5.16.1.3 #define N_SCLR 4

Definition at line 53 of file frontend.c.

5.16.1.4 #define N_TDC 4

Definition at line 52 of file frontend.c.

5.16.1.5 #define SLOT_ADC 1
Definition at line 58 of file frontend.c.

Referenced by read_trigger_event().

5.16.1.6 #define SLOT_I10O 23
Definition at line 57 of file frontend.c.

Referenced by frontend_init(), and read_trigger_event().

5.16.1.7 #define SLOT_SCLR 3
Definition at line 60 of file frontend.c.

Referenced by read_scaler_event().

5.16.1.8 #define SLOT_TDC 2
Definition at line 59 of file frontend.c.

Referenced by read_trigger_event().

5.16.2 Function Documentation

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.16 frontend.c File Reference 310

5.16.2.1 INT begin_of run (INT run_number, char * error)
Referenced by tr_start().

5.16.2.2 INT end_of _run (INT run_number, char x* error)

Referenced by tr_stop().

5.16.2.3 INT frontend_exit ()

5.16.2.4 INT frontend_init ()

5.16.2.5 INT frontend_loop ()

5.16.2.6 INT interrupt_configure (INT cmd, INT source, POINTER_T adr)
Definition at line 254 of file frontend.c.

Referenced by main(), readout_enable(), and register_equipment().

5.16.2.7 INT pause_run (INT run_number, char * error)

Referenced by tr_pause().

5.16.2.8 INT poll_event (INT source, INT count, BOOL test)
Definition at line 233 of file frontend.c.

Referenced by readout_thread(), register_equipment(), and scheduler().

5.16.2.9 INT read_scaler_event (char * pevent, INT off)

5.16.2.10 INT read_trigger_event (char * pevent, INT off)

Definition at line 271 of file frontend.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.16 frontend.c File Reference 311

5.16.2.11 void register_cnaf_callback (int debug)

Referenced by frontend_init().

5.16.2.12 INT resume_run (INT run_number, char * error)

Referenced by tr_resume().

5.16.3 Variable Documentation

5.16.3.1 INT display_period = 3000

Definition at line 39 of file frontend.c.

5.16.3.2 EQUIPMENT equipment[]

Definition at line 79 of file frontend.c.

5.16.3.3 INT event_buffer_size = 100 x 10000

Definition at line 48 of file frontend.c.

5.16.3.4 BOOL frontend_call_loop = FALSE

Definition at line 36 of file frontend.c.

5.16.3.5 charx frontend_file_ name=_ FILE _

Definition at line 33 of file frontend.c.

5.16.3.6 charx frontend_name = ""Sample Frontend

Definition at line 31 of file frontend.c.

5.16.3.7 INT max_event_size = 10000

Definition at line 42 of file frontend.c.

5.16.3.8 INT max_event_size frag =5 % 1024 x 1024

Definition at line 45 of file frontend.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.17 internal.dox File Reference 312

5.17 internal.dox File Reference

5.18 introduction.dox File Reference

5.19 mcstd.h File Reference
5.19.1 Detailed Description

The Midas CAMAC include file

Definition in file mcstd.h.

Functions

e EXTERNAL INLINE void EXPRT cam16i (const int ¢, const int n, const int a,
const int f, WORD xd)

e EXTERNAL INLINE void EXPRT cam?24i (const int ¢, const int n, const int a,
const int f, DWORD x*d)

* EXTERNAL INLINE void EXPRT cam8i_q (const int ¢, const int n, const int a,
const int f, BYTE xd, int *x, int *q)

* EXTERNAL INLINE void EXPRT cam16i_q (const int ¢, const int n, const int
a, const int f, WORD xd, int *x, int xq)

* EXTERNAL INLINE void EXPRT cam24i_q (const int ¢, const int n, const int
a, const int f, DWORD =xd, int *X, int *q)

e EXTERNAL INLINE void EXPRT cam16i_r (const int ¢, const int n, const int
a, const int f, WORD xxd, const int r)

e EXTERNAL INLINE void EXPRT cam?24i_r (const int ¢, const int n, const int
a, const int f, DWORD xx*d, const int r)

* EXTERNAL INLINE void EXPRT cam8i_rq (const int ¢, const int n, const int
a, const int f, BYTE #xd, const int r)

* EXTERNAL INLINE void EXPRT cam16i_rq (const int ¢, const int n, const int
a, const int f, WORD x*xd, const int r)

* EXTERNAL INLINE void EXPRT cam24i_rq (const int ¢, const int n, const int
a, const int f, DWORD xxd, const int r)

e EXTERNAL INLINE void EXPRT cam8i_sa (const int ¢, const int n, const int
a, const int f, BYTE #xd, const int r)

e« EXTERNAL INLINE void EXPRT cam16i_sa (const int ¢, const int n, const int
a, const int f, WORD #xd, const int r)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.19 mcstd.h File Reference 313

« EXTERNAL INLINE void EXPRT cam24i_sa (const int ¢, const int n, const int
a, const int f, DWORD x*xd, const int r)

e EXTERNAL INLINE void EXPRT cam8i_sn (const int ¢, const int n, const int
a, const int f, BYTE *xd, const int r)

e EXTERNAL INLINE void EXPRT cam16i_sn (const int ¢, const int n, const int
a, const int f, WORD x*xd, const int r)

e« EXTERNAL INLINE void EXPRT cam24i_sn (const int ¢, const int n, const int
a, const int f, DWORD xxd, const int r)

« EXTERNAL INLINE void EXPRT cami (const int ¢, const int n, const int a,
const int f, WORD x*d)

e EXTERNAL INLINE void EXPRT cam8o (const int ¢, const int n, const int a,
const int f, BYTE d)

e EXTERNAL INLINE void EXPRT cam160 (const int ¢, const int n, const int a,
const int f, WORD d)

e EXTERNAL INLINE void EXPRT cam24o (const int ¢, const int n, const int a,
const int f, DWORD d)

* EXTERNAL INLINE void EXPRT cam8o_q (const int c, const int n, const int
a, const int f, BYTE d, int *x, int *q)

* EXTERNAL INLINE void EXPRT cam160_q (const int ¢, const int n, const int
a, const int f, WORD d, int X, int *q)

* EXTERNAL INLINE void EXPRT cam240_q (const int ¢, const int n, const int
a, const int f, DWORD d, int *x, int *q)

e EXTERNAL INLINE void EXPRT cam8o_r (const int ¢, const int n, const int a,
const int f, BYTE xd, const int r)

e EXTERNAL INLINE void EXPRT cam160_r (const int ¢, const int n, const int
a, const int f, WORD xd, const int r)

« EXTERNAL INLINE void EXPRT cam24o_r (const int ¢, const int n, const int
a, const int f, DWORD xd, const int r)

e EXTERNAL INLINE void EXPRT camo (const int ¢, const int n, const int a,
const int f, WORD d)

e EXTERNAL INLINE int EXPRT camc_chk (const int ¢)

e EXTERNAL INLINE void EXPRT camc (const int ¢, const int n, const int a,
const int f)

* EXTERNAL INLINE void EXPRT camc_q (const int ¢, const int n, const int a,
const int f, int *q)

¢« EXTERNAL INLINE void EXPRT camc_sa (const int ¢, const int n, const int a,
const int f, const int r)

« EXTERNAL INLINE void EXPRT camc_sn (const int ¢, const int n, const int a,
const int f, const int r)

* EXTERNAL INLINE int EXPRT cam_init (void)

* EXTERNAL INLINE int EXPRT cam_init_rpc (char xhost_name, char
xexp_name, char xfe_name, char xclient_name, char *rpc_server)

e« EXTERNAL INLINE void EXPRT cam_exit (void)

e EXTERNAL INLINE void EXPRT cam_inhibit_set (const int ¢)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 314

¢« EXTERNAL INLINE void EXPRT cam_inhibit_clear (const int c)

¢« EXTERNAL INLINE int EXPRT cam_inhibit_test (const int c)

« EXTERNAL INLINE void EXPRT cam_crate_clear (const int ¢)

e EXTERNAL INLINE void EXPRT cam_crate_zinit (const int ¢)

e EXTERNAL INLINE void EXPRT cam_lam_enable (const int ¢, const int n)

 EXTERNAL INLINE void EXPRT cam_lam_disable (const int ¢, const int n)

¢ EXTERNAL void cam_lam_read (const int c, DWORD xlam)

o EXTERNAL INLINE void EXPRT cam_lam_clear (const int ¢, const int n)

e EXTERNAL INLINE int EXPRT cam_lam_wait (int xc, DWORD x*n, const int
millisec)

* EXTERNAL INLINE void EXPRT cam_interrupt_enable (const int c)

* EXTERNAL INLINE void EXPRT cam_interrupt_disable (const int c)

* EXTERNAL INLINE int EXPRT cam_interrupt_test (const int c)

* EXTERNAL INLINE void EXPRT cam_interrupt_attach (const int c, const int
n, void(xisr)(void))

* EXTERNAL INLINE void EXPRT cam_interrupt_detach (const int c, const int
n)

5.20 mevb.c File Reference

Defines

* #define SERVER_CACHE_SIZE 100000

Functions

e INT source_scan (INT fmt, EQUIPMENT_INFO xeq_info)

e INT eb_begin_of_run (INT, char %, char x)

e INT eb_end_of_run (INT, char %)

e INT eb_user (INT, BOOL mismatch, EBUILDER_CHANNEL x,
EVENT_HEADER x, void *, INT x*)

5.20.1 Define Documentation

5.20.1.1 #define DEFAULT_FE_TIMEOUT 60000

Definition at line 27 of file mevb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 315

5.20.1.2 #define EQUIPMENT_COMMON_STR "\Event ID = WORD
0\n\Trigger mask = WORD : 0\n\Buffer = STRING : [32] SYSTEM\n\Type
= INT : 0\n\Source = INT : 0\n\Format = STRING : [8] FIXED\n\Enabled =
BOOL : 0\n\Read on = INT : 0\n\Period = INT : 0\n\Event limit = DOUBLE
: 0\n\Num subevents = DWORD : 0\n\Log history = INT : 0\n\Frontend host
= STRING : [32] \n\Frontend name = STRING : [32] \n\Frontend file name =
STRING : [256] \n\"

Definition at line 82 of file mevb.c.

5.20.1.3 #define EQUIPMENT_STATISTICS_STR "\Events sent = DOUBLE :
0\n\Events per sec. = DOUBLE : 0\n\kBytes per sec. = DOUBLE : 0\n\"

Definition at line 100 of file mevb.c.

5.20.1.4 #define ODB_UPDATE_TIME 1000

Definition at line 25 of file mevb.c.

5.20.1.5 #define SERVER_CACHE_SIZE 100000
AOX sk stk ks stk sk sk ok sk ok sk sk ok ok sk ok sk ok ok sk ok kR ok sk ok Sk ok sk sk ok Sk sk sk ok ook ok ok ok ok

Definition at line 23 of file mevb.c.

5.20.2 Function Documentation

5.20.2.1 INT close_buffers (void)
Definition at line 832 of file mevb.c.

Referenced by scan_fragment().

5.20.2.2 INT eb_begin_of run (INT rn, char x UserField, char x error)

Hook to the event builder task at PreStart transition.
Parameters:
rn run number
UserField argument from /Ebuilder/Settings
error error string to be passed back to the system.

Returns:
EB_SUCCESS

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 316

Definition at line 105 of file ebuser.c.

5.20.2.3 INT eb_end_of _run (INT rn, char x error)

Hook to the event builder task at completion of event collection after receiving the Stop
transition.

Parameters:
rn run number

error error string to be passed back to the system.

Returns:
EB_SUCCESS

Definition at line 120 of file ebuser.c.

5.20.2.4 INT eb_mfragment_add (char x pdest, char * psrce, INT « size)

Definition at line 422 of file mevb.c.

5.20.2.5 INT eb_user (INT nfrag, BOOL mismatch, EBUILDER_CHANNEL x
ebch, EVENT_HEADER =« pheader, void * pevent, INT * dest_size)

Hook to the event builder task after the reception of all fragments of the same serial
number. The destination event has already the final EVENT_HEADER setup with the
data size set to 0. It is than possible to add private data at this point using the proper
bank calls.

The ebch[] array structure points to nfragment channel structure with the following
content:

typedef struct {

char name[32]; // Fragment name (Buffer name).
DWORD serial; // Serial fragment number.
char *pfragment; // Pointer to fragment (EVENT_HEADER *)

} EBUILDER_CHANNEL;

The correct code for including your own MIDAS bank is shown below where TID_xxx
is one of the valid Bank type starting with TID_ for midas format or xxx_BKTYPE
for Ybos data format. bank_name is a 4 character descriptor. pdata has to be de-
clared accordingly with the bank type. Refers to the ebuser.c source code for further
description.

It is not possible to mix within the same destination event different event format!

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 317

// Event is empty, fill it with BANK_HEADER
// 1f you need to add your own bank at this stage

bk_init(pevent);

bk_create(pevent, bank_name, TID_ xxxx, &pdata);
*pdata++ = ...

*dest_size = bk_close(pevent, pdata);
pheader->data_size = *dest_size + sizeof(EVENT_HEADER);

For YBOS format, use the following example.

ybk_init(pevent);

ybk_create(pevent, "EBBK", 14_BKTYPE, &pdata);

*pdata++ = 0x12345678;

*pdata++ = 0x87654321;

*dest_size = ybk_close(pevent, pdata);

*dest_size *= 4;

pheader->data_size = *dest_size + sizeof(YBOS_BANK_HEADER);

Parameters:
nfrag Number of fragment.

mismatch Midas Serial number mismatch flag.
ebch Structure to all the fragments.

pheader Destination pointer to the header.
pevent Destination pointer to the bank header.

dest_size Destination event size in bytes.

Returns:
EB_SUCCESS

Definition at line 187 of file ebuser.c.

Referenced by source_scan().

5.20.2.6 INT eb_yfragment_add (char « pdest, char x psrce, INT x size)

Definition at line 478 of file mevb.c.

5.20.2.7 INT ebuilder_exit (void)
Definition at line 86 of file ebuser.c.

Referenced by main().

5.20.2.8 INT ebuilder _init (void)
Definition at line 80 of file ebuser.c.

Referenced by main().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 318

5.20.2.9 INT ebuilder_loop (void)

Definition at line 92 of file ebuser.c.

5.20.2.10 void free_event_buffer (INT nfrag)
Definition at line 680 of file mevb.c.

Referenced by main(), source_booking(), and source_unbooking().

5.20.2.11 INT handFlush (void)
Definition at line 692 of file mevb.c.

Referenced by close_buffers().

5.20.2.12 INT load_fragment (void)
Definition at line 231 of file mevb.c.

Referenced by main().

5.20.2.13 int main (int argc, char s argv)

Definition at line 1040 of file mevb.c.

5.20.2.14 INT register_equipment (void)

Definition at line 107 of file mevb.c.

5.20.2.15 INT scan_fragment (void)
Definition at line 310 of file mevb.c.

Referenced by main().

5.20.2.16 INT source_booking (void)
Definition at line 726 of file mevb.c.

Referenced by tr_start().

5.20.2.17 INT source_scan (INT fmt, EQUIPMENT_INFO = eq_info)

Scan all the fragment source once per call.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 319

1. This will retrieve the full midas event not swapped (except the MIDAS_-
HEADER) for each fragment if possible. The fragment will be stored in the
channel event pointer.

2. if after a full nfrag path some frag are still not cellected, it returns with the frag#
missing for timeout check.

3. If ALL fragments are present it will check the midas serial# for a full match
across all the fragments.

4. If the serial check fails it returns with "event mismatch" and will abort the event
builder but not stop the run for now.

5. If the serial check is passed, it will call the user_build function where the desti-

nation event is going to be composed.

Parameters:
fmt Fragment format type

eq_info Equipement pointer

Returns:
EB_NO_MORE_EVENT, EB_COMPOSE_TIMEOUT if different then SUC-
CESS (bm_compose, rpc_sent error)

Definition at line 881 of file mevb.c.

Referenced by scan_fragment().

5.20.2.18 INT source_unbooking (void)
Definition at line 798 of file mevb.c.

Referenced by close_buffers(), and main().

5.20.2.19 INT tr_start (INT rn, char * error)

Definition at line 550 of file mevb.c.

5.20.2.20 INT tr_stop (INT rn, char * error)

Definition at line 667 of file mevb.c.

5.20.2.21 INT ybos_event_swap (DWORD x pevt)

Referenced by eb_yfragment_add(), and source_scan().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference

320

5.20.3 Variable Documentation

5.20.3.1 BOOL abort_requested = FALSE stop_requested = TRUE

Definition at line 50 of file mevb.c.

Referenced by close_buffers(), scan_fragment(), and tr_start().

5.20.3.2 DWORD actual_millitime

Definition at line 36 of file mevb.c.

5.20.3.3 DWORD actual_time

Definition at line 35 of file mevb.c.

5.20.3.4 charbars[]=""

W\
Definition at line 48 of file mevb.c.

Referenced by scan_fragment().

5.20.3.5 char buffer_name[NAME_LENGTH]

Definition at line 41 of file mevb.c.

Referenced by bm_open_buffer(), bm_push_event(), load_fragment(), and main().

5.20.3.6 BOOL debug = FALSE debugl = FALSE

Definition at line 45 of file mevb.c.

5.20.3.7 charx dest_event
Definition at line 43 of file mevb.c.

Referenced by load_fragment(), and source_scan().

5.20.3.8 INT display_period

Definition at line 32 of file ebuser.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 321

5.20.3.9 EBUILDER_CHANNEL ebch[MAX_ CHANNELS]
Definition at line 30 of file mevb.c.

Referenced by eb_user(), free_event_buffer(), handFlush(), load_fragment(), main(),
scan_fragment(), source_booking(), source_scan(), and source_unbooking().

5.20.3.10 EBUILDER_SETTINGS ebset
Definition at line 29 of file mevb.c.

Referenced by eb_user(), handFlush(), main(), source_booking(), source_scan(), and
tr_start().

5.20.3.11 EQUIPMENT equipment[]

Definition at line 59 of file ebuser.c.

5.20.3.12 INT event_buffer_size

Definition at line 41 of file ebuser.c.

5.20.3.13 char expt_name[NAME_LENGTH]
Definition at line 40 of file mevb.c.

Referenced by main().

5.20.3.14 BOOL frontend_call_loop

Definition at line 36 of file frontend.c.

5.20.3.15 charx* frontend_file_name

Definition at line 26 of file ebuser.c.

5.20.3.16 charx* frontend_name

Definition at line 23 of file ebuser.c.

5.20.3.17 HNDLE hDB

Definition at line 44 of file mevb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 322

5.20.3.18 HNDLE hEgKey
Definition at line 44 of file mevb.c.

Referenced by load_fragment().

5.20.3.19 HNDLE hESetKey

Definition at line 44 of file mevb.c.

5.20.3.20 HNDLE hKey
Definition at line 44 of file mevb.c.

Referenced by analyzer_init(), cm_connect_client(), cm_delete_client_info(),
cm_deregister_transition(), cm_disconnect_experiment(), cm_exist(), cm_get_-
client_info(), cm_msg_log(), cm_msg_logl(), cm_msg_retrieve(), cm_register_-
deferred_transition(), cm_register_transition(), cm_set_client_info(), cm_set_-
transition_sequence(), cm_set_watchdog_params(), cm_shutdown(), cm_transition(),
db_check_record(), db_close_record(), db_copy(), db_copy_xml(), db_create_-
key(), db_create_link(), db_create_record(), db_delete_key(), db_delete_keyl(),
db_enum_key(), db_find_key(), db_get_data(), db_get_data_index(), db_get_key(),
db_get_key_info(), db_get_key_time(), db_get record(), db_get_record_size(),
db_open_record(), db_paste(), db_paste_node(), db_save(), db_save_struct(), db_-
save_xml(), db_save_xml_key(), db_set_data(), db_set_data_index(), db_set_record(),
db_set_value(), db_update_record(), device_driver(), logger_root(), main(), register_-
equipment(), tr_start(), and update_odb().

5.20.3.21 char host_name[HOST_NAME_LENGTH]

Definition at line 39 of file mevb.c.

5.20.3.22 HNDLE hStatKey

Definition at line 44 of file mevb.c.

5.20.3.23 HNDLE hSubkey
Definition at line 44 of file mevb.c.

Referenced by cm_connect_client(), cm_exist(), cm_set_client_info(), cm_-
shutdown(), cm_transition(), db_copy(), db_create_record(), db_save_xml_key(),
and load_fragment().

5.20.3.24 inti_bar

Definition at line 49 of file mevb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.20 mevb.c File Reference 323

Referenced by scan_fragment().

5.20.3.25 DWAORD last_time
Definition at line 34 of file mevb.c.

Referenced by scan_fragment().

5.20.3.26 INT max_event_size

Definition at line 35 of file ebuser.c.

5.20.3.27 INT max_event_size frag

Definition at line 38 of file ebuser.c.

5.20.3.28 INT(x meb_fragment_add)(char %, char %, INT x)
Definition at line 53 of file mevb.c.

Referenced by load_fragment(), and source_scan().

5.20.3.29 INT nfragment
Definition at line 42 of file mevb.c.

Referenced by load_fragment(), source_booking(), source_scan(), and source_-
unbooking().

5.20.3.30 INT run_number

Definition at line 33 of file mevb.c.

5.20.3.31 INT run_state

Definition at line 32 of file mevb.c.

5.20.3.32 DWORD stop_time =0 request_stop_time =0
Definition at line 51 of file mevb.c.

Referenced by close_buffers().

5.20.3.33 char svn_revision[] = ""$ld: mevb.c 3472 2006-12-19 10:16:08Z ritt $"

Definition at line 38 of file mevb.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference 324

5.20.3.34 BOOL wheel = FALSE
Definition at line 47 of file mevb.c.

Referenced by main().

5.21 mfec File Reference

5.21.1 Define Documentation

5.21.1.1 #define DEFAULT _FE_TIMEOUT 60000
Definition at line 54 of file mfe.c.

Referenced by main().

5.21.1.2 #define EQUIPMENT_COMMON_STR "\Event ID = WORD :
0\n\Trigger mask = WORD : 0\n\Buffer = STRING : [32] SYSTEM\n\Type
= INT : 0\n\Source = INT : 0\n\Format = STRING : [8] FIXED\n\Enabled =
BOOL : 0\n\Read on = INT : 0\n\Period = INT : 0\n\Event limit = DOUBLE
: 0\n\Num subevents = DWORD : 0\n\Log history = INT : 0\n\Frontend host
= STRING : [32] \n\Frontend name = STRING : [32] \n\Frontend file name =
STRING : [256] \n\"

Definition at line 117 of file mfe.c.

Referenced by register_equipment().

5.21.1.3 #define EQUIPMENT_STATISTICS_STR "\Events sent = DOUBLE :
0\n\Events per sec. = DOUBLE : 0\n\kBytes per sec. = DOUBLE : 0\n\"

Definition at line 135 of file mfe.c.

Referenced by register_equipment().

5.21.1.4 #define ODB_UPDATE_TIME 1000
Definition at line 52 of file mfe.c.

Referenced by scheduler().

5.21.1.5 #define SERVER_CACHE_SIZE 100000
Definition at line 50 of file mfe.c.

Referenced by register_equipment().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference 325

5.21.2 Function Documentation

5.21.2.1 INT begin_of _run (INT run_number, char * error)

Definition at line 186 of file frontend.c.

5.21.2.2 void display (BOOL blnit)
Definition at line 1419 of file mfe.c.

Referenced by main(), and scheduler().

5.21.2.3 INT end_of run (INT run_number, char x* error)

Definition at line 195 of file frontend.c.

5.21.2.4 INT frontend_exit (void)
Definition at line 179 of file frontend.c.

Referenced by main().

5.21.2.5 INT frontend_init (void)
Definition at line 151 of file frontend.c.

Referenced by main().

5.21.2.6 INT frontend_loop (void)
Definition at line 216 of file frontend.c.

Referenced by scheduler().

5.21.2.7 INT get_frontend_index ()
Definition at line 2069 of file mfe.c.

5.21.2.8 INT interrupt_configure (INT cmd, INT source, POINTER_T adr)
Definition at line 254 of file frontend.c.

Referenced by main(), readout_enable(), and register_equipment().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference 326

5.21.2.9 void interrupt_routine (void)
Definition at line 1242 of file mfe.c.

Referenced by register_equipment().

5.21.2.10 BOOL logger_root ()
Definition at line 1492 of file mfe.c.

Referenced by receive_trigger_event(), and scheduler().

5.21.2.11 int main (int argc, char * argv[])
Definition at line 2079 of file mfe.c.

5.21.2.12 INT manual_trigger (INT index, void x prpc_param[])
Definition at line 282 of file mfe.c.

Referenced by register_equipment().

5.21.2.13 int message_print (const char « msg)
Definition at line 1401 of file mfe.c.

Referenced by main().

5.21.2.14 INT pause_run (INT run_number, char « error)

Definition at line 202 of file frontend.c.

5.21.2.15 INT poll_event (INT source, INT count, BOOL test)
Definition at line 233 of file frontend.c.

Referenced by readout_thread(), register_equipment(), and scheduler().

5.21.2.16 void readout_enable (BOOL flag)
Definition at line 1222 of file mfe.c.

Referenced by main(), register_equipment(), scheduler(), tr_pause(), tr_resume(), tr_-
start(), and tr_stop().

5.21.2.17 int readout_enabled (void)

Definition at line 1217 of file mfe.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference 327

Referenced by readout_thread(), and scheduler().

5.21.2.18 int readout_thread (void * param)
Definition at line 1278 of file mfe.c.

Referenced by register_equipment().

5.21.2.19 int receive_trigger_event (EQUIPMENT x eq)
Definition at line 1351 of file mfe.c.

Referenced by scheduler(), and tr_stop().

5.21.2.20 INT register_equipment (void)
Definition at line 516 of file mfe.c.

Referenced by main().

5.21.2.21 INT resume_run (INT run_number, char x error)

Definition at line 209 of file frontend.c.

5.21.2.22 intsc_thread (void * info)
Definition at line 290 of file mfe.c.

Referenced by device_driver().

5.21.2.23 INT scheduler (void)
Definition at line 1519 of file mfe.c.

Referenced by main().

5.21.2.24 void send_all_periodic_events (INT transition)
Definition at line 1189 of file mfe.c.

Referenced by tr_pause(), tr_resume(), tr_start(), and tr_stop().

5.21.2.25 intsend_event (INT index)
Definition at line 1030 of file mfe.c.

Referenced by scheduler(), and send_all_periodic_events().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference 328

5.21.2.26 INT tr_pause (INT rn, char * error)
Definition at line 233 of file mfe.c.

Referenced by main().

5.21.2.27 INT tr_resume (INT rn, char x error)
Definition at line 258 of file mfe.c.

Referenced by main().

5.21.2.28 INT tr_start (INT rn, char * error)
Definition at line 145 of file mfe.c.

Referenced by main().

5.21.2.29 INT tr_stop (INT rn, char x* error)
Definition at line 179 of file mfe.c.

Referenced by main().

5.21.2.30 void update_odb (EVENT_HEADER x* pevent, HNDLE hKey, INT for-
mat)

Definition at line 882 of file mfe.c.

Referenced by receive_trigger_event(), scheduler(), and send_event().

5.21.3 Variable Documentation

5.21.3.1 int_readout_enabled flag=0 [stati c]
Definition at line 1215 of file mfe.c.

Referenced by readout_enable().

5.21.3.2 DWORD actual_millitime
Definition at line 59 of file mfe.c.

Referenced by scan_fragment(), and scheduler().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference

329

5.21.3.3 DWORD actual_time
Definition at line 58 of file mfe.c.

Referenced by scheduler().

5.21.3.4 DWORD auto_restart =0
Definition at line 69 of file mfe.c.

Referenced by scheduler().

5.21.3.5 BOOL debug
Definition at line 68 of file mfe.c.

Referenced by main().

5.21.3.6 INT display_period
Definition at line 32 of file ebuser.c.

Referenced by scheduler().

5.21.3.7 EQUIPMENT equipment[]

Definition at line 59 of file ebuser.c.

Referenced by close_buffers(), display(),

load_fragment(),

register_-

equipment(), scan_fragment(), scheduler(), send_all_periodic_events(), send_event(),

source_scan(), tr_start(), and tr_stop().

5.21.3.8 voidx event_buffer
Definition at line 97 of file mfe.c.

Referenced by main().

5.21.3.9 INT event_buffer_size

Definition at line 41 of file ebuser.c.

Referenced by main(), and register_equipment().

5.21.3.10 char exp_name[NAME_LENGTH]

Definition at line 62 of file mfe.c.

Referenced by cm_connect_experiment(),
environment(), cm_list_experiments(), cm_select_experiment(), and main().

cm_connect_experiment1(),

cm_get_-

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference

330

5.21.3.11 INT fe_stop=0

Definition at line 67 of file mfe.c.

5.21.3.12 void« frag_buffer = NULL
Definition at line 98 of file mfe.c.

Referenced by register_equipment().

5.21.3.13 BOOL frontend_call_loop

Definition at line 36 of file frontend.c.

5.21.3.14 charx frontend_file_name
Definition at line 26 of file ebuser.c.

Referenced by register_equipment().

5.21.3.15 INT frontend_index = -1
Definition at line 71 of file mfe.c.

Referenced by main(), and register_equipment().

5.21.3.16 charx frontend_name

Definition at line 23 of file ebuser.c.

Referenced by load_fragment(), main(), register_equipment(), scan_fragment(),

source_scan(), tr_start(), and tr_stop().

5.21.3.17 char full_frontend_name[256]
Definition at line 63 of file mfe.c.

Referenced by display(), main(), and register_equipment().

5.21.3.18 HNDLE hDB

Definition at line 73 of file mfe.c.

Referenced by al_trigger_alarm(), ana_end_of_run(), analyzer_init(), bm_open_-
buffer(), cm_check_client(), cm_connect_client(), cm_connect_experimentl(),
cm_delete_client_info(), cm_deregister_transition(), cm_disconnect_experiment(),

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference 331

cm_exist(), cm_get_client_info(), cm_get_experiment_database(), cm_get_-
watchdog_info(), cm_msg_log(), cm_msg_logl(), cm_msg_retrieve(), cm_register_-
deferred_transition(), cm_register_transition(), cm_set_client_info(), cm_set_-
transition_sequence(), cm_set_watchdog_params(), cm_shutdown(), cm_transition(),
db_check_record(), db_close_database(), db_close_record(), db_copy(), db_copy_-
xml(), db_create_key(), db_create_link(), db_create_record(), db_delete_key(),
db_delete_key1(), db_enum_key(), db_find_key(), db_get_data(), db_get_ data_-
index(), db_get_key(), db_get_key_info(), db_get_key_time(), db_get_record(),
db_get_record_size(), db_get_value(), db_load(), db_lock_database(), db_open_-
database(), db_open_record(), db_paste(), db_paste_node(), db_paste_xml(), db_-
protect_database(), db_save(), db_save_struct(), db_save_xml(), db_save_xml_key(),
db_send_changed_records(), db_set_data(), db_set_data_index(), db_set_record(),
db_set_value(), db_unlock_database(), db_update_record(), el_submit(), load_-
fragment(), logger_root(), main(), register_equipment(), scheduler(), tr_start(), and
update_odb().

5.21.3.19 char host_name[HOST_NAME_LENGTH]
Definition at line 61 of file mfe.c.

Referenced by cm_connect_client(), cm_connect_experiment(), cm_connect_-
experimentl(), = cm_get _environment(), cm_list_experiments(), = cm_select_-
experiment(), cm_set_client_info(), cm_transition(), display(), and main().

5.21.3.20 EQUIPMENT* interrupt_eq = NULL
Definition at line 94 of file mfe.c.

Referenced by interrupt_routine(), main(), register_equipment(), and scheduler().

5.21.3.21 INT manual_trigger_event id =0
Definition at line 70 of file mfe.c.

Referenced by manual_trigger(), and scheduler().

5.21.3.22 INT max_bytes per_sec
Definition at line 65 of file mfe.c.

Referenced by scheduler().

5.21.3.23 INT max_event_size
Definition at line 35 of file ebuser.c.

Referenced by load_fragment(), main(), rb_create(), readout_thread(), register_-
equipment(), scheduler(), send_event(), and source_booking().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.21 mfe.c File Reference 332

5.21.3.24 INT max_event_size frag
Definition at line 38 of file ebuser.c.

Referenced by main(), register_equipment(), scheduler(), and send_event().

5.21.3.25 EQUIPMENT* multithread_eq = NULL
Definition at line 95 of file mfe.c.

Referenced by readout_thread(), and register_equipment().

5.21.3.26 INT optimize =0

Definition at line 66 of file mfe.c.

5.21.3.27 int rbhl =0 rbh2=0 rbhl_next=0 rbh2_next=0
Definition at line 101 of file mfe.c.

Referenced by interrupt_routine(), readout_thread(), and register_equipment().

5.21.3.28 volatile int readout_thread_active =0
Definition at line 104 of file mfe.c.

Referenced by readout_thread().

5.21.3.29 INT rpc_mode =1
Definition at line 48 of file mfe.c.

Referenced by receive_trigger_event(), scheduler(), and send_event().

5.21.3.30 INT run_number
Definition at line 57 of file mfe.c.

Referenced by close_buffers(), cm_transition(), display(), el_submit(), register_-
equipment(), scheduler(), tr_pause(), tr_resume(), tr_start(), and tr_stop().

5.21.3.31 INT run_state
Definition at line 56 of file mfe.c.

Referenced by close_buffers(), display(), handFlush(), main(), register_equipment(),
scheduler(), tr_pause(), tr_resume(), tr_start(), and tr_stop().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.22 mhttpd.dox File Reference

333

5.21.3.32 BOOL slowcont_eq = FALSE
Definition at line 96 of file mfe.c.

Referenced by register_equipment().

5.21.3.33 volatile int stop_all_threads =0
Definition at line 102 of file mfe.c.

Referenced by main().

5.22 mhttpd.dox File Reference

5.23 midas.c File Reference
5.23.1 Detailed Description
The main core C-code for Midas.

Definition in file midas.c.

Data Structures

* struct TR_CLIENT

Functions

¢ INT cm_get_error (INT code, char xstring)

INT cm_set_msg_print (INT system_mask, INT user_mask, int(xfunc)(const
char x))

INT cm_msg_log (INT message_type, const char xmessage)

INT cm_msg_logl (INT message_type, const char xmessage, const char
«facility)

INT cm_msg (INT message_type, char xfilename, INT line, const char *routine,
const char xformat,...)

INT cm_msgl (INT message_type, char xfilename, INT line, const char
«facility, const char *routine, const char «xformat,...)

INT cm_msg_register (void(xfunc)(HNDLE, HNDLE, EVENT_HEADER x,
void x))

INT cm_msg_retrieve (INT n_message, char xmessage, INT xbuf_size)

INT cm_synchronize (DWORD xseconds)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.23 midas.c File Reference 334

e INT cm_asctime (char *str, INT buf_size)

e INT cm_time (DWORD xtime)

e char x cm_get_version ()

* int cm_get_revision ()

¢ INT cm_set_path (char *path)

¢ INT cm_get_path (char *path)

e INT cm_scan_experiments (void)

¢ INT cm_delete_client_info (HNDLE hDB, INT pid)

e INT cm_check_client (HNDLE hDB, HNDLE hKeyClient)

* INT cm_set_client_info (HNDLE hDB, HNDLE xhKeyClient, char
xhost_name, char xclient_name, INT hw_type, char xpassword, DWORD
watchdog_timeout)

e INT cm_get_client_info (char *client_name)

¢ INT cm_get_environment (char xhost_name, int host_name_size, char
*eXp_name, int exp_name_size)

¢ INT cm_connect_experiment (char xhost_name, char xexp_name, char xclient_-
name, void(xfunc)(char *))

* INT cm_connect_experiment]l (char xhost_name, char *exp_name, char
xclient_name, void(+func)(char %), INT odb_size, DWORD watchdog_timeout)

¢ INT cm_list_experiments (char xhost_name, char exp_name[MAX_-
EXPERIMENT][NAME_LENGTH])

¢ INT cm_select_experiment (char xhost_name, char xexp_name)

e INT cm_connect_client (char *client_name, HNDLE xhConn)

e INT cm_disconnect_client (HNDLE hConn, BOOL bShutdown)

¢ INT cm_disconnect_experiment (void)

o INT cm_set_experiment_database (HNDLE hDB, HNDLE hKeyClient)

* INT cm_get_experiment_database (HNDLE xhDB, HNDLE xhKeyClient)

e int bm_validate_client_index (const BUFFER xbuf)

* INT cm_set_watchdog_params (BOOL call_watchdog, DWORD timeout)

* INT cm_get_watchdog_params (BOOL x*call_watchdog, DWORD xtimeout)

¢ INT cm_get_watchdog_info (HNDLE hDB, char xclient_name, DWORD
xtimeout, DWORD xlast)

¢ INT cm_register_transition (INT transition, INT(xfunc)(INT, char x), INT
sequence_number)

e INT cm_set_transition_sequence (INT transition, INT sequence_number)

¢ INT cm_register_deferred_transition (INT transition, BOOL(xfunc)(INT,
BOOL))

e INT cm_check_deferred_transition ()

e INT cm_transition (INT transition, INT run_number, char xperror, INT strsize,
INT async_flag, INT debug_flag)

e INT cm_yield (INT millisec)

e INT cm_execute (char *xcommand, char *result, INT bufsize)

e INT bm_match_event (short int event_id, short int trigger_mask,
EVENT_HEADER xpevent)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.23 midas.c File Reference 335

e INT bm_open_buffer (char xbuffer_name, INT buffer_size, INT «buffer_handle)

¢ INT bm_close_buffer (INT buffer_handle)

e INT bm_close_all_buffers (void)

¢ INT cm_shutdown (char xname, BOOL bUnique)

¢ INT cm_exist (char xname, BOOL bUnique)

¢ INT cm_cleanup (char *client_name, BOOL ignore_timeout)

e INT bm_set_cache_size (INT buffer_handle, INT read_size, INT write_size)

e INT bm_compose_event (EVENT_HEADER xevent_header, short int event_id,
short int trigger_mask, DWORD size, DWORD serial)

* INT bm_request_event (HNDLE buffer_handle, short int event_id, short int
trigger_mask, INT sampling_type, HNDLE xrequest_id, void(+func)(HNDLE,
HNDLE, EVENT_HEADER x, void %))

* INT bm_remove_event_request (INT buffer_handle, INT request_id)

e INT bm_delete_request (INT request_id)

e INT bm_send_event (INT buffer_handle, void xsource, INT buf_size, INT
async_flag)

e INT bm_flush_cache (INT buffer_handle, INT async_flag)

e INT bm_receive_event (INT buffer_handle, void xdestination, INT xbuf_size,
INT async_flag)

¢ INT bm_skip_event (INT buffer_handle)

¢ INT bm_push_event (char xbuffer_name)

e INT bm_check_buffers ()

e INT bm_empty_buffers ()

o INT rpc_register_client (char xname, RPC_LIST xlist)

o INT rpc_register_functions (RPC_LIST #new_list, INT(xfunc)(INT, void xx))

* INT rpc_set_option (HNDLE hConn, INT item, INT value)

o INT rpc_send_event (INT buffer_handle, void *source, INT buf_size, INT
async_flag, INT mode)

* INT rpc_flush_event ()

¢ void bk_init (void *event)

¢ void bk_init32 (void xevent)

e INT bk_size (void xevent)

* void bk_create (void *event, const char xname, WORD type, void «pdata)

e INT bk_close (void xevent, void xpdata)

e INT bk_list (void *event, char xbklist)

¢ INT bk_locate (void xevent, const char *name, void «pdata)

¢ INT bk_find (BANK_HEADER xpbkh, const char xname, DWORD xbklen,
DWORD xbktype, void **pdata)

* INT bk_iterate (void xevent, BANK x*xpbk, void xpdata)

* INT bk_swap (void xevent, BOOL force)

o INT hs_set_path (char *path)

* INT hs_open_file (time_t Itime, char *suffix, INT mode, int xfh)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.24 midas.dox File Reference 336

* INT el_submit (int run, char *author, char xtype, char *system, char xsubject,
char xtext, char *reply_to, char xencoding, char xafilenamel, char xbufferl,
INT buffer_sizel, char xafilename2, char sbuffer2, INT buffer_size2, char
xafilename3, char «buffer3, INT buffer_size3, char xtag, INT tag_size)

* INT al_trigger_alarm (char *alarm_name, char xalarm_message, char xdefault_-
class, char xcond_str, INT type)

e INT dm_buffer_create (INT size, INT user_max_event_size)

* int rb_set_nonblocking ()

* int rb_create (int size, int max_event_size, int xhandle)

* int rb_delete (int handle)

* int rb_get_wp (int handle, void #x*p, int millisec)

* int rb_increment_wp (int handle, int size)

* int rb_get_rp (int handle, void *xp, int millisec)

* int rb_increment_rp (int handle, int size)

* int rb_get_buffer_level (int handle, int *n_bytes)

Variables

* HNDLE _hKeyClient =0

5.23.2 Variable Documentation

5.23.2.1 charx svn_revision = "$Rev: 3648 $"
Definition at line 21 of file midas.c.

Referenced by cm_get_revision(), and main().

5.24 midas.dox File Reference

5.25 midas.h File Reference
5.25.1 Detailed Description

The main include file

Definition in file midas.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.25

midas.h File Reference

337

Data Structures

struct EVENT_HEADER
struct EVENT_REQUEST
struct BUFFER_CLIENT
struct BUFFER_HEADER
struct BUFFER

struct KEY

struct KEYLIST

struct BUS_DRIVER

struct DD_MT_CHANNEL
struct DD_MT_BUFFER
struct DEVICE_DRIVER
struct EQUIPMENT_INFO
struct EQUIPMENT_STATS
struct eqpmnt

struct BANK_HEADER
struct BANK

struct BANK32

struct TAG

struct BANK_LIST

struct ANA_MODULE
struct AR_INFO

struct AR_STATS

struct ANALYZE_REQUEST
struct ANA_OUTPUT_INFO
struct ANA_TEST

struct HIST_RECORD
struct DEF_RECORD
struct INDEX_RECORD
struct HISTORY

struct RUNINFO

struct PROGRAM_INFO
struct ALARM_CLASS
struct ALARM

Defines

#define TAPE_BUFFER_SIZE 0x8000
#define NET_TCP_SIZE OxFFFF
#define OPT_TCP_SIZE 8192

#define NET_UDP_SIZE 8192

#define MAX_EVENT_SIZE 0x400000

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.25 midas.h File Reference 338

¢ #define EVENT_BUFFER_NAME "SYSTEM"
¢ #define DEFAULT_ODB_SIZE 0x100000
o #define NAME_LENGTH 32

¢ #define HOST_NAME_LENGTH 256

e #define MAX_CLIENTS 64

e #define MAX_EVENT_REQUESTS 10

¢ #define MAX_OPEN_RECORDS 256

e #define MAX_ODB_PATH 256

o #define MAX_EXPERIMENT 32

e #define BANKLIST_MAX 64

e #define STRING_BANKLIST_MAX BANKLIST _MAX x4
¢ #define DEFAULT_RPC_TIMEOUT 10000
¢ #define DEFAULT_WATCHDOG_TIMEOUT 10000
e #define STATE_STOPPED 1

¢ #define STATE_PAUSED 2

e #define STATE_ RUNNING 3

¢ #define FORMAT_MIDAS 1

¢ #define FORMAT_YBOS 2

e #define FORMAT _ASCII 3

¢ #define FORMAT_FIXED 4

¢ #define FORMAT_DUMP 5

e #define FORMAT_HBOOK 6

¢ #define FORMAT_ROOT 7

e #define GET_ALL (1<<0)

e #define GET_SOME (1<<1)

e #define GET_FARM (1<<2)

e #define TID_BYTE 1

e #define TID_SBYTE 2

o #define TID_CHAR 3

e #define TID_WORD 4

¢ #define TID_SHORT 5

¢ #define TID_DWORD 6

e #define TID_INT 7

e #define TID_BOOL 8

e #define TID_FLOAT 9

e #define TID_DOUBLE 10

¢ #define TID_BITFIELD 11

e #define TID_STRING 12

e #define TID_ARRAY 13

e #define TID_STRUCT 14

e #define TID_KEY 15

e #define TID_LINK 16

e #define TID_LAST 17

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.25 midas.h File Reference 339

e #define SYNC 0

e #define MODE_READ (1<<0)

e #define RPC_OTIMEOUT 1

e #define WF_WATCH_ME (1<<0)

e #define TR_START (1<<0)

e #define TR_STOP (1<<1)

e #define TR_PAUSE (1<<?2)

¢ #define TR_RESUME (1<<3)

e #define EQ_PERIODIC (1<<0)

e #define EQ_POLLED (1<<1)

e #define EQ_INTERRUPT (1<<2)

e #define EQ_MULTITHREAD (1<<3)

¢ #define EQ_SLOW (1<<4)

¢ #define EQ_MANUAL_TRIG (1<<5)

¢ #define EQ_FRAGMENTED (1<<6)

o #define EQ_EB (1<<7)

e #define RO_RUNNING (1<<0)

e #define RO_STOPPED (1<<1)

e #define RO_PAUSED (1<<2)

e #define RO_BOR (1<<3)

e #define RO_EOR (1<<4)

e #define RO_PAUSE (1<<5)

o #define RO_RESUME (1<<6)

* #define RO_TRANSITIONS (RO_BOR|RO_EOR|RO_PAUSE|RO_RESUME)
e #define RO_ALWAYS (0xFF)

¢ #define RO_ODB (1<<8)

e #define CH_BS 8

o #define LAM_SOURCE(c, s) (c<<24 | ((s) & OxFFFFFF))
e #define LAM_STATION(s) (1<<(s-1))

e #define LAM_SOURCE_CRATE(c) (c>>24)
o #define LAM_SOURCE_STATION(s) ((s) & OxFFFFFF)
o #define CNAF Ox1

o #define MAX(a, b) (((a) > (b)) ? (a) : (b))

e #define MIN(a, b) (((a) < (b)) ? (a) : (b))

e #define ALIGN8(X) (x)+7) & ~7)

¢ #define VALIGN(adr, align) ((POINTER_T) (adr)+align-1) & ~(align-1))
¢ #define MT_ERROR (1<<0)

e #define MT_INFO (1<<1)

e #define MT_DEBUG (1<<2)

e #define MT_USER (1<<3)

e #define MT_LOG (1<<4)

e #define MT_TALK (1<<5)

¢ #define MT_CALL (1<<6)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.25 midas.h File Reference 340

e #define MT_ALL OxFF

e #define MERROR MT_ERROR, _ FILE_ , _LINE__
e #define MINFO MT_INFO, _ FILE_ , _LINE__
e #define MDEBUG MT_DEBUG, _ FILE_ ,_ LINE__
e #define MUSER MT_USER, _ FILE _,_ LINE
e #define MLOG MT_LOG, _ FILE_ , _LINE__

e #define MTALK MT_TALK, _ FILE_ , _LINE__
e #define MCALL MT_CALL, _ FILE_ , _LINE__
¢ #define SUCCESS 1

e #define CM_SUCCESS 1

¢ #define CM_SET_ERROR 102

e #define CM_NO_CLIENT 103

e #define CM_DB_ERROR 104

¢ #define CM_UNDEF_EXP 105

¢ #define CM_VERSION_MISMATCH 106

¢ #define CM_SHUTDOWN 107

¢ #define CM_WRONG_PASSWORD 108

¢ #define CM_UNDEF_ENVIRON 109

¢ #define CM_DEFERRED_TRANSITION 110

e #define CM_TRANSITION_IN_PROGRESS 111

e #define CM_TIMEOUT 112

e #define CM_INVALID_TRANSITION 113

e #define CM_TOO_MANY_REQUESTS 114

¢ #define BM_SUCCESS 1

¢ #define BM_CREATED 202

e #define BM_NO_MEMORY 203

¢ #define BM_INVALID_NAME 204

¢ #define BM_INVALID_HANDLE 205

e #define BM_NO_SLOT 206

¢ #define BM_NO_MUTEX 207

e #define BM_NOT_FOUND 208

e #define BM_ASYNC_RETURN 209

¢ #define BM_TRUNCATED 210

e #define BM_MULTIPLE_HOSTS 211

¢ #define BM_MEMSIZE_MISMATCH 212

¢ #define BM_CONFLICT 213

e #define BM_EXIT 214

¢ #define BM_INVALID_PARAM 215

e #define BM_MORE_EVENTS 216

e #define BM_INVALID_MIXING 217

e #define BM_NO_SHM 218

e #define DB_SUCCESS 1

¢ #define DB_CREATED 302

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.25 midas.h File Reference 341

¢ #define DB_NO_MEMORY 303

¢ #define DB_INVALID_NAME 304

¢ #define DB_INVALID_HANDLE 305

¢ #define DB_NO_SLOT 306

e #define DB_NO_MUTEX 307

¢ #define DB_MEMSIZE_MISMATCH 308
e #define DB_INVALID_PARAM 309

e #define DB_FULL 310

o #define DB_KEY_EXIST 311

e #define DB_NO_KEY 312

e #define DB_KEY_CREATED 313

¢ #define DB_TRUNCATED 314

e #define DB_TYPE_MISMATCH 315

¢ #define DB_NO_MORE_SUBKEYS 316
¢ #define DB_FILE_ERROR 317

e #define DB_NO_ACCESS 318

e #define DB_STRUCT_SIZE_MISMATCH 319
e #define DB_OPEN_RECORD 320

e #define DB_OUT_OF_RANGE 321

e #define DB_INVALID_LINK 322

e #define DB_CORRUPTED 323

¢ #define DB_STRUCT_MISMATCH 324
¢ #define DB_TIMEOUT 325

¢ #define DB_VERSION_MISMATCH 326
e #define SS_SUCCESS 1

e #define SS_CREATED 402

¢ #define SS_NO_MEMORY 403

e #define SS_INVALID_NAME 404

e #define SS_INVALID_HANDLE 405

e #define SS_INVALID_ADDRESS 406

e #define SS_FILE_ERROR 407

e #define SS_NO_MUTEX 408

e #define SS_NO_PROCESS 409

e #define SS_NO_THREAD 410

e #define SS_SOCKET_ERROR 411

o #define SS_TIMEOUT 412

¢ #define SS_SERVER_RECV 413

e #define SS_CLIENT_RECV 414

¢ #define SS_ABORT 415

e #define SS_EXIT 416

o #define SS_NO_TAPE 417

e #define SS_DEV_BUSY 418

e #define SS_IO_ERROR 419

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.25 midas.h File Reference 342

e #define SS_TAPE_ERROR 420

¢ #define SS_NO_DRIVER 421

e #define SS_END_OF_TAPE 422

e #define SS_END_OF_FILE 423

e #define SS_FILE_EXISTS 424

o #define SS_NO_SPACE 425

¢ #define SS_INVALID_FORMAT 426

e #define SS_NO_ROOT 427

e #define SS_SIZE_MISMATCH 428

¢ #define RPC_SUCCESS 1

¢ #define RPC_ABORT SS_ABORT

e #define RPC_NO_CONNECTION 502
¢ #define RPC_NET_ERROR 503

¢ #define RPC_TIMEOUT 504

¢ #define RPC_EXCEED_BUFFER 505
e #define RPC_NOT_REGISTERED 506
¢ #define RPC_CONNCLOSED 507

e #define RPC_INVALID_ID 508

e #define RPC_SHUTDOWN 509

¢ #define RPC_NO_MEMORY 510

¢ #define RPC_DOUBLE_DEFINED 511
e #define FE_SUCCESS 1

e #define FE_ERR_ODB 602

¢ #define FE_ERR_HW 603

¢ #define FE_ERR_DISABLED 604

e #define FE_ERR_DRIVER 605

e #define HS_SUCCESS 1

e #define HS_FILE_ERROR 702

e #define HS_NO_MEMORY 703

¢ #define HS_TRUNCATED 704

¢ #define HS_WRONG_INDEX 705

¢ #define HS_UNDEFINED_EVENT 706
¢ #define HS_UNDEFINED_VAR 707

e #define FTP_SUCCESS 1

¢ #define FTP_NET_ERROR 802

e #define FTP_FILE_ERROR 803

¢ #define FTP_RESPONSE_ERROR 804
¢ #define FTP_INVALID_ARG 805

e #define EL_SUCCESS 1

e #define EL_FILE_ERROR 902

e #define EL_NO_MESSAGE 903

e #define EL_TRUNCATED 904

e #define EL_FIRST_MSG 905

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.26 mrpc.c File Reference 343

e #define EL_LAST_MSG 906

e #define AL_SUCCESS 1

e #define AL_INVALID_NAME 1002

e #define AL_ERROR_ODB 1003

o #define AL_RESET 1004

e #define CMD_INIT 1

e #define CMD_WRITE 100

¢ #define CMD_INTERRUPT_ENABLE 100

¢ #define BD_GETSC(s, z, p, t) info — bd(CMD_GETS, info — bd_info, s, z, p, t)

¢ #define ANA_CONTINUE 1

 #define TRIGGER_MASK(e) ((EVENT_HEADER x) e)-1) — trigger_mask)

e #define EVENT _ID(e) ((EVENT_HEADER x) e)-1) — event_id)

e #define SERIAL_NUMBER(e) (((EVENT_HEADER x) e)-1) — serial_-
number)

¢ #define TIME_STAMP(e) (((EVENT_HEADER x) e)-1) — time_stamp)

e #define EVENTID_BOR ((short int) 0x8000)

e #define EVENTID_EOR ((short int) 0x8001)

e #define EVENTID_MESSAGE ((short int) 0x8002)

o #define EVENTID_FRAGI ((unsigned short) 0xC000)

o #define MIDAS_MAGIC 0x494d

e #define DF_INPUT (1<<0)

e #define DF_OUTPUT (1<<1)

e #define DF_PRIO_DEVICE (1<<2)

e #define DF_READ_ONLY (1<<3)

¢ #define BANK_FORMAT_VERSION 1

o #define BANK_FORMAT_32BIT (1<<4)

e #define AT_INTERNAL 1

e #define AT_PROGRAM 2

e #define AT_EVALUATED 3

e #define AT_PERIODIC 4

o #define AT _LLAST 4

5.26 mrpc.c File Reference
5.26.1 Detailed Description

The Midas RPC file

Definition in file mrpc.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.27 mrpc.h File Reference

344

Variables

e RPC_LIST rpc_list_library []
e RPC_LIST rpc_list_system []

5.27 mrpc.h File Reference
5.27.1 Detailed Description

The mrpc include file

Definition in file mrpc.h.

Defines

* #define RPC_CM_SET_CLIENT_INFO 11000

¢ #define RPC_CM_SET_WATCHDOG_PARAMS 11001
 #define RPC_CM_CLEANUP 11002

¢ #define RPC_CM_GET_WATCHDOG_INFO 11003

¢ #define RPC_CM_MSG_LOG 11004

e #define RPC_CM_EXECUTE 11005

¢ #define RPC_CM_SYNCHRONIZE 11006

e #define RPC_CM_ASCTIME 11007

¢ #define RPC_CM_TIME 11008

* #define RPC_CM_MSG 11009

¢ #define RPC_CM_EXIST 11011

 #define RPC_CM_MSG_RETRIEVE 11012

¢ #define RPC_CM_MSG_LOGI 11013

* #define RPC_BM_OPEN_BUFFER 11100

¢ #define RPC_BM_CLOSE_BUFFER 11101

¢ #define RPC_BM_CLOSE_ALL_BUFFERS 11102

* #define RPC_BM_GET_BUFFER_INFO 11103

¢ #define RPC_BM_GET_BUFFER_LEVEL 11104
 #define RPC_BM_INIT_BUFFER_COUNTERS 11105
¢ #define RPC_BM_SET_CACHE_SIZE 11106
 #define RPC_BM_ADD_EVENT_REQUEST 11107

¢ #define RPC_BM_REMOVE_EVENT_REQUEST 11108
* #define RPC_BM_SEND_EVENT 11109

¢ #define RPC_BM_FLUSH_CACHE 11110

¢ #define RPC_BM_RECEIVE_EVENT 11111

» #define RPC_BM_MARK_READ_WAITING 11112

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.27 mrpc.h File Reference 345

¢ #define RPC_BM_EMPTY_BUFFERS 11113

* #define RPC_BM_SKIP_EVENT 11114

* #define RPC_DB_OPEN_DATABASE 11200

* #define RPC_DB_CLOSE_DATABASE 11201
 #define RPC_DB_CLOSE_ALL_DATABASES 11202
* #define RPC_DB_CREATE_KEY 11203

* #define RPC_DB_CREATE_LINK 11204

* #define RPC_DB_SET_VALUE 11205

e #define RPC_DB_GET_VALUE 11206

* #define RPC_DB_FIND_KEY 11207

* #define RPC_DB_FIND_LINK 11208

e #define RPC_DB_GET_PATH 11209

 #define RPC_DB_DELETE _KEY 11210

¢ #define RPC_DB_ENUM_KEY 11211

e #define RPC_DB_GET_KEY 11212

* #define RPC_DB_GET_DATA 11213

* #define RPC_DB_SET_DATA 11214

* #define RPC_DB_SET DATA_INDEX 11215

e #define RPC_DB_SET_MODE 11216

e #define RPC_DB_GET_RECORD_SIZE 11219
 #define RPC_DB_GET_RECORD 11220

e #define RPC_DB_SET_RECORD 11221

¢ #define RPC_DB_ADD_OPEN_RECORD 11222
 #define RPC_DB_REMOVE_OPEN_RECORD 11223
* #define RPC_DB_SAVE 11224

* #define RPC_DB_LOAD 11225

* #define RPC_DB_SET_CLIENT_NAME 11226
¢ #define RPC_DB_RENAME_KEY 11227

» #define RPC_DB_ENUM_LINK 11228

¢ #define RPC_DB_REORDER_KEY 11229

¢ #define RPC_DB_CREATE_RECORD 11230
 #define RPC_DB_GET_DATA_INDEX 11231

¢ #define RPC_DB_GET_KEY_TIME 11232

¢ #define RPC_DB_GET_OPEN_RECORDS 11233
* #define RPC_DB_FLUSH_DATABASE 11235
¢ #define RPC_DB_SET_DATA_INDEX2 11236
* #define RPC_DB_GET_KEY_INFO 11237

* #define RPC_DB_GET_DATAI 11238

e #define RPC_DB_SET_NUM_VALUES 11239
 #define RPC_DB_CHECK_RECORD 11240

¢ #define RPC_DB_GET_NEXT_LINK 11241

¢ #define RPC_HS_SET PATH 11300

* #define RPC_HS_DEFINE_EVENT 11301

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.28 msystem.h File Reference

¢ #define RPC_HS_WRITE_EVENT 11302

¢ #define RPC_HS_COUNT_EVENTS 11303
e #define RPC_HS_ENUM_EVENTS 11304
¢ #define RPC_HS_COUNT_VARS 11305

e #define RPC_HS_ENUM_VARS 11306

* #define RPC_HS_READ 11307

e #define RPC_HS_GET_VAR 11308

¢ #define RPC_HS_GET_EVENT_ID 11309
e #define RPC_EL_SUBMIT 11400

* #define RPC_AL_CHECK 11500

 #define RPC_AL_TRIGGER_ALARM 11501
* #define RPC_RC_TRANSITION 12000
 #define RPC_ANA_CLEAR_HISTOS 13000
* #define RPC_LOG_REWIND 14000

* #define RPC_TEST 15000

* #define RPC_CNAF16 16000

* #define RPC_CNAF24 16001

 #define RPC_MANUAL_TRIG 17000

¢ #define RPC_ID_WATCHDOG 99997

* #define RPC_ID_SHUTDOWN 99998

* #define RPC_ID_EXIT 99999

5.28 msystem.h File Reference
5.28.1 Detailed Description

The Midas System include file

Definition in file msystem.h.

Data Structures

¢ struct FREE_DESCRIP

e struct OPEN_RECORD

e struct DATABASE_CLIENT
¢ struct DATABASE_HEADER
¢ struct DATABASE

e struct RECORD_LIST

e struct REQUEST_LIST

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.29 mvmestd.h File Reference 347

Defines

+ #define DRI_16 (1<<0)

o #define DRI_32 (1<<1)

+ #define DRI_64 (1<<?2)

« #define DRI_LITTLE_ENDIAN (1< <3)
« #define DRI_BIG_ENDIAN (1<<4)
« #define DRF_IEEE (1<<5)

« #define DRF_G_FLOAT (1<<6)

« #define DR_ASCII (1<<7)

« #define WORD_SWAP(x)

« #define DWORD_SWAP(x)

« #define QWORD_SWAP(x)

5.29 mvmestd.h File Reference
5.29.1 Detailed Description

The Midas VME include file

Definition in file mvmestd.h.

Data Structures

e struct MVME_INTERFACE

Defines

¢ #define MVME_SUCCESS 1

¢ #define MVME_DMODE_D8 1

¢ #define MVME_DMODE_D16 2

¢ #define MVME_DMODE_D32 3

¢ #define MVME_DMODE_D64 4

* #define MVME_DMODE_RAMDI16 5
* #define MVME_DMODE_RAMD?32 6
* #define MVME_DMODE_LM 7

* #define MVME_BLT_NONE 1
 #define MVME_BLT_BLT32 2
 #define MVME_BLT_MBLT64 3

» #define MVME_BLT_2EVME 4

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.29 mvmestd.h File Reference 348

e #define MVME_BLT_2ESST 5

e #define MVME_BLT_BLT32FIFO 6

¢ #define MVME_BLT_MBLT64FIFO 7

e #define MVME_BLT_2EVMEFIFO 8

e #define MVME_AM_A32_SB (0xOF)

o #define MVME_AM_A32_SP (0x0E)

o #define MVME_AM_A32_SD (0x0D)

* #define MVME_AM_A32_NB (0x0OB)

e #define MVME_AM_A32_NP (0x0A)

e #define MVME_AM_A32_ND (0x09)

e #define MVME_AM_A32_SMBLT (0x0C)
e #define MVME_AM_A32_NMBLT (0x08)
e #define MVME_AM_A24_SB (0x3F)

e #define MVME_AM_A24_SP (0x3E)

e #define MVME_AM_A24_SD (0x3D)

e #define MVME_AM_A24 NB (0x3B)

o #define MVME_AM_A24 NP (0x3A)

o #define MVME_AM_A24 ND (0x39)

e #define MVME_AM_A24_SMBLT (0x3C)
e #define MVME_AM_A24_NMBLT (0x38)
e #define MVME_AM_A16_SD (0x2D)

e #define MVME_AM_A16_ND (0x29)

Functions

¢ int EXPRT mvme_open (MVME_INTERFACE xxvme, int index)

¢ int EXPRT mvme_close (MVME_INTERFACE *xvme)

e int EXPRT mvme_sysreset (MVME_INTERFACE xvme)

e int EXPRT mvme_read (MVME_INTERFACE xvme, mvme_locaddr_t xdst,
mvme_addr_t vme_addr, mvme_size_t n_bytes)

e unsigned int EXPRT mvme_read_value (MVME_INTERFACE xvme,
mvme_addr_t vme_addr)

¢ int EXPRT mvme_write (MVME_INTERFACE *vme, mvme_addr_t vme_addr,
mvme_locaddr_t *src, mvme_size_t n_bytes)

e int EXPRT mvme_write_value (MVME_INTERFACE xvme, mvme_addr_t
vme_addr, unsigned int value)

e int EXPRT mvme_set_am (MVME_INTERFACE xvme, int am)

e int EXPRT mvme_get_am (MVME_INTERFACE #vme, int *am)

¢ int EXPRT mvme_set_dmode (MVME_INTERFACE *vme, int dmode)

¢ int EXPRT mvme_get_dmode (MVME_INTERFACE xvme, int *dmode)

¢ int EXPRT mvme_set_blt (MVME_INTERFACE *vme, int mode)

e int EXPRT mvme_get_blt (MVME_INTERFACE #*vme, int xmode)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

530 myexpt.html File Reference 349

5.30 myexpt.html File Reference

5.30.1 Variable Documentation

5.30.1.1 <html><head><title> MyExperiment Demo
Status</title><metahttp-equiv=""Refresh*'content=""30""> </head > <body > <formname=""form1" method=""Get
Expt&"><tableborder=3cellpadding=2> <tr><thbgcolor="#A0A0FF"" >

Demo Experiment<th bgcolor=""#A0A0FF" > Custom Monitor
Control</tr><tr><td><fontcolor=""#ff0000" > Actions

Definition at line 29 of file myexpt.html.

5.30.1.2 scale = 12h&

Definition at line 32 of file myexpt.html.

5.30.1.3 width

Initial value:

250>
</th>
<th> <img src="http:
exp=default&

Definition at line 29 of file myexpt.html.

5.31 newdocfeatures.dox File Reference

5.32 odb.c File Reference
5.32.1 Detailed Description
The Online Database file

Definition in file odb.c.

Functions

* INT db_open_database (char xdatabase_name, INT database_size, HNDLE
«hDB, char *client_name)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.32 odb.c File Reference 350

e INT db_close_database (HNDLE hDB)

e INT db_lock_database (HNDLE hDB)

¢ INT db_unlock_database (HNDLE hDB)

¢ INT db_protect_database (HNDLE hDB)

¢ INT db_create_key (HNDLE hDB, HNDLE hKey, char xkey_name, DWORD
type)

¢ INT db_create_link (HNDLE hDB, HNDLE hKey, char *link_name, char
xdestination)

* INT db_delete_keyl (HNDLE hDB, HNDLE hKey, INT level, BOOL follow_-
links)

* INT db_delete_key (HNDLE hDB, HNDLE hKey, BOOL follow_links)

* INT db_find_key (HNDLE hDB, HNDLE hKey, char skey_name, HNDLE
xsubhKey)

e INT db_set_value (HNDLE hDB, HNDLE hKeyRoot, char xkey_name, void
xdata, INT data_size, INT num_values, DWORD type)

e INT db_get_value (HNDLE hDB, HNDLE hKeyRoot, char xkey_name, void
xdata, INT xbuf_size, DWORD type, BOOL create)

o INT db_enum_key (HNDLE hDB, HNDLE hKey, INT index, HNDLE
xsubkey_handle)

* INT db_get_key (HNDLE hDB, HNDLE hKey, KEY xkey)

* INT db_get_key_time (HNDLE hDB, HNDLE hKey, DWORD xdelta)

* INT db_get_key_info (HNDLE hDB, HNDLE hKey, char *name, INT name_-
size, INT xtype, INT snum_values, INT xitem_size)

e INT db_get_data (HNDLE hDB, HNDLE hKey, void *data, INT *buf_size,
DWORD type)

e INT db_get_data_index (HNDLE hDB, HNDLE hKey, void xdata, INT *buf_-
size, INT index, DWORD type)

e INT db_set_data (HNDLE hDB, HNDLE hKey, void *data, INT buf_size, INT
num_values, DWORD type)

o INT db_set_data_index (HNDLE hDB, HNDLE hKey, void *data, INT data_-
size, INT index, DWORD type)

* INT db_load (HNDLE hDB, HNDLE hKeyRoot, char xfilename, BOOL b-
Remote)

¢ INT db_copy (HNDLE hDB, HNDLE hKey, char xbuffer, INT xbuffer_size,
char xpath)

¢ INT db_paste (HNDLE hDB, HNDLE hKeyRoot, char xbuffer)

¢ INT db_paste_xml (HNDLE hDB, HNDLE hKeyRoot, char x«buffer)

e INT db_copy_xml (HNDLE hDB, HNDLE hKey, char xbuffer, INT xbuffer_-
size)

* INT db_save (HNDLE hDB, HNDLE hKey, char xfilename, BOOL bRemote)

* INT db_save_xml (HNDLE hDB, HNDLE hKey, char xfilename)

* INT db_save_struct (HNDLE hDB, HNDLE hKey, char xfile_name, char
xstruct_name, BOOL append)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.33 odbstruct.dox File Reference 351
* INT db_sprintf (char xstring, void *data, INT data_size, INT index, DWORD
type)
* INT db_get_record_size (HNDLE hDB, HNDLE hKey, INT align, INT xbuf_-
size)
e INT db_get_record (HNDLE hDB, HNDLE hKey, void *xdata, INT =buf_size,
INT align)
¢ INT db_set_record (HNDLE hDB, HNDLE hKey, void xdata, INT buf_size,
INT align)
* INT db_create_record (HNDLE hDB, HNDLE hKey, char *orig_key_name,
char xinit_str)
* INT db_check_record (HNDLE hDB, HNDLE hKey, char xkeyname, char
xrec_str, BOOL correct)
¢ INT db_open_record (HNDLE hDB, HNDLE hKey, void *ptr, INT rec_size,
WORD access_mode, void(xdispatcher)(INT, INT, void %), void *xinfo)
¢ INT db_close_record (HNDLE hDB, HNDLE hKey)
e INT db_close_all_records ()
e INT db_update_record (INT hDB, INT hKey, int socket)
* INT db_send_changed_records ()
5.33 odbstruct.dox File Reference
5.34 quickstart.dox File Reference
5.35 scaler.c File Reference

5.35.1 Function Documentation

5.35.1.1 INT scaler_accum (EVENT_HEADER x, void x)

Definition at line 66 of file scaler.c.

5.35.1.2 INT scaler_clear (INT run_number)

Definition at line 51 of file scaler.c.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.36 system.c File Reference 352

5.35.1.3 INT scaler_eor (INT run_number)

Definition at line 59 of file scaler.c.

5.35.2 Variable Documentation

5.35.2.1 double scaler[32]
Definition at line 47 of file scaler.c.

Referenced by scaler_accum(), and scaler_clear().

5.35.2.2 ANA_ MODULE scaler_accum_module

Initial value:

{

""Scaler accumulation™,
"Stefan Ritt",
scaler_accum,
scaler_clear,
scaler_eor,

NULL,

NULL,

NULL,

o,

NULL,

Definition at line 32 of file scaler.c.

5.36 system.c File Reference
5.36.1 Detailed Description

The Midas System file

Definition in file system.c.

Functions

e INT ss_system (char xcommand)

* midas_thread_t ss_thread_create (INT(xthread_func)(void *), void xparam)
e INT ss_thread_kill (midas_thread_t thread_id)

e DWORD ss_millitime ()

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.37 utilities.dox File Reference 353

* DWORD ss_time ()
o INT ss_sleep (INT millisec)

5.37 utilities.dox File Reference

5.38 xcustom.odb File Reference

5.39 ybos.cFile Reference
5.39.1 Detailed Description

The YBOS file

Definition in file ybos.c.

Functions

* void ybk_init (DWORD xplrl)

* void ybk_create (DWORD xplrl, char xbkname, DWORD bktype, void *pbkdat)

* INT ybk_close (DWORD sxplrl, void *pbkdat)

* INT ybk_size (DWORD xplrl)

o INT ybk_list (DWORD splrl, char *«bklist)

* INT ybk_find (DWORD splrl, char xbkname, DWORD xbklen, DWORD
xbktype, void #xpbk)

o INT ybk_locate (DWORD xplrl, char xbkname, void xpdata)

* INT ybk_iterate (DWORD x*plrl, YBOS_BANK_HEADER #x*pybkh, void
xxpdata)

540 ybosh File Reference
5.40.1 Detailed Description

The YBOS include file
Definition in file ybos.h.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

5.40 ybos.h File Reference 354

Defines

¢ #define YBOS_PHYREC_SIZE 8192

e #define YBOS_BUFFER_SIZE 3x(YBOS_PHYREC_SIZE<<2) + MAX_-
EVENT_SIZE + 128

e #define YB_BANKLIST_MAX 32

e #define YB_STRING_BANKLIST_MAX YB_BANKLIST_MAX x* 4

¢ #define YB_SUCCESS 1

e #define YB_EVENT_NOT_SWAPPED 2

e #define YB_DONE 2

e #define YB_WRONG_BANK_TYPE -100

e #define YB_BANK_NOT_FOUND -101

e #define YB_SWAP_ERROR -102

e #define YB_NOMORE_SLOT -103

e #define YB_UNKNOWN_FORMAT -104

¢ #define H_BLOCK_SIZE 0

e #define H_BLOCK_NUM 1

e #define H_HEAD_LEN 2

o #define H_START 3

e #define D_RECORD 1

e #define D_HEADER 2

e #define D_EVTLEN 3

e #define YB_COMPLETE 1

e #define YB_INCOMPLETE 2

e #define YB_NO_RECOVER -1

¢ #define YB_NO_RUN 0

e #define YB_ADD_RUN 1

e #define DSP_RAW 1

¢ #define DSP_RAW_SINGLE 2

¢ #define DSP_BANK 3

¢ #define DSP_BANK_SINGLE 4

o #define DSP_UNK 0

e #define DSP_DEC 1

e #define DSP_HEX 2

e #define DSP_ASC 3

e #define SWAP_D2WORD(_d2w)

e #define EVID_TRINAT

e #define YBOS_EVID_BANK(__a, b,

e #define MIDAS_EVID_BANK(__a, _ b,

e #define I2_BKTYPE 1

e #define A1_BKTYPE 2

o #define [4_BKTYPE 3

¢ #define F4_BKTYPE 4

e #define D&_BKTYPE 5

e #define I1_BKTYPE 8

e #define MAX_BKTYPE I1_BKTYPE+1

d7_e)
d,__e)

C,
C,

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6 Midas Page Documentation 355

6 MidasPage Documentation

6.1 MIDASAnalyzer

* The Midas Analyzer application is composed of a collection of files providing
a framework in which the user can gain access to the online data during data
acquisition or offline data through a replay of a stored data save-set.

* The Midas distribution contains 2 directories where predefined set of analyzer
files and their corresponding working demo code are available. The internal
functionality of both example is similar and differ only on the histogram tool
used for the data representation. These analyzer set are specific to 2 major data
analysis tools i.e: ROOT, HBOOK:

— examples/experiment: Analyzer tailored towards ROOT analysis
— examples/hbookexpt: Analyzer tailored towards HBOOK with PAW.

* The purpose of the demo analyzer is to demonstrate the analyzer structure and to
provide the user a set of code "template" for further development. The demo will
run online or offline following the information given further down. The analysis
goal is to:

1. Initialize the ODB with predefined (user specific) structure (experim.h).

2. Allocate memory space for histogram definition (booking).
3. Acquire data from the frontend (or data file).
4

. Process the incoming data bank event-by-event through user specific code
(module).

W

. Generate computed quantitied banks (in module).

6. Fill (increment) predefined histogram with data available within the user
code.

7. Produce a result file containing histogram results and computed data (if
possible) for further replay through dedicated analysis tool (PAW, ROOT).

* The analyzer is structured with the following files:

— experim.h

+ ODB experiment include file defining the ODB structure required by
the analyzer.

— analyzer.c: main user core code.

% Defines the incoming bank structures

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 356

% Defines the analyzer modules
% Initialize the ODB structure requirements
% Provides Begin_of_Run and End_of_Run functions with run info log-
ging example.
— adccalib.c, adcsum.c, scaler.c (Root example)

x Three user analysis modules to where events from the demo frontend.c
sends data to.

— Makefile

x Specific makefile for building the corresponding frontend and analyzer
code. The frontend code is build against the camacnul.c driver pro-
viding a simulated data stream.

* ROOQOT histogram booking code (excerpt of experiment/adcsum.c)

— Histogram under ROOT is supported from version 1.9.5. This provides a
cleaner way to organize the histogram grouping. This functionality is im-
plemented with the function open_subfolder() and close_subfolder(). Ded-
icated Macro is also now available for histogram booking.

INT adc_summing_init(void)
{

/* book ADC sum histo */
hAdcSum = H1_BOOK(**ADCSUM™, *"ADC sum', 500, O, 10000);

/* book ADC average in separate subfolder */
open_subfolder(*'Average');

hAdcAvg = H1_BOOK("'ADCAVG", '"ADC average', 500, 0, 10000);
close_subfolder();

return SUCCESS;
¥

* HBOOK histogram booking code (excerpt of hbookexpt/adccalib.c)

INT adc_calib_init(void)

{
char name[256];
int i;
/* book CADC histos */
for (i = 0; 1 < N_ADC; i++) {
sprintf(name, "CADC%02d", i);
HBOOK1(ADCCALIB_ID_BASE + i, name, ADC_N_BINS,
(float) ADC_X LOW, (float) ADC_X_ HIGH, 0.f);
3
return SUCCESS;
3

* The build is also specific to the type of histogram package involved and requires
the proper libraries to generate the executable. Each directory has its own Make-
file:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 357

— ROOT (examples/experiment)

% The environment $ROOTSYS is expected to point to a valid ROOT
installed path.

% The analyzer build requires a Midas core analyzer object file which
should be present in the standard midas/<os>/lib directory. In order
to have this file (rmana.o), the ROOTSYS had to be valid at the time
of the Midas build too (See HAVE_HBOOK).

— HBOOK (examples/hbookexpt)

+ The analyzer build requires a Midas core analyzer object file which
should be present in the standatd midas/<os>/lib directory. This file
(hmana.o) doesn’t require any specific library.

% The analyzer build requires also at that stage to have access to some of
the cernlib library files (See HAVE_HBOOK).

— Analyzer Lite

% In the case private histogramming or simple analyzed data storage is
requested, ROOT and HBOOK can be disabled by undefining both
HAVE_ROOT and HAVE_HBOOK during the build.

% This Lite version does’t require any reference to the external his-
togramming package. Removal of specific definition histogram state-
ment, function call from all the demo code (analyzer.c, adccalib.c,
adcsum.c) needs to be done for successful build.

% This Lite version will have no option of saving computed data from
within the system analyzer framework, therefore this operation has to
be performed by the user in the user code (module).

The following MultiStage Concept section describes in more details the analyzer con-
cept and specific of the operation of the demo.

6.1.1 MultiStage Concept

In order to make data analysis more flexible, a multi-stage concept has been chosen for
the analyzer. A raw event is passed through several stages in the analyzer, where each
stage has a specific task. The stages read part of the event, analyze it and can add the
results of the analysis back to the event. Therefore each stage in the chain can read all
results from previous stages. The first stages in the chain typically deal with data cal-
ibration (adccalib.c), while the last stages contain the code which produces "physical”
(adcsum.c) results like particle energies etc. The multi stage concept allows collabora-
tions of people to use standard modules for the calibration stages which ensures that all
members deal with the identical calibrated data, while the last stages can be modified
by individuals to look at different aspects of the data. The stage system makes use of
the MIDAS bank system. Each stage can read existing banks from an event and add

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 358

more banks with calculated data. Following picture gives an example of an analyzer
consisting of three stages where the first two stages make an ADC and a MWPC cali-
bration, respectively. They add a "Calibrated ADC" bank and a "MWPC" bank which
are used by the third stage which calculates angles between particles:

raw awvent fom fronk-end

an ank an Stages
1
| :ﬁDC bank LTEIC bank._|. PCOS I:-ar.nkmj _Eal. AOC bank |
WP C calibraton | £
[ADC bank] TOC bank | PCOS bank | Cal. ADC bank | h-TI.I'u'F.libank}

[Angle cakulations | T 3

[ADCbank | TOC bank | PCOS bank | Cal. ADC bank | kAP C bank | Anale barik g

Figure 1: Three stage analyzer.

Since data is contained in MIDAS banks, the system knows how to interpret the data.
By declaring new bank name in the analyzer.c as possible production data bank, a
simple switch in the ODB gives the option to enable the recording of this bank into the
result file. The user code for each stage is contained in a "module". Each module has
a begin-of-run, end-of-run and an event routine. The BOR routine is typically used to
book histograms, the EOR routine can do peak fitting etc. The event routine is called
for each event that is received online or off-line.

6.1.1.1 Analyzer parameters Each analyzer has a dedicated directory in the ODB
under which all the parameters realitve to this analyzer can be accessed. The path name
is given from the "Analyzer name" specified in the analyzer.c under the analyzer_name.
In case of concurrent analyzer, make sure that no conflict in name is present. By default
the name is "Analyzer".

/* The analyzer name (client name) as seen by other MIDAS clients */
char *analyzer_name = "Analyzer";

The ODB structure under it has the following fields

[host:expt:S]/Analyzer>ls -1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 359

Key name Type #Val Size Last Opn Mode Value
Parameters DIR

Output DIR

Book N-tuples BOOL 1 4 Im O RWD vy
Bank switches DIR

Module switches DIR

ODB Load BOOL 1 4 1%9h O RWD n
Trigger DIR

Scaler DIR

» Parameters : Created by the analyzer, contains all references to user parameters
section.

* Output : System directory providing output control of the analyzer results.

[local :midas:S]/Analyzer>ls -lr output

Key name Type #Val Size Last Opn Mode Value

Output DIR
Filename STRING 1 256 47h 0 RWD run01100.root
RWNT BOOL 1 4 47h 0O RWD n
Histo Dump BOOL 1 4 47h 0 RWD n
Histo Dump Filename STRING 1 256 47h O RWD his%05d.root
Clear histos BOOL 1 4 47h 0 RWD vy
Last Histo Filename STRING 1 256 47h O RWD last.root
Events to ODB BOOL 1 4 47Th 0O RWD vy
Global Memory Name STRING 1 8 47h 0 RWD ONLN

Filename : Replay result file name.
RWNT : To be ignored for ROOT, N-Tuple Raw-wise data type.
Histo Dump : Enable the saving of the run results (see next field)

Histo Dump Filename : Online Result file name

Clear Histos : Boolean flag to enable the clearing of all histograms at the
begining of each run (online or offline).

— Last Histo Filename : Temporary results file for recovery procedure.

— Event to ODB : Boolean flag for debugging purpose allowing a copy of
the data to be sent to the ODB at regular time interval (1 second).

— Global Memory Name : Shared memory name for communication be-
tween Midas and HBOOK. To be ignored for ROOT as the data sharing is
done through a TCP/IP channel.

» Bank switches : Contains the list of all declared banks (BANK_LIST in
analyzer.c) to be enabled for writing to the output result file. By default all the
banks are disabled.

[local :midas:S]/Analyzer>ls "Bank switches" -1
Key name Type #Val Size Last Opn Mode Value

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 360

ADCO DWORD 1 4 1h 0 RWD O
TDCO DWORD 1 4 1h 0 RWD O
CADC DWORD 1 4 1h 0 RWD O
ASUM DWORD 1 4 1h 0 RWD O
SCLR DWORD 1 4 1h 0 RWD O
ACUM DWORD 1 4 1h 0 RWD O

¢ Module switches : Contains the list of all declared module (ANA_MODULE in
analyzer.c) to be controlled (by default all modules are enabled)

[local :midas:S]/Analyzer>ls "module switches™ -1

Key name Type #Val Size Last Opn Mode Value
ADC calibration BOOL 1 4 1h 0 RWD vy
ADC summing BOOL 1 4 1h 0 RWD vy
Scaler accumulation BOOL 1 4 lh O RWD vy

* ODB Load : Boolean switch to allow retrieval of the entire ODB structure from
the input data file. Used only during offline, this option permits to replay the data
in the same exact condition as during online. All the ODB parameter settings will
be restored to their last value as at the end of the data acquisition of this particular
run.

o Trigger, Scaler : Subdirectories of all the declared requested event.
(ANALYZE_REQUEST in analyzer.c)

» BOOK N_tuples : Boolean flag for booking N-Tuples at the initialization of the
module. This flag is specific to the HBOOK analyzer.

* BOOK TTree : Boolean flag for booking TTree at the initialization of the mod-
ule. This flag is specific to the ROOT analyzer.

6.1.1.2 Analyzer Module parameters Each analyzer module can contain a set of
parameters to either control its behavior, . These parameters are kept in the ODB under
/Analyzer/Parameters/<<module name> and mapped automatically to C structures in
the analyzer modules. Changing these values in the ODB can therefore control the
analyzer. In order to keep the ODB variables and the C structure definitions matched,
the ODBEdit command make generates the file experim.h which contains C structures
for all the analyzer parameters. This file is included in all analyzer source code files and
provides access to the parameters from within the module file under the name <module
name>>_param.

* Module name: adc_calib_module (extern ANA_MODULE adc_calib_module
from analyzer.c)

¢ Module file name: adccalib.c

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 361

¢ Module structure declaration in adccalib.c:

ANA_MODULE adc_calib_module = {

"ADC calibration"”, /* module name */
"Stefan Ritt", /* author */
adc_calib, /* event routine */
adc_calib_bor, /* BOR routine */
adc_calib_eor, /* EOR routine */
adc_calib_init, /* init routine */
NULL, /* exit routine */
&adccalib_param, /* parameter structure */
sizeof(adccalib_param), /* structure size */
adc_calibration_param_str, /* initial parameters */

ODB parameter variable in the code: <module name>_param ->
adccalib_param (from adc_calib_module, the _ is dropped, module is re-
moved)

ODB parameter path: /<Analyzer>/Parameters/ADC calibration/ (using
the module name from the structure)

Access to the module parameter:

/* subtract pedestal */
for (i = 0; i < N_ADC; i++)
cadc[i] = (float) ((double) pdata[i] - adccalib_param.pedestal[i] + 0.5);

ODB module parameter declaration

[local :midas:S]Parameters>pwd
/Analyzer/Parameters
[local :midas:S]Parameters>Is -Ir

Key name Type #Val Size Last Opn Mode Value
Parameters DIR
ADC calibration DIR
Pedestal INT 8 4 47h 0 RWD
[0] 174
[1] 194
[2] 176
[3] 182
[4] 185
51 215
[6] 202
[71 202
Software Gain FLOAT 8 4 47h 0 RWD
[0] 1
[1] 1
[2] 1
[3] 1
[4] 1
5] 1
[6] 1
[7] 1
Histo threshold DOUBLE 1 8 47h 0 RWD 20
ADC summing DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 362

ADC threshold FLOAT 1 4 47h 0 RWD 5
Global DIR
ADC Threshold FLOAT 1 4 47h 0 RWD 5

6.1.1.3 Analyzer Flow chart The general operation of the analyzer can be sum-
merized as follow:

* The analyzer is a Midas client at the same level as the odb or any other Midas
Utilities application.

* When the analyzer is started with the proper argument (experiment, host for re-
mote connection or -i input_file, -o output_file for off-line use), the initialization
phase will setup the following items:

1. Setup the internal list of defined module.

ANA_MODULE *trigger_module[] = {
&adc_calib_module,
&adc_summing_module,

NULL

}:
2. Setup the internal list of banks.
BANK_LIST ana_trigger_bank_list[] = {

/* online banks */
{""ADCO", TID_STRUCT, sizeof(ADCO_BANK), ana_adcO_bank_str}

{"TDCO", TID_WORD, N_TDC, NULL}

3. Define the internal event request structure and attaching the corresponding
module and bank list.

ANALYZE_REQUEST analyze_request[] = {

{"Trigger", /* equipment name */
{1, /* event 1D */
TRIGGER_ALL, /* trigger mask */
GET_SOME, /* get some events */
"SYSTEM", /* event buffer */
TRUE, /* enabled */
NULL, /* analyzer routine */
trigger_module, /* module list */
ana_trigger_bank_list, /* bank list */
1000, /* RWNT buffer size */
TRUE, /* Use tests for this event */

}

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 363

. Setup the ODB path for each defined module.
. Book the defined histograms of each module.

. Book memory for N-Tuples or TTree.

~N N A~

. Initialize the internal "hotlinks" to the defined ODB analyzer module pa-
rameter path.

— Once the analyzer is in idle state (for online only), it will wakeup
on the transition "Begin-of-Run" and go sequencially through all the
modules BOR functions. which generally will ensure proper his-
togramming booking and possible clearing. It will resume its idle state
waiting for the arrival of an event matching one of the event request
structure declared during initialization (analyzer.c)

— In case of off-line analysis, once the initialization phase successfully com-
plete, it will go through the BOR and start the event-by-event acquisition.

INT analyzer_init(Q)
{
HNDLE hDB, hKey;
char str[80];

RUNINFO_STR(runinfo_str);
EXP_PARAM_STR(exp_param_str);
GLOBAL_PARAM_STR(global_param_str);
TRIGGER_SETTINGS_STR(trigger_settings_str);

/* open ODB structures */

cm_get_experiment_database(&hDB, NULL);

db_create_record(hDB, 0, *"/Runinfo", strcomb(runinfo_str));

db_find_key(hDB, 0, "/Runinfo", &hKey);

if (db_open_record(hDB, hKey, &runinfo, sizeof(runinfo), MODE_READ, NULL, NULL) !=
DB_SUCCESS) {

cm_msg(MERROR, "analyzer_init", "Cannot open \"/Runinfo\" tree in ODB");
return O;

}

1. When an event is received and matches one the the event request structure,
it is passed in sequence to all the defined module for that event request (see
in the ANALYZER_REQUEST structure the line containing the comment
module list.

— If some of the module don’t need to be invoked by the incoming
event, it can be disabled interactively through ODB from the /ana-
lyzer/Module switches directory

[1add00: p3a:Stopped]Module switches>ls

ADC calibration y
ADC summing y
Scaler accumulation y

[1add00: p3a:Stopped]Module switches>
— if the module switch is enabled, the event will be presented in the
module at the defined event-by-event function declared in the module
structure (adccalib.c) in this case the function is adc_calib().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 364

— The Midas event header is accessible through the pointer pheader
while the data is located by the pointer pevent
INT adc_calib(EVENT_HEADER * pheader, void *pevent)

INT i;
WORD *pdata;
float *cadc;

/* look for ADCO bank, return if not present */
it ('bk_locate(pevent, "ADCO", &pdata))
return 1;

* Refer to the example found under examples/experiment directory for ROOT
analyzer and examples/hbookexpt directory for HBOOK analyzer.

6.1.1.4 HBOOK analyzer description (old doc) PAWC_DEFINE(8000000);

This defines a section of 8 megabytes or 2 megawords of share memory for
HBOOK/Midas data storage. This definition is found in analyzer.c. In case many his-
tograms are booked in the user code, this value probably has to be increased in order
not to crash HBOOK. If the analyzer runs online, the section is kept in shared memory.
In case the operating system only supports a smaller amount of shared memory, this
value has to be decreased. Next, the file contains the analyzer name

char xanalyzer_name = "Analyzer";

under which the analyzer appears in the ODB (via the ODBEdit command scl). This
also determines the analyzer root tree name as /Analyzer. In case several analyzers
are running simultaneously (in case of distributed analysis on different machines for
example), they have to use different names like Analyzerl and Analyzer2 which then
creates two separate ODB trees /Analyzerl and /Analyzer2 which is necessary to con-
trol the analyzers individually. Following structures are then defined in analyzer.c:
runinfo, global_param, exp_param and trigger_settings. They correspond to the ODB
trees /Runinfo, /Analyzer/Parameters/Global, /Experiment/Run parameters and /Equip-
ment/Trigger/Settings, respectively. The mapping is done in the analyzer_init() routine.
Any analyzer module (via an extern statement) can use the contents of these structures.
If the experiment parameters contain an flag to indicate the run type for example, the
analyzer can analyze calibration and data runs differently. The module declaration sec-
tion in analyzer.c defines two "chains" of modules, one for trigger events and one for
scaler events. The framework calls these according to their order in these lists. The
modules of type ANA_MODULE are defined in their source code file. The enabled
flag for each module is copied to the ODB under /Analyzer/Module switches. By set-
ting this flag zero in the ODB, modules can be disabled temporarily. Next, all banks
have to be defined. This is necessary because the framework automatically books N-
tuples for all banks at startup before any event is received. Online banks which come
from the frontend are first defined, then banks created by the analyzer:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 365

// online banks
{ "ADCO'", TID_DWORD, N_ADC, NULL },
{ "TDCO*", TID_DWORD, N_TDC, NULL },

// calculated banks

{ "CADC'", TID_FLOAT, N_ADC, NULL },

{ "ASUM"™, TID_STRUCT, sizeof(ASUM_BANK),
asum_bank_str },

The first entry is the bank name, the second the bank type. The type has to match the
type which is created by the frontend. The type TID_STRUCT is a special bank type.
These banks have a fixed length which matches a C structure. This is useful when
an analyzer wants to access named variables inside a bank like asum_bank.sum. The
third entry is the size of the bank in bytes in case of structured banks or the maximum
number of items (not bytes!) in case of variable length banks. The last entry is the
ASCII representation of the bank in case of structured banks. This is used to create the
bank on startup under /Equipment/Trigger/Variables/<bank name>>.

The next section in analyzer.c defines the ANALYZE_REQUEST list. This de-
termines which events are received and which routines are called to analyze these
events. A request can either contain an "analyzer routine" which is called to ana-
lyze the event or a "module list" which has been defined above. In the latter case
all modules are called for each event. The requests are copied to the ODB under
/Analyzer/<equipment name>/Common. Statistics like number of analyzed events
is written under /Analyzer/<equipment name>>/Statistics. This scheme is very similar
to the frontend Common and Statistics tree under /Equipment/<equipment name>/.
The last entry of the analyzer request determines the HBOOK buffer size for online N-
tuples. The analyzer_init() and analyzer_exit() routines are called when the analyzer
starts or exits, while the ana_begin_of_run() and ana_end_of_run() are called at the be-
ginning and end of each run. The ana_end_of_run() routine in the example code writes
a run log file runlog.txt which contains the current time, run number, run start time and
number of received events.

If more parameters are necessary, perform the following procedure:

1. modify/add new parameters in the current ODB.

[host:expt:S]JADC calibration>set Pedestal[9] 3
[host:expt:S]JADC calibration>set "Software Gain[9]" 3
[host:expt:S]JADC calibration>create double "Upper threshold”
[host:expt:S]ADC calibration>set "Upper threshold" 400
[host:expt:S]JADC calibration>ls -Ir

Key name Type #Val Size Last Opn Mode Value
ADC calibration DIR
Pedestal INT 10 4 2m 0 RWD
[0] 174
[1] 194
[2] 176
[31 182

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer

366

Software Gain FLOAT

[4]
[5]1
61
71
&l
o1
10

0]
[1]1
[2]
[31
[4]
31
61
7]
&l
o1

Histo threshold DOUBLE 1
Upper threshold DOUBLE 1

2. Generate experim.h

[host:expt:S]JADC calibration>make

“experim.h" has been written to /home/midas/online

3. Update the module with the new parameters.

---> adccalib.c

fill ADC histos if above threshold
for (i=0 ; i<n_adc ; i++)

8

2m

185
215
202
202

OCORRRRRRRER

53m O

3s

if ((cadc[i] > (float) adccalib_param.histo_threshold)

&& (cadc[i] < (float) adccalib_param.upper_threshold))

HF1(ADCCALIB_ID_BASE+i, cadc[i], 1.F);

4. Rebuild the analyzer.

0

RWD

RWD 20
RWD 400

In the case global parameter is necessary for several modules, start by doing the step 1
& 2 from the enumeration above and carry on with the following procedure below:

1. Declare the parameter global in analyzer.c

// 0DB structures

GLOBAL_PARAM global_param;

2. Update ODB structure and open record for that parameter (hot link).

---> analyzer.c

sprintf(str, "/%s/Parameters/Global', analyzer_name);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 367

db_create_record(hDB, 0, str, strcomb(global_param_str));
db_find_key(hDB, 0, str, &hKey);
if (db_open_record(hDB, hKey, &global_param
, sizeof(global_param), MODE_READ, NULL, NULL) != DB_SUCCESS) {
cm_msg(MERROR, "analyzer_init", "Cannot open \"%s\" tree in ODB'", str);
return O;

}

3. Declare the parameter extern in the required module

---> adccalib.c

extern GLOBAL_PARAM global_param;

6.1.1.5 Online usage with PAW Once the analyzer is build, run it by entering:
analyzer [-h <host name>] [-e <exp name>]

where <host name> and <exp name>> are optional parameters to connect the analyzer
to a remote back-end computer. This attaches the analyzer to the ODB, initializes all
modules, creates the PAW shared memory and starts receiving events from the system
buffer. Then start PAW and connect to the shared memory and display its contents

PAW > global_s onln
PAW > hist/list
1 Trigger
2 Scaler
1000 CADCOO
1001 CADCO1
1002 CADCO2
1003 CADCO3
1004 CADCO4
1005 CADCO5
1006 CADCO6
1007 CADCO7
2000 ADC sum

For each equipment, a N-tuple is created with a N-tuple ID equal to the event ID. The
CADC histograms are created from the adc_calib_bor() routine in adccalib.c. The N-
tuple contents is derived from the banks of the trigger event. Each bank has a switch
under /Analyzer/Bank switches. If the switch is on (1), the bank is contained in the
N-tuple. The switches can be modified during runtime causing the N-tuples to be
rebooked. The N-tuples can be plotted with the standard PAW commands:

PAW > nt/print 1

PAW > nt/plot 1.sum
PAW > nt/plot 1.sum cadc0>3000

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 368

1 CADC0=3000
r T TR
- 150 E“h- 1Hl¢ﬁ
a0d]
i 14p [
500 |- [
: 1200
ama |- o0 L
B &b
I - I
B ED |-
mn - [
R 4o L
00 - 5
R am L
u'. N PP B T [P P o
[15000 20000 300ada %l}:l:l 1500015005 20000 25005 30000
Suk M

Figure 2: PAW output for online N-tuples.

While histograms contain the full statistics of a run, N-tuples are kept in a ring-buffer.
The size of this buffer is defined in the ANALYZE_REQUEST structure as the last pa-
rameter. A value of 10000 creates a buffer which contains N-tuples for 10000 events.
After 10000 events, the first events are overwritten. If the value is increased, it might
be that the PAWC size (PAWC_DEFINE in analyzer.c) has to be increased, too. An
advantage of keeping the last 10000 events in a buffer is that cuts can be made imme-
diately without having to wait for histograms to be filled. On the other hand care has
to be taken in interpreting the data. If modifications in the hardware are made during a
run, events which reflect the modifications are mixed with old data. To clear the ring-
buffer for a N-tuple or a histogram during a run, the ODBEdit command [local]/>hi
analyzer <id>

where <id> is the N-tuple ID or histogram ID. An ID of zero clears all histograms but
no N-tuples. The analyzer has two more ODB switches of interest when running on-

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 369

line. The /Analyzer/Output/Histo Dump flag and /Analyzer/Output/Histo Dump File-
name determine if HBOOK histograms are written after a run. This file contains all
histograms and the last ring-buffer of N-tuples. It can be read in with PAW:

PAW >hi/file 1 run00001.rz 8190
PAW > Idir

The /Analyzer/Output/Clear histos flag tells the analyzer to clear all histograms and
N-tuples at the beginning of a run. If turned off, histograms can be accumulated over
several runs.

6.1.1.6 Offline usage with PAW The analyzer can be used for off-line analysis
without recompilation. It can read from MIDAS binary files (x.mid), analyze the data
the same way as online, and the write the result to an output file in MIDAS binary
format, ASCII format or HBOOK RZ format. If written to a RZ file, the output contains
all histograms and N-tuples as online, with the difference that the N-tuples contain all
events, not only the last 10000. The contents of the N-tuples can be a combination of
raw event data and calculated data. Banks can be turned on and off in the output via
the /Analyzer/Bank switches flags. Individual modules can be activated/deactivated via
the /Analyzer/Module switches flags.

The RZ files can be analyzed and plotted with PAW. Following flags are available when
the analyzer is started off-line:

* -i[filenamel] [filename?2] ... Input file name(s). Up to ten different file names can
be specified in a -1 statement. File names can contain the sequence "%05d" which
is replaced with the current run number in conjunction with the -r flag. Following
filename extensions are recognized by the analyzer: .mid (MIDAS binary), .asc
(ASCII data), .mid.gz (MIDAS binary gnu-zipped) and .asc.gz (ASCII data gnu-
zipped). Files are un-zipped on-the-fly.

* -0 [filename] Output file name. The file names can contain the sequence "%05d"
which is replaced with the current run number in conjunction with the -r flag.
Following file formats can be generated: .mid (MIDAS binary), .asc (ASCII
data), .rz (HBOOK RZ file), .mid.gz (MIDAS binary gnu-zipped) and .asc.gz
(ASCII data gnu-zipped). For HBOOK files, CWNT are used by default. RWNT
can be produced by specifying the -w flag. Files are zipped on-the-fly.

* -r [range] Range of run numbers to be analyzed like -r 120 125 to analyze runs
120 to 125 (inclusive). The -r flag must be used with a "%05d" in the input file
name.

* -n [count] Analyze only count events. Since the number of events for all event
types is considered, one might get less than count trigger events if some scaler
or other events are present in the data.

* -n [first] [last] Analyze only events with serial numbers between first and last.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2

Data format 370

-n [first] [last] [n] Analyze every n-th event from first to last.

-c [filenamel] [filename2] ... Load configuration file name(s) before analyzing
a run. File names may contain a "%05d" to be replaced with the run number. If
more than one file is specified, parameters from the first file get superseded from
the second file and so on. Parameters are stored in the ODB and can be read by
the analyzer modules. They are conserved even after the analyzer has stopped.
Therefore, only parameters which change between runs have to be loaded every
time. To set a parameter like /Analyzer/Parameters/ADC summing/offset one
would load a configuration file which contains:

[Analyzer/Parameters/ADC summing]
Offset = FLOAT : 123

Loaded parameters can be inspected with ODBEdit after the analyzer has been
started.

-p [param=value] Set individual parameters to a specific value. Overrides
any setting in configuration files. Parameter names are relative to the /An-
alyzer/Parameters directory. To set the key /Analyzer/Parameters/ADC sum-
ming/offset to a specific value, one uses -p "ADC summing/offset"=123. The
quotation marks are necessary since the key name contains a blank. To specify
a parameter which is not under the /Analyzer/Parameters tree, one uses the full
path (including the initial "/") of the parameter like -p "/Experiment/Run Param-
eters/Run mode"=1.

-w Produce row-wise N-tuples in output RZ file. By default, column-wise N-
tuples are used.

-v Convert only input file to output file. Useful for format conversions. No data
analysis is performed.

-d Debug flag when started the analyzer from a debugger. Prevents the system to
kill the analyzer when the debugger stops at a breakpoint.

6.2 Dataformat

Utilities - Top - Supported hardware

Midas supports two differents data format so far. A possible new candidate would be
the NeXus format, but presently no implementation has been developed.

Midas format

YBOS format

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2 Data format 371

6.2.1 Midas format

Special formats are used in MIDAS for the event header, banks and when writing to
disk or tape. This appendix explains these formats in detail. Each event carries a 16-
byte header. The header is generated by the front-end with the bm_compose_event()
routine and is used by consumers to distinguish between different events. The header
is defined in the EVENT_HEADER structure in midas.h. It has following structure:

Event and bank headers with data block.

Event ID | Trigger Iask

Zerial number (1)

EVENT_HEADER
Time Stamp

Event Data Size (bytes)

All Bank Zize (bhytes)
BANE HEADER
Flags -

/\.

Bank Name [4char] Bank Name [4char]
Type | Bank size (hytes) Type
| -DarTa | BANE Bank size (bytes) B -
| Data ... |
| Diata ... |
Bank Mame [4 char] | Data ... |
Type | Banksize oytes) Bank Mame [4char]
| Data .. | Twpe
EBank size (bytes)

Data., |

Figure 3: Event and bank headers with data block.

The event ID describes the type of event. Usually 1 is used for triggered events, 2
for scaler events, 3 for HV events etc. The trigger mask can be used to describe the
sub-type of an event. A trigger event can have different trigger sources like "physics
event", "calibration event", "clock event". These trigger sources are usually read in by
the front-end in a pattern unit. Consumers can request events with a specific triggering
mask. The serial number starts at one and is incremented by the front-end for each
event. The time stamp is written by the front-end before an event is read out. It uses
the time() function which returns the time in seconds since 1.1.1970 00:00:00 UTC.
The data size contains the number of bytes that follows the event header. The data area

of the event can contain information in any user format, although only certain formats

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2 Data format 372

are supported when events are copied to the ODB or written by the logger in ASCII
format. Event headers are always kept in the byte ordering of the local machine. If
events are sent over the network between computers with different byte ordering, the
event header is swapped automatically, but not the event contents.

e [Bank Format] Events in MIDAS format contain "MIDAS banks". A bank is a
substructure of an event and can contain only one type of data, either a single
value or an array of values. Banks have a name of exactly four characters, which
are treated, as a bank ID. Banks in an event consist of a global bank header and
an individual bank header for each bank. Following picture shows a MIDAS
event containing banks:

The "data size total" is the size in bytes of all bank headers and bank data. Flags
are currently not used. The bank header contains four characters as identification,
a bank type that is one of the TID_xxx values defined in midas.h, and the data
size in bytes. If the byte ordering of the contents of a complete event has to be
swapped, the routine bk_swap() can be used.

* [Tape Format] Events are written to disk files without any reformatting. For
tapes, a fixed block size is used. The block size TAPE_BUFFER_SIZE is defined
in midas.h and usually 32kB. Three special events are produced by the system. A
begin-of-run (BOR) and end-of-run (EOR) event is produced which contains an
ASCII dump of the ODB in its data area. Their IDs is 0x8000 (BOR) and 0x8001
(EOR). A message event (ID 0x8002) is created if Log messages is enabled in the
logger channel setting. The message is contained in the data area as an ASCII
string. The BOR event has the number MIDAS_MAGIC (0x494d or '"MI) as
the trigger mask and the current run number as the serial number. A tape can
therefore be identified as a MIDAS formatted tape. The routine tape_copy() in
the utility mtape.c is an example of how to read a tape in MIDAS format.

6.2.2 YBOS format

As mentioned earlier the YBOS documentation is available at the following URL ad-
dress: Ybos si t e Originally YBOS is a collection of FORTRAN functions which fa-
cilitate the manipulation of group of data. It also describes a mode of encoding/storing
data in an organized way. YBOS defines specific ways for:

* Gathering related data (bank structure).
 Gathering banks structure (logical record).

* Gathering/Writing/Reading logical record from/to storage device such as disk or
tape. (Physical record).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://www-cdf.fnal.gov/offline/ybos/ybos.html

6.2 Data format 373

YBOS is organized on a 4-byte alignment structure.

The YBOS library function provides all the tools for manipulation of the above men-
tioned elements in a independent Operating System like. But the implementation of
the YBOS part in Midas does not use any reference to the YBOS library code. Instead
only the strict necessary functions have to be re-written in C and incorporated into the
Midas package. This has been motivated by the fact that only a sub-set of function is
essential to the operation of:

* The front-end code: for the composition of the YBOS event (bank structure,
logical record).

* The data logger: for writing data to storage device (physical record).

This Midas/YBOS implementation restricts the user to a subset of the YBOS package
only for the front-end part. It doesn’t prevent him/her to use the full YBOS library for
stand alone program accessing data file written by Midas.

The YBOS implementation under Midas has the following restrictions:

* Single leveled bank structures only (no recursive bank allowed).

* Bank structure of the following type: ASCII, BINARY, WORD, DOUBLE
WORD, IEEE FLOATING.

» No mixed data type bank structure allowed.

* Logical Record format (Event Format) In the YBOS terminology a logical record
refers to a collection of YBOS bank while in the Midas front-end, it can be
referred to as an event. The logical record consists of a logical record length of
a 32bit-word size followed by a single or collection of YBOS bank. The logical
record length counts the number of double word (32bit word) composing the
record without counting itself.

YBOS uses "double word" unit for all length references.

* [Bank Format] The YBOS bank is composed of a bank header 5 double long
words followed by the data section which has to end on a 4 bytes boundary.

Ybos Event and bank headers with data block.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2 Data format 374

Event IT | Trigger hlask

Zerial number (1)

EVENT HEADER
Time Stamp

Event Data Size (bytes)
Logical Record Length } LEL

{1 T4
Bank Mame [4char]
Bank number (=1)
Bank Index (=03 YBEOZ BANWE HEADER
Bank Length in (I%4)
Bank Type
‘ Data .. |

‘ Diata .., |
Bank MName [4char]
Bank number (=1)
Bank Index (=0}
Bank Length in (I%4)
Bank Type
‘ Data ... |

Figure 4: Ybos Event and bank headers with data block.

The bank length parameter corresponds to the size of the data section in dou-
ble word count + 1. The supported bank type are defined in the ybos.h file see
YBOS Bank Types.

* [Physical Record (Tape/Disk Format)] The YBOS physical record structure is
based on a fixed block size (8190 double words) composed of a physical record
header followed by data from logical records.

Ybos Physical record structure with data block.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.3 Supported hardware 375

LFR
Length of Physical Record
{exclusive, in ¥4 units)

LFH YEOS PHYSEEC HEADER
Length of Physical Header
=4
Record number
(start with ()

Offset to 1%t YBOS event
(=4 for 1° event in PH)

Logical Record Length LEL
{1n IT*4)
Tt YBOE Event

Diata ..,
Logical Record Length
{in I*4)

Data ...

Data ..

Figure 5: Ybos Physical record structure with data block..

The Offset is computed with the following rules:

* If the logical record fits completely in the space of the physical record, the offset
value in the physical record header will be 4.

* If the block contains first the left over fragment of the previous event started in
the previous block, the offset will be equal to the length of the physical record
header + the left over fragment size.

* If the logical record extent beyond a full block, the offset will be set to -1.

* The mark of the end of file is defined with a logical record length set to -1.

Utilities - Top - Supported hardware

6.3 Supported hardware

Data format - Top - CAMAC and VME access function call

The driver library is continuously extended to suit the needs of various experiments
based on the selected hardware modules. Not all commercially available modules are

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.3 Supported hardware 376

included as we don’t have all the modules in hand. But you’re more than welcome
to contribute by providing your driver code if the module that you’re using is not yet
listed.

The /drivers directory is subdivided in several directories which refers to either the
type of bus ie: CAMAC, FastBus, VME, PCI, USB or type of software layer such as
Class, Device, Bus.

The software layers sections are used in particular for Slow Control System. Exam-
ple are available in the distribution under examples/slowcont/frontend.c including the
hv and multi class with the nulldev device and null bus driver. Note: not all the de-
vice drivers implement the triple layer (Class,Device,Bus) as some include directly the
hardware calls in the device layer. Please contact M das for specific support or for
submitting new drivers.

Non exhaustive Drivers/ directory structure

camac
1 .svn

camache.c bb_psi.c

camacnul.c bb_psi.h

CAMacrpC.c « & bl_psi.c
£| co77o0pci.c ~ & bl_psih
- E cousbic =] caent7lac caenv792.h
E cousbuh - 5] das1600.c caenvass.h
-5 resz117.c ~E] das1600.h Irs1151.c
- E cesBe0.c dastemp.c Irs1151.h

cesB210.h dastemp.h Irs1190.c

dspO0d.c 2] dd_syzs27. Irs1180.h

Es0nE.C =] dd syz527.

hyt133L.c ~/5] epics_ra.c

jorwayF3a.c -E] epics_cah

jorway73ah = lowp250.c

kes2926.¢ - 5] lewposn.h
-5 kesz9e7.c ~E] hsl440.c ps7106.h
~E| weceaz.c =l Irst44.h

/5] Irs1445a.c Sis3B03.0
~E] hsl445a.h “mein.c
E| Irstd54.c wmeio.h
S| Fs1454.h bus

Irs2415.c A- .svn
Irs2415.h Irs1821.c.c
- 5] Ired032.c
~E] mschdev.c
2] mschdevh
- 2] mscbhvr.c
~E] mscbhvr.h
nitronic.c

nitronic.h
~E] nuldev.c
= nulidev.h

Figure 6: Drivers/ directory structure

* CAMAC drivers This section is slowly getting obsolete. But still some ISA and
PCI interface are in use. Most recent development is the USB/CAMAC inter-
face from Wiener (CCUSB). While this interface permits CAMAC Command
Stacks this option is not yet supported by the Midas API limiting the access
speed of a R/W 24bit cycle to ~360us!

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

mailto:midas@psi.ch, midas@triumf.ca?subject=VME support
http://www.wiener-d.com/M/17/7.html

6.3 Supported hardware 377

* VME drivers The VME API has been revisited for a better function call set.
Not all the hardware modules have been ported to this new scheme. DMA and
Interrupt support have been included. The main hardware support is for the SBS
PCI/VME, SIS PCI/VME, VMIC processor.

» USB drivers USB is getting popular in particular for the MSCB system. Follow-
ing the same concept as for the CAMAC and VME, the musbstd.h/c is available
for USB access.

¢ GPIB drivers

* Other drivers This include the TCP/IP, Serial access layer.

6.3.1 CAMAC drivers

The CAMAC drivers can be used in different configuration and may have special be-
haviors depending on the type of hardware involved. Below are summurized some
remarks about these particular hardware modules.

e CAMAC controllers

— [hyt1331.c] This interface uses an ISA board to connect to the crate con-
troller. This card implement a "fast" readout cycle by re-triggering the
CAMAC read at the end of the previous one. This feature is unfortunately
not reliable when fast processor is used. Wrong returned data can be ex-
pected when CPU clocks is above 250MHz. Attempt on "slowing down"
the IO through software has not guaranteed perfect result. Contact has been
taken with HYTEC in order to see if possible fix can be applied to the in-
terface. First revision of the PC-card PAL has been tested but did not show
improvement. CVS version of the hyt1331.c until 1.2 contains "fast read-
out cycle" and should not be trusted. CVS 1.3 driver revision contains a
patch to this problem. In the mean time you can apply your own patch (see
Frequently Asked Questions) and also Hyt ec)

— [hyt1331.c Version >=1.8.3] This version has been modified for 5331 PCI
card support running under the dio task.

— [Kkhyt1331.c Version >= 1.8.3] A full Linux driver is available for the
5331 PCI card interfacing to the hyt1331. The kernel driver has been writ-
ten for the Linux kernel 2.4.2, which comes with RedHat 7.1. It could
be ported back to the 2.2.x kernel because no special feature of 2.4.x are
used, although many data structures and function parameters have changed
between 2.2 and 2.4, which makes the porting a bit painful. The driver
supports only one 5331 card with up to four CAMAC crates.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://midas.psi.ch/mscb/
http://www.hytec-electronics.co.uk/index.html

6.3 Supported hardware 378

— [kes292x.c] The 2926 is an 8 bit ISA board, while the 2927 is a 16bit ISA

board. An equivalent PCI interface (2915) exists but is not yet supported
by Midas (See KCS). No support for Windowx yet.
Both cards can be used also through a proper Linux driver camaclx.c. This
requires to first load a module camac-kcs292x.0. This software is available
but not part of the Midas distribution yet. Please contact m das for further
information.

— [wecc32.c] The CAMAC crate controller CC32 interface to a PCI card...
you will need the proper Linux module... Currently under test. Windows-
NT and W95 drivers available but not implemented under Midas. (see
CC32)

— [dsp004.c] The dsp004 is an 8 bit ISA board PC interface which connect
to the PC6002 CAMAC crate controller. This module is not being man-
ufactured anymore, but somehow several labs still have that controller in
use.

— [ces8210.c] The CAMAC crate controller CBD8210 interface is a VME
module to give access up to 7 CAMAC crate. In conjunction with the
mvmestd.h and mcstd.h, this driver can be used on any Midas/VME inter-
face.

— [jorway73a.c] The CAMAC crate controller Jorway73a is accessed
through SCSI commands. This driver implement the mcstd.h calls.

e CAMAC drivers

— [camacnul.c] Handy fake CAMAC driver for code development.

— [camacrpc.c] Remote Procedure Call CAMAC driver used for accessing
the CAMAC server part of the standard Midas frontend code. This driver
is used for example in the mcnaf task, mhttpd task utilities.

6.3.2 VME drivers

The VME modules drivers can be interfaced to any type of PCI/VME controller. This
is done by dedicated Midas VME Standard calls from the mvmestd.h files.

¢ PCI/VME interface

— [sis1100.c] PCI/VME with optical fiber link. Driver is under development
(March 2002). (see SI S).

— [bt617.c] Routines for accessing VME over SBS Bit3 Model 617 interface
under Windows NT using the NT device driver Model 983 and under Linux

using the vmehb device driver. The VME calls are implemented for the
"mvmestd" Midas VME Standard. (see Bi t 3).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://www.kscorp.com/www/camac/1000/2915.html
mailto:midas@triumf.ca?subject=KCS driver
http://www.wiener-d.com/cc32.htm
http://www.sruck.de/vme.htm
http://www.sbs.com/computer/products/cp_adapters.shtml

6.3 Supported hardware 379

— [wevmemm.c] PCI/VME Wiener board supported. (see W ener PCl).

— [vxVME.c] mvmestd implementation for VxWorks Operating System.
Does require cross compiler for the VxWorks target hardware processor
and proper WindRiver license.

¢ VME modules

— [rs1190.c] LeCroy Dual-port memory ECL 32bits.

— [Irs1151.c] LeCroy 16 ECL 32bits scalers.

— [Irs2365.c] LeCroy Logic matrix.

— [1rs2373.c] LeCroy Memory Lookup unit.

— [sis3700.c] SIS FERA Fifo 32 bits.

— [sis3801.c] SIS MultiChannel Scalers 32 channels.

— [si1s3803.c] SIS Standard 32 Scalers 32 bits.

— [ps7106.c] Phillips Scientific Discriminator.

— [ces8210.c] CES CAMAC crate controller.

— [vmeio.c] Triumf VMEIO General purpose 1/0 24bits.

6.3.3 USB drivers

This section is under development for the Wiener USB/CAMAC CCUSB controller.
Support for Linux and XP is undergo. Please contact m das for further information.

For GPIB Linux support please refer to The Li nux Lab Proj ect

6.3.4 GPIB drivers

There is no specific GPIB driver part of the Midas package. But GPIB is used at
Triumf under WindowsNT for several Slow Control frontends. The basic GPIB DLL
library is provided by Nat i onal | nstrunent . Please contact m das for further
information.

For GPIB Linux support please refer to The Li nux Lab Proj ect

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://www.wiener-d.com/vmepci.htm
mailto:midas@psi.ch, midas@triumf.ca?subject=USB driver
http://www.llp.fu-berlin.de/pool/software/busses/
http://www.ni.com/default.htm
mailto:midas@triumf.ca?subject=GPIB driver
http://www.llp.fu-berlin.de/pool/software/busses/

6.4 CAMAC and VME access function call 380

6.3.5 Other drivers

* [Serial driver] rs232.c communication routines.
* [Network driver] tcpip.c/h TCP/IP socket communication routines.

* [SCSI driver] Support for the jorway73a SCSI/CAMAC controller under Linux
has been done by Greg Hackman (see CAMAC drivers).

Data format - Top - CAMAC and VME access function call

6.4 CAMAC and VME accessfunction call

Supported hardware - Top - Midas build options and operation considerations

Midas defines its own set of CAMAC, VME and FASTBUS calls in order to unify the
different hardware modules that it supports. This interface method permits to be totally
hardware as well as OS independent. The same user code developed on a system can
be used as a template for another application on a different operating system.

While the file mestd.h (Midas Camac Standard) provides the interface for the CAMAC
access, the file mvmestd.h (Midas VME Standard) is for the VME access. An extra
CAMAC interface built on the top of mcstd provides the ESONE standard CAMAC
calls (esone.c).

Refers to the corresponding directories under /drivers to find out what module of each
family is already supported by the current Midas distribution. /drivers/divers contains
older drivers which has not yet been converted to the latest API.

6.4.1 Midas CAMAC standard functions

Please refer to mcstd.h for function description.

6.4.2 ESONE CAMAC standard functions

Not all the functionality of ESONE standard have been fully tested

Please refer to esone.c for function description.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.4 CAMAC and VME access function call 381

6.4.3 Midas VME standard functions

This API provides basic VME access through a simple set of functions. Refer to
mvmestd.h for more specific information. mvme_open() contains a general access
code sample summarizing most of the mvme commands.

6.4.4 Computer Busy Logic

A "computer busy logic" has to be implemented for a front-end to work properly. The
reason for this is that some ADC modules can be re-triggered. If they receive more
than one gate pulse before being read out, they accumulate the input charge that leads
to wrong results. Therefore only one gate pulse should be sent to the ADC’s, additional
pulses must be blocked before the event is read out by the front-end. This operation is
usually performed by a latch module, which is set by the trigger signal and reset by the
computer after it has read out the event:

The output of this latch is shaped (limited in its pulse with to match the ADC gate
width) and distributed to the ADC’s. This scheme has two problems. The computer
generates the reset signal, usually by two CAMAC output functions to a CAMAC IO
unit. Therefore the duration of the pulse is a couple of ms. There is a non-negligible
probability that during the reset pulse there is another hardware trigger. If this happens
and both inputs of the latch are active, its function is undefined. Usually it generates
several output pulses that lead to wrong ADC values. The second problem lies in the
fact that the latch can be just reset when a trigger input is active. This can happen since
trigger signals usually have a width of a few tens of nanoseconds. In this case the latch
output signal does not carry the timing of the trigger signal, but the timing of the reset
signal. The wrong timing of the output can lead to false ADC and TDC signals. To
overcome this problem, a more elaborate scheme is necessary. One possible solution is
the use of a latch module with edge-sensitive input and veto input. At PSI, the module
"D. TRIGGER /DT102" can be used. The veto input is also connected to the computer:

Latched trigger layout.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.4 CAMAC and VME access function call 382

Hardware trigoer Latch ADC gate
L 5 et out ————
Feset

Event readout finished
ivia computer 10 module)

Figure 7: Latched trigger layout.

To reset this latch, following bit sequence is applied to the computer output (signals are
displayed active low):

Improved Latched trigger layout.

Harthware trigger Latch ADC gate
L lnput Out ———l
Weto
Feset

® ®
To cormputer outpot

Figure 8: Improved Latched trigger layout.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 383

The active veto signal during the reset pulse avoids that the latch can receive a "set"
and a "reset" simultaneously. The edge sensitive input ensures that the latch can only
trigger on a leading edge of a trigger signal, not on the removing of the veto signal. This
ensures that the timing of the trigger is always carried at the ADC/TDC gate signal.

Veto Timing.

YELD

Feset

Figure 9: Veto Timing.

Supported hardware - Top - Midas build options and operation considerations

6.5 Midasbuild optionsand operation consider ations

CAMAC and VME access function call - Top - Midas Code and Libraries

The section covers the Building Options for customization of the DAQ system as well
as the different Environment variables options for its operation.

6.5.1 Building Options

* By default Midas is build with a minimum of pre-compiler flags. But the Make-
file contains options for the user to apply customization by enabling internal
options already available in the package.

— YBOS_VERSION_3_3 , EVID_TWIST , INCLUDE_FTPLIB |,
INCLUDE_ZLIB , SPECIFIC_OS_PRG

* Other flags are avaiable at the application level:
- HAVE_CAMAC , HAVE_ROOT , HAVE_HBOOK , HAVE_MYSQL ,
USE_EVENT_CHANNEL , DM_DUAL_THREAD , USE_INT

* By default the midas applications are built for use with dynamic library libmi-
das.so. If static build is required the whole package can be built using the option
static.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5

Midas build options and operation considerations 384

> make static

The basic Midas package builds without external package library reference. But
it does try to build an extra core analyzer application to be used in conjunc-
tion with ROOT if $ROOTSYS is found. This is required ONLY if the exam-
ples/experiment makefile is used for generating a complete Midas/ROOT ana-
lyzer application.

In case of HBOOK/PAW analyzer application, the build should be done from
examples/hbookexpt directory and the environment variable CERNLIB_PACK
should be pointing to a valid cernpacklib.a library.

For development it could be useful to built individual application in static. This
can be done using the USERFLAGS option such as:

> rm linux/bin/mstat; make USERFLAGS=-static linux/bin/mstat

The current OS support is done through fix flag established in the general Make-
file . Currently the OS supported are:

- OS_OSF1 , OS_ULTRIX , OS_ FREEBSD , OS_LINUX , OS -
SOLARIS.

For OS_IRIX please contact Pierre. The OS_VMS is not included in the Make-
file as it requires a particular makefile and since several years now the VMS
support has been dropped.

OSFLAGS = -DOS_LINUX ...

OSFLAGS [2.0.0] For 32 bit built, the OSFLAGS should contains the -m32.
By default this flag is not enabled. It has to be applied to the Makefile for the
frontend examples too.

add to compile midas in 32-bit mode
OSFLAGS += -m32

Other OS supported are:

— OS_WINNT : See file makefile.nt.
— OS_VXWORKS : See file makefile.ppc_tri.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 385

6.5.2 USERFLAGS

This flag can be used at the command prompt for individual application built.

make USERFLAGS=-static linux/bin/mstat

6.5.3 MIDAS PREF FLAGS

This flag is for internal global Makefile preference. Included in the OSFLAGS.

MIDAS_PREF_FLAGS = -DYBOS_VERSION_3 3 -DEVID_TWIST

6.5.4 HAVE_CAMAC

This flag enable the CAMAC RPC service within the frontend code. The application
mcnaf task and the web CNAF page are by default not CAMAC enabled (HAVE_-
CAMAC undefined).

6.5.5 HAVE_ROOT

This flag is used for the midas analyzer task in the case ROOT environment is re-
quired. An example of the makefile resides in examples/experiment/Makefile. This
flag is enabled by the presence of a valid ROOTSYS environment variable. In the case
ROOTSYS is not found the analyzer is build without ROOT support. In this later
case, the application rmidas task will be missing. refer to MIDAS Analyzer for further
details.

6.5.6 HAVE_HBOOK

This flag is used for examples/hbookexpt/Makefile for building the midas
analyzer task against HBOOK and PAW. The path to the cernlib is requested and ex-
pected to be found under /cern/pro/lib (see makefile). This can always be overwritten
during the makefile using the following command:

make CERNLIB_PACK=<your path>/libpacklib.a

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 386

6.5.7 HAVE_MYSQL

This flag is used for the mlogger task to building the application with mySQL support.
The build requires to have access to the mysql include files as well as the mysql library.

» For operation of the analyzer without HBOOK or ROOT, refer to
MIDAS Analyzer for further details.

6.5.8 SPECIFIC_OS_PRG
This flag is for internal Makefile preference. Used in particular for addi-
tional applications build based on the OS selection. In the example below

mspeaker, mlxspeaker tasks and dio task are built only under OS_LINUX.

SPECIFIC_OS_PRG = $(BIN_DIR)/mlxspeaker_task $(BIN_DIR)/dio_task

6.59 INCLUDE_FTPLIB

FTP support "INCLUDE_FTPLIB" Application such as the mlogger task,
lazylogger task can use the ftp channel for data transfer.

6.5.10 INCLUDE_ZLIB

The applications lazylogger task, mdump task can be built with zlib.a in order to gain
direct access to the data within a file with extension mid.gz or ybs.gz. By default this
option is disabled except for the system analyzer core code mana.c.

make USERFLAGS=-DINCLUDE_ZLIB linux/lib/ybos.o
make USERFLAGS=-static linux/bin/mdump

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 387

6511 YBOS_VERSION_3 3

The default built for ybos support is version 4.0. If lower version is required include
YBOS_VERSION_3_3 during compilation of the ybos.c

make USERFLAGS=-DYBOS_VERSION_3 3 linux/lib/ybos.o

6.5.12 DM_DUAL_THREAD
Valid only under VxWorks. This flag enable the dual thread task when running the

frontend code under VxWorks. The main function calls are the dm_xxxx in midas.c
(Contact Pierre for more information).

6.5.13 USE_EVENT_CHANNEL

To be used in conjunction with the DM_DUAL_THREAD.

6.5.14 USE_INT

In mfe.c. Enable the use of interrupt mechanism. This option is so far only valid under
VxWorks Operating system. (Contact Stefan or Pierre for further information).

6.5.15 Environment variables

Midas uses a several environment variables to facilitate the different application startup.

6.5.15.1 MIDASSYS From version 1.9.4 this environmental variable is required. It
should point to the main path of the installed Midas package. The application odbedit
will generate a warning message in the case this variable is not defined.

6.5.15.2 MIDAS EXPTAB This variable specify the location of the exptab file
containing the predefined midas experiment. The default location is for OS_UNIX:
Jetc, /. For OS_WINNT: \system32, \system.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 388

6.5.15.3 MIDAS_SERVER_HOST This variable predefines the names of the host
on which the Midas experiment shared memories are residing. It is needed when con-
nection to a remote experiment is requested. This variable is valid for Unix as well as
Windows OS.

6.5.15.4 MIDAS_EXPT_NAME This variable predefines the name of the exper-
iment to connect by default. It prevents the requested application to ask for the ex-
periment name when multiple experiments are available on the host or to add the -e
<expt_name> argument to the application command. This variable is valid for Unix
as well as Windows OS.

6.5.15.5 MIDAS_DIR This variable predefines the LOCAL directory path where
the shared memories for the experiment are located. It supersede the host_name and
the expt_name as well as the MIDAS_SERVER_HOST and MIDAS_EXPT_NAME
as a given directory path can only refer to a single experiment.

6.5.15.6 MCHART_DIR This variable is ... for later... This variable is valid only
under Linux as the -D is not supported under WindowsXX

CAMAC and VME access function call - Top - Midas Code and Libraries

6.6 MidasCodeand Libraries

Midas build options and operation considerations - Top - Frequently Asked Questions

This section covers several aspect of the Midas system.

 State Codes & Transition Codes
» Midas Data Types
— Midas bank examples
* YBOS Bank Types
— YBOS bank examples
* Midas Code and Libraries

6.6.1 State Codes & Transition Codes

e State Codes : These number will be apparent in the ODB under the
ODB /Runlnfo Tree.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 389

— STATE_STOPPED
— STATE_PAUSED
— STATE_RUNNING

* Transition Codes These number will be apparent in the ODB under the
ODB /Runlnfo Tree.

TR_START
TR_STOP
TR_PAUSE
TR_RESUME

6.6.2 Midas Data Types

Midas defined its own data type for OS compatibility. It is suggested to use them in
order to insure a proper compilation when moving code from one OS to another. float
and double retain OS definition.

* BYTE unsigned char

WORD unsigned short int (16bits word)

DWORD unsigned 32bits word
» INT signed 32bits word

BOOL OS dependent.

When defining a data type either in the frontend code for bank definition or in user
code to define ODB variables, Midas requires the use of its own data type declaration.
The list below shows the main Type IDentification to be used (refers to Midas Define
for complete listing):

TID_BYTE unsigned byte 0 255

TID_SBYTE signed BYTE -128 127

TID_CHAR single character 0 255

TID_WORD two BYTE 0 65535

TID_SHORT signed WORD -32768 32767

TID_DWORD four bytes 0 2xx32-1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 390

* TID_INT signed DWORD -2x%%31 2%%31-1

TID_BOOL four bytes bool 0 1

TID_FLOAT four bytes float format

TID_DOUBLE eight bytes float format

6.6.3 Midas bank examples

There are several examples under the Midas source code that you can check. Please
have a look at

* Frontend code midas/examples/experiment/frontend.c etc...

» Backend code midas/examples/experiment/analyzer.c etc...

6.6.4 YBOS Bank Types

YBOS defines several type but all types should be 4 bytes aligned. Distinction of
signed and unsigned is not done. When mixing MIDAS and YBOS in the frontend for
RO_ODB see The Equipment structure make sure the bank types are compatible (see
also YBOS Define)

11_BKTYPE Bank of Bytes

12_BKTYPE Bank of 2 bytes data

14_BKTYPE Bank of 4 bytes data

F4 BKTYPE Bank of float data

D8_BKTYPE Bank of double data

Al_BKTYPE Bank of ASCII char

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 391

6.6.5 YBOS bank examples

Basic examples using YBOS banks are available in the midas tree under exam-
ples/ybosexpt.

* Frontend code Example 1, 2 shows the bank creation with some CAMAC ac-
quisition.

———————— example 1 -------- Simple 16 bits bank construction

void read_cft (DWORD *pevent)

{
DWORD *pbkdat, slot;

ybk_create((DWORD *)pevent, *"TDCP", 12_BKTYPE, &pbkdat);
for (slot=FIRST_CFT;slot<=LAST_CFT;slot++)

{
cami(3,slot,1,6,(WORD *)pbkdat);
((WORD *)pbkdat)++;
caml6i_rq(3,slot,0,4,(WORD **)&pbkdat,16);

}
ybk_close((DWORD *)pevent, 12_BKTYPE, pbkdat);
return;

———————— example 2 -------- Simple 32bit bank construction
DWORD *pbkdat;

ybk_create((DWORD *)pevent, "TICS™, 14_BKTYPE, &pbkdat);
camo(2,22,0,17,ZERO);

cam24i_r(2,22,0,0,(DWORD **) &pbkdat,10);
cam24i_r(2,22,0,0,(DWORD **) &pbkdat,10);
cam24i_r(2,22,0,0,(DWORD **) &pbkdat,10);
cam24i_r(2,22,0,0,(DWORD **) &pbkdat,10);
cam24i_r(2,22,0,0,(DWORD **) &pbkdat,9);
ybk_close((DWORD *)pevent, 14 BKTYPE, pbkdat);

return O;

Example 3 shows a creation of an EVID bank containg a duplicate of the midas header.
As the Midas header is stripped out of the event when data are logger, it is necessary to
compose such event to retain event information for off-line analysis. Uses of predefined
macros (see Midas Code and Libraries) are available in order to extract from a pre-
composed Midas event the internal header fields i.e. Event ID, Trigger mask, Serial
number, Time stamp. In this EVID bank we added the current run number which is
retrieve by the frontend at the begin of a run.

———————— example 3 -------- Full equipment readout function
INT read_cum_scaler_event(char *pevent, INT off)

{
INT i;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 392

DWORD *pbkdat, *pbktop, *podbvar;
ybk_init((DWORD *) pevent);

// collect user hardware SCALER data

ybk_create((DWORD *)pevent, "EVID", 14_BKTYPE, (DWORD *)(&pbkdat));
*(pbkdat)++ = gbl_tgt_counter++; // event counter
*((WORD *)pbkdat) = EVENT_ID(pevent); ((WORD *)pbkdat)++;

*((WORD *)pbkdat) = TRIGGER_MASK(pevent); ((WORD *)pbkdat)++;
*(pbkdat)++ = SERIAL_NUMBER(pevent);

*(pbkdat)++ = TIME_STAMP(pevent);

*(pbkdat)++ = gbl_run_number; // run number
ybk_close((DWORD *)pevent, pbkdat);

// BEGIN OF CUMULATIVE SCALER EVENT
ybk_create((DWORD *)pevent, "CUSC", 14 _BKTYPE, (DWORD *)(&pbkdat));
for (i=0 ; i<NSCALERS ; i++){
*pbkdat++ = scaler[i]-cuval[0];
*pbkdat++ = scaler[i]-cuval[1];
3

ybk_close(DWORD *)pevent, 14_BKTYPE, pbkdat);
// END OF CUMULATIVE SCALER EVENT

// event in bytes for Midas
return (ybk_size ((DWORD *)pevent));

» Backend code If the data logging is done through YBOS format (see
ODB /Logger Tree Format) the events on the storage media will have been
stripped from the MIDAS header used for transfering the event from the fron-
tend to the backend. This means the logger data format is a "TRUE" YBOS
format. Uses of standard YBOS library is then possible.

--- Example of YBOS bank extraction ----

void process_event(HNDLE hBuf, HNDLE request_id, EVENT_HEADER *pheader, void *pevent)
{

INT status;

DWORD *plrl, *pybk, *pdata, bklen, bktyp;

char banklist[YB_STRING_BANKLIST_MAX];

// pointer to data section
plrl = (DWORD *) pevent;

// Swap event
yb_any_event_swap(FORMAT_YBOS,plrl);

// bank name given through argument list
if ((status = ybk_find (plrl, sbank_name, &bklen, &bktyp, (void *)&pybk)) == YB_SUCCESS)

// given bank found in list

status = ybk_list (plrl, banklist);

printf("'#banks:%i Bank list:-%s-\n",status,banklist);

printf("Bank:%s - Length (1*4):%i1 - Type:%i - pBk:0x%p\n',sbank_name, bklen, bktyp, pybk);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 393

// check id EVID found in event for id and msk selection
if ((status = ybk _find (plrl, "EVID", &bklen, &bktyp, (void *)&pybk)) == YB_SUCCESS)

pdata = (DWORD *)((YBOS_BANK_HEADER *)pybk + 1);

}
// iterate through the event
pybk = NULL;

while ((bklen = ybk_iterate(plrl, &pybk, (void *)&pdata))
&& (pybk != NULL))
printf("'bank length in 4 bytes unit: %d\n",bklen);
}

else

{
status = ybk_list (plrl, banklist);
printf("'Bank -%s- not found (%i) in ",sbank _name, status);
printf("'#banks:%i Bank list:-%s-\n",status,banklist);

}

6.6.6 Midas Code and Libraries

The Midas libraries are composed of 5 main source code and their corresponding
header files.

1. The midas.h & midas.c : Midas abstract layer.

2. The msystem.h & system.c : Midas function implementation.

3. The mrpc.h & mrpc.c : Midas RPC functions.

4. The odb.c : Online Database functions.

5. The ybos.h & ybos.c : YBOS specific functions.
Within these files, all the functions have been categorized depending on their scope.

o al_xxx(...) : Alarm system calls
* bk_xxx(...) : Midas bank manipulation calls
* bm_xxx(...) : Buffer management calls

e CM_XXX(...) : Common system calls

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 394

» db_xxx(...) : Database managment calls
¢ el_xxx(...) : Electronic Log book calls
* hs_xxx(...) : History manipulation calls

* SS_XXX(...) : System calls

ybk_xxx(...) : YBOS bank manipulation

6.6.7 MIDAS Macros

Several group of MACROs are available for simplifying user job on setting or getting
Midas information. They are also listed in the Midas Code and Libraries. All of them
are defined in the Midas Macros, System Macros, YBOS Macros header files.

» Message Macros. These Macros compact the 3 first arguments of the cm_msg()
call. It replaces the type of message, the routine name and the line number in the
C-code. See example in cm_msg().

MERROR : For error MT_ERROR, _ FILE__, _ LINE_)

MINFO : For info MT_INFO, _ FILE__, _ LINE_)

MDEBUG : For debug (MT_DEBUG, _ FILE__, _LINE_)

MUSER : Produced by interactive user (MT_USER, __FILE__, _LINE_-

)

— MLOG : Info message which is only logged (MT_LOG, _ FILE_ , _ -
LINE_)

— MTALK : Info message for speech system (MT_TALK, _ FILE_ , _ -
LINE_)

— MCALL : Info message for telephone call MT_CALL, _ FILE_, _ -
LINE_)

* DAQ Event/LAM Macros. To be used in the frontend/analyzer code.

— CAMAC LAM manipulation. These Macros are used in the frontend
code to interact with the LAM register. Usualy the CAMAC Crate Con-
troler has the feature to register one bit per slot and be able to present this
register to the user. It may even have the option to mask off this register
to allow to set a "general" LAM register containing either "1" (At least one
LAM from the masked LAM is set) or "0" (no LAM set from the maksed
LAM register). The poll_event() uses this feature and return a variable
which contains a bit-wise value of the current LAM register in the Crate
Controller.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 395

LAM_SOURCE
LAM_STATION
LAM_SOURCE_CRATE
LAM_SOURCE_STATION

* BYTE swap manipulation. These Macros can be used in the backend analyzer
when little-endian/big-endian are mixed in the event.

— WORD_SWAP
— DWORD_SWAP
— QWORD_SWAP

» MIDAS Event Header manipulation. Every event travelling through the Midas
system has a "Event Header" containing the minimum information required to
identify its content. The size of the header has been kept as small as possible
in order to minimize its impact on the data rate as well as on the data storage
requirment. The following macros permit to read or override the content of the
event header as long as the argument of the macro refers to the top of the Midas
event (pevent). This argument is available in the frontend code in any of the user
readout function (pevent). It is also available in the user analyzer code which
retrieve the event and provide directly access to the event header (pheader) and
to the user part of the event (pevent). Sub-function using pevent would then be
able to get back the the header through the use of the macros.

TRIGGER_MASK
EVENT_ID
SERIAL_NUMBER
TIME_STAMP

x from examples/experiment/adccalib.c
INT adc_calib(EVENT_HEADER *pheader, void *pevent)
{

INT i, n_adc;
WORD *pdata;
float *cadc;

// look for ADCO bank, return if not present
n_adc = bk_locate(pevent, "ADCO", &pdata);
if (n_adc == 0 || n_adc > N_ADC)

return 1;

// create calibrated ADC bank
bk_create(pevent, ""CADC', TID_FLOAT, &cadc);

,

% from examples/experiment/frontend.c

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.7 Frequently Asked Questions 396

INT read_trigger_event(char *pevent, INT off)

WORD *pdata, a;
INT q, timeout;

// init bank structure
bk_init(pevent);

, ;
— Frontend C-code fragment from running experiment:

INT read_ge_event(char *pevent, INT offset)

{
static WORD *pdata;
INT i, X, Q;
WORD temp;

// Change the time stamp in millisecond for the Super event
TIME_STAMP(pevent) = ss_millitime();

bk_init(pevent);
bk_create(pevent, "GERM", TID_WORD, &pdata);

T

— Frontend C-code fragment from running experiment

iéﬁ = *((DWORD *)pevent);

if (lam & LAM_STATION(IW_N))
{

// compose event header
TRIGGER_MASK(pevent) = JW_MASK;
EVENT_ID(pevent) = JW_ID;
SERIAL_NUMBER(pevent)= eq->serial_number++;
// read MCS event
size = read_mcs_event(pevent);
// Correct serial in case event is empty
if (size == 0)

SERIAL_NUMBER(pevent) = eqg->serial_number--;

6.6.7.1 YBOS library Exportable ybos functions through inclusion of ybos.h

Midas build options and operation considerations - Top - Frequently Asked Questions

6.7 Frequently Asked Questions

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.7 Frequently Asked Questions 397

Midas Code and Libraries - Top - Data format

Feel free to ask questions to one of us (Stefan Ritt
Pi erre- Andre Anaudr uz) or visit the M das Forum

)

1. Why the CAMAC frontend generate a core dump (linux)?

e If you’re not using a Linux driver for the CAMAC access, you need to
start the CAMAC frontend application through the task launcher first. See
dio task or mcnaf task. This task laucher will grant you access permission
to the IO port mapped to your CAMAC interface.

2. Where does Midas log file resides?

* As soon as any midas application is started, a file midas.log is produce. The
location of this file depends on the setup of the experiment.

(a) if exptab is present and contains the experiment name with the correspond-
ing directory, this is where the file midas.log will reside.

(b) if the midas logger mlogger task is running the midas.log will be in the
directory pointed by the "Data Dir" key under the /logger key in the ODB
tree.

(c) Otherwise the file midas.log will be created in the current directory in
which the Midas application is started.

3. How do I protected my experiment from being controlled by aliases?

* Every experiment may have a dedicated password for accessing the exper-
iment from the web browser. This is setup through the ODBedit program
with the command webpass. This will create a Security tree under /EXx-
periment with a new key Web Password with the encrypted word. By
default Midas allows Full Read Access to all the Midas Web pages. Only
when modification of a Midas field the web password will be requested.
The password is stared as a cookie in the target web client for 24 hours See
ODB /Experiment Tree.

* Other options of protection are described in ODB /Experiment Tree which
gives to dedicated hosts access to ODB or dedicated programs.

4. Can | compose my own experimental web page?

* Only under 1.8.3 though. You can create your own html code using your
favorite HMTL editor. By including custom Midas Tags, you will have
access to any field in the ODB of your experiment as well as the standard
button for start/stop and page switch. See mhttpd task , Custom page.

5. How do | prevent user to modify ODB values while the run is in progress?

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

mailto:midas@psi.ch
mailto:midas@triumf.ca
http://midas.triumf.ca/forum/Package

6.7 Frequently Asked Questions 398

* By creating the particular /Experiment/Lock when running/ ODB tree,
you can include symbolic links to any odb field which needs to be set to
Read Only field while the run state is on. See ODB /Experiment Tree.

6. Is there a way to invoke my own scripts from the web?

* Yes, by creating the ODB tree /Script every entry in that tree will be avail-
able on the Web status page with the name of the key. Each key entry is
then composed with a list of ODB field (or links) starting with the exe-
cutable command followed by as many arguments as you wish to be passed
to the script. See ODB /Script Tree.

7. I've seen the ODB prompt displaying the run state, how do you do that?

* Modify the /System/prompt field. The "S" is the trick.

Fri> odb -e bnmrl -h isdaqO1
[host:expt:Stopped]/cd /System/
[host:expt:Stopped]/System>Is

Clients

Client Notify 0

Prompt [%h - %e - %S]%p
Tmp

[host:expt:Stopped]/System
[host:expt:Stopped]/Systemset prompt [%h:%e:%S]%p>
[host:expt:Stopped]/System>Is

Clients

Client Notify 0

Prompt [%h - %e - %S]%p>
Tmp

[host:expt:Stopped]/System>set Prompt [%h:%e:%s]%p>
[host:expt:S]/System>set Prompt [%h:%e:%S]%p>
[host:expt:Stopped]/System>

8. I’ve setup the alarm on one parameter in ODB but | can’t make it trigger?

» The alarm scheme works only under ONLINE. See ODB /RunInfo Tree
for Online Mode. This flag may have been turned off due to analysis replay
using this ODB. Set this key back to 1 to get the alarm to work again.

9. How do I extend an array in ODB?

* When listing the array from ODB with the -1 switch, you get a column indi-
cating the index of the listed array. You can extend the array by setting the
array value at the new index. The intermediate indices will be fill with the
default value depending on the type of the array. This can easly corrected
by using the wildcard to access all or a range of indices.

[local :midas:S]/>mkdir tmp

[local :midas:S]/>cd tmp

[local :midas:S]/tmp>create int number
[local :midas:S]/tmp>create string foo
String length [32]:
[local:midas:S]/tmp>Is -1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 399

Key name Type #Val Size Last Opn Mode Value
number INT 1 4 >99d 0 RWD O
foo STRING 1 32 1s 0 RWD

[local :midas:S]/tmp>set number[4] 5

[local :midas:S]/tmp>set foo[3]

[local :midas:S]/tmp>Is -1

Key name Type #Val Size Last Opn Mode Value

number INT 5 4 12s O RWD

foo STRING 4 32 2s O RWD

[local :midas:S]/tmp>set number[1..3] 9

[local:midas:S]/tmp>set foo[2] A default string"
[local:midas:S]/tmp>Is -1

Key name Type #Val Size Last Opn Mode Value

foo STRING 4 32 35 0 RWD
[0]

[2] A default string
31

1. HowdolI ...

Midas Code and Libraries - Top - Data format

6.8 Components

Introduction - Top - Quick Start

Midas system is based on a modular scheme that allows scalability and flexibility. Each
component’s operation is handled by a sub-set of functions. but all the components are
grouped in a single library (libmidas.a, libmidas.so(UNIX), midas.dlI(NT)).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 400

The overall C-code is about 80’000 lines long and makes up over 450 functions (version
1.9.0). But from a user point of view, only a subset of these routines are needed for
most operations.

Each Midas component is briefly described below but throughout the documentation
more detailed information will be given regarding each of their capabilities. All these
components are available from the "off-the-shelf" package. Basic components such
as the Buffer Manager, Online Database, Message System, Run Control are by default
operationals. The other needs are to be enabled by the user simply by either starting an
application or by activation of the component through the Online Database. A general
picture of the Midas system is displayed below.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components

401

WIDAS

Oni_iﬂe
Database
mirror

MIDAS : Maximum Integrated Data Acquisition System

http://midas.psi.ch Stefan Ritt midas@psi.ch
http://midas.triumf.ca Pierre-André Amaudruz midas@triumf.ca
= J |
interface

. v i
;

I
i
I
i
I

Backend Node |

Supported OS:
MSDOS, WindowsNT,
Linux, Solaris, OSF/1
ViWorks

Midas applications:
odbedit : control
mdump: event dump
mstat: status display
mhist: history tool
menaf: CAMAC tool
mtape: tape tool

Database
memory

melog: Electronic log
lazylogger: lazy logger
mchart: chart server

stripchart: chart display
mixspeaker: speech synthesizer

analyzer: user analyzer
webpaw: PAW weh/midas
server

mserver: midas remote server

mhttpd: midas web server

Supported hardware:
CAMAC:
........ 2 mid -Kinetics 2926/7 (IS4)
1 Toot -Hytec 1331 (ISA)
: %] mdump Event dump -DSP004 (ISA)
£ S -CC32 Wiener (PCI)
] ; -CBDS8210 (VxWorks)
7 PAW VME:
_SBS BT617 (PCI)
-WEVMEMM (PCT)

Figure 10: Components

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 402

The main elements of the Midas package are listed below with a short description of
its functionality.

¢ Buffer Manager Data flow and messages passing mechanism.
¢ Message System Specific Midas messages flow.

¢ Online Database Central information area.

¢ Frontend Acquisition code.

¢ Midas Server Remote access server (RPC server).

» Data Logger Data storage.

* Analyzer Data analyzer.

* Run Control Data flow control.

* Slow Control system Device monitoring and control.
 History system Event history storage and retrival.

» Alarm System Overall system and user alarm.

* Electronic Logbook Online User Logbook.

6.8.1 Buffer Manager

The "buffer manager" consists of a set of library functions for event collection and
distribution. A buffer is a shared memory region in RAM, which can be accessed
by several processes, called "clients". Processes sending events to a buffer are called
"producers", processes reading events are called "consumers".

A buffer is organized as a FIFO (First-In-First-Out) memory. Consumers can specify
which type of events they want to receive from a buffer. For this purpose each event
contains a MIDAS header with an event ID and other pertinent information.

Buffers can be accessed locally or remotely via the MIDAS server. The data through-
put for a local configuration composed of one producer and two consumers is about
10MB/sec on a 200 MHz Pentium PC running Windows NT. In the case of remote
access, the network may be the essential speed limitation element.

A common problem in DAQ systems is the possible crash of a client, like a user ana-
lyzer. This can cause the whole system to hang up and may require a restart of the DAQ
inducing a lost of time and eventually precious data. In order to address this problem,
a special watchdog scheme has been implemented. Each client attached to the buffer

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 403

manager signals its presence periodically by storing a time stamp in the shared mem-
ory. Every other client connected to the same buffer manager can then check if the
other parties are still alive. If not, proper action is taken consisting of removing the
dead client hooks from the system leaving the system in a working condition.

6.8.2 Message System

Any client can produce status or error messages with a single call using the MIDAS
library. These messages are then forwarded to any other clients who maybe susceptible
to receive these messages as well as to a central log file system. The message system
is based on the buffer manager scheme. A dedicated buffer is used to receive and
distribute messages. Predefined message type contained in the Midas library covers
most of the message requirement.

6.8.3 Online Database

In a distributed DAQ environment configuration data is usually stored in several files on
different computers. MIDAS uses a different approach. All relevant data for a partic-
ular experiment are stored in a central database called "Online Database" (ODB). This
database contains run parameters, logging channel information, condition parameters
for front-ends and analyzers and slow control values as well as status and performance
data.

The main advantage of this concept is that all programs participating in an experiment
have full access to these data without having to contact different computers. The pos-
sible disadvantage could be the extra load put on the particular host serving the ODB.

The ODB is located completely in shared memory of the back-end computer. The
access function to an element of the ODB has been optimized for speed. Measurement
shows that up to 50,000 accesses per second local connection and around 500 accesses
per second remotely over the MIDAS server can be obtained.

The ODB is hierarchically structured, similar to a file system, with directories and
sub-directories. The data is stored in pairs of a key/data, similar to the Windows NT
registry. Keys can be dynamically created and deleted. The data associated with a key
can be of several types such as: byte, words, double words, float, strings, etc. or arrays
of any of those. A key can also be a directory or a symbolic link (like on Unix).

The Midas library provides a complete set of functions to manage and operate on these
keys. Furthermore any ODB client can register a Hot Link between a local C-structure
and a element of the ODB. Whenever a client (program) changes a value in this sub-
tree, the C-structure automatically receives an update of the changed data. Addition-
ally, a client can register a callback function which will be executed as soon as the
hot-link’s update has been received. For more information see ODB Structure.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 404

6.8.4 Midas Server

For remote access to a MIDAS experiment a remote procedure call (RPC) server is
available. It uses an optimized MIDAS RPC scheme for improved access speed. The
server can be started manually or via inetd (UNIX) or as a service under Windows NT.
For each incoming connection it creates a new sub-process which serves this connec-
tion over a TCP link. The Midas server not only serves client connection to a given
experiment, but takes the experiment’s name as a parameter meaning that only one
Midas server is necessary to manage several experiments on the same node.

6.8.5 Frontend

The frontend program refers to a task running on a particular computer which has ac-
cess to hardware equipment. Several frontends can be attached simultaneously to a
given experiment. Each frontend can be composed of multiple Equipment. Equip-
ment is a single or a collection of sub-task(s) meant to collect and regroup logically or
physically data under a single and uniquely identified event.

This program is composed of a general framework which is experiment independent,
and a set of template routines for the user to fill. This program will:

» Register the given Equipment(s) list to the Midas system.

* Provide the mean of collecting data from hardware source defined in each equip-
ment.

* Gather these data in a known format (Fixed, Midas, Ybos) for each equipment.
* Sendsthese data to the buffer manager.
* Collect periodically statistic of the acquisition task and send it to the Online

Database.

The frontend framework takes care of sending events to the buffer manager and option-
ally a copy to the ODB. A "Data cache " in the frontend and on the server side reduces
the amount of network operations pushing the transfer speed closer to the physical limit
of the network configuration.

The data collection in the frontend framework can be triggered by several mechanisms.
Currently the frontend supports four different kind of event trigger:

* Periodic events: Scheduled event based on a fixed time interval. They can be
used to read information such as scaler values, temperatures etc.

* Polled events: Hardware trigger information read continuously which in turns if
the signal is asserted it will trigger the equipment readout.

— LAM events: Generated only when pre-defined LAM is asserted:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 405

* Interrupt events: Generated by particular hardware device supporting interrupt
mode.

« Slow Control events: Special class of events that are used in the slow control
system.

Each of these types of triggering can be enabled/activated for a particular experiment
state, Transition State or a combination of any of them. Examples such as "read scaler
event only when running" or "read periodic event if a state is not paused and on all
transitions" are possible.

Dedicated header and library files for hardware access to CAMAC, VME, Fast-
bus, GPIB and RS232 are part of Midas distribution set. For more information see
Frontend code.

6.8.6 Data Logger

The data logger is a client usually running on the backend computer (can be running
remotely but performance may suffer) receiving events from the buffer manager and
saving them onto disk, tape or via FTP to a remote computer. It supports several parallel
logging channels with individual event selection criteria. Data can currently be written
in five different formats: MIDAS binary, YBOS binary, ASCII, ROOT and DUMP (see
Midas format, YBOS format).

Basic functionality of the logger includes:

¢ Run Control based on:

— event limit
— recorded byte limit

— logging device full.
* Logging selection of particular events based on Event Identifier.

* Auto restart feature allowing logging of several runs of a given size without user
intervention.

* Recording of ODB values to a so called History system

» Recording of the ODB to all or individual logging channel at the beginning and
end of run state as well as to a separate disk file in a ASCII format. For more
information see ODB /Logger Tree.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 406

6.8.7 Analyzer

As in the front-end section, the analyzer provided by Midas is a framework on which
the user can develop his/her own application. This framework can be built for private
analysis (no external analyzer hooks) or specific analysis packages such as HBOOK,
ROOT from the CERN (none of those libraries are included in the MIDAS distribu-
tion). The analyzer takes care of receiving events (a few lines of code are necessary to
receive events from the buffer manager), initializes the HBOOK or ROOT system and
automatically books N-tuples/TTree for all events. Interface to user routines for event
analysis is provided.

The analyzer is structured into "stages", where each stage analyzes a subset of the event
data. Low level stages can perform ADC and TDC calibration,while high level stages
can calculate "physics" results. The same analyzer executable can be used to run online
(receive events from the buffer manager) and off-line (read events from file). When
running online, generated N-tuples/TTree are stored in a ring-buffer in shared memory.
They can by analyzed with PAW without stopping the run. For ROOT please refer to
the documentation ...

When running off-line, the analyzer can read MIDAS binary files, analyze the events,
add calculated data for each event and produce a HBOOK RZ output file which can
be read in by PAW later. The analyzer framework also supports analyzer parameters.
It automatically maps C-structures used in the analyzer to ODB records via Hot Link.
To control the analyzer, only the values in the ODB have to be changed which get
automatically propagated to the analyzer parameters. If analysis software has been
already developed, Midas provides the functionality necessary to interface the analyzer
code to the Midas data channel. Support for languages such as C, FORTRAN, PASCAL
is available.

6.8.8 Run Control

As mentioned earlier, the Online Database (ODB) contains all the pertinent informa-
tion regarding an experiment. For that reason a run control program requires only to
access the ODB. A basic program supplied in the package called ODBEdit provides a
simple and safe mean for interacting with ODB. Through that program essentially all
the flexibility of the ODB is available to the user’s fingertips.

Three "Run State" define the state of Midas Stopped, Paused, Running. In order to
change from one state to another, Midas provides four basic "Transition" function Tr_-
Start, Tr_pause, Tr_resume, Tr_Stop. During these transition periods, any Midas client
register to receive notification of such message will be able to perform its task within
the overall run control of the experiment.

In Order to provide more flexibility to the transition sequence of all the midas clients
connected to a given experiment, each transition function has a transition sequence
number attached to it. This transition sequence is used to establish within a given
transition the order of the invocation of the Midas clients (from the lower seq.# to the

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 407

largest).
Transitions
Funning
Fesume Fause
Start Faused Stop
Stopped

Figure 11: Transitions

6.8.9 Slow Control

The Slow control system is a special front-end equipment or program dedicated to the
control of hardware module based on user parameters. It takes advantage of the Online
Database and its Hot Link capability. Demand and measured values from slow control
system equipment like high voltage power supplies or beam line magnets are stored
directly in the ODB.

To control a device it is then enough to modify the demand values in the database. The
modified value gets automatically propagated to the slow control system, which in turn
uses specific device driver to control the particular hardware. Measured values from
the hardware are periodically send back to the ODB to reflect the current status of the
sub-system.

The Slow control system is organized in "Classes Driver ". Each Class driver refers to
a particular set of functionality of that class i.e. High-Voltage, Temperature, General
I/0, Magnet etc. The implementation of the device specific is done in a second stage
"Device Driver" while the actual hardware implementation is done in a third layer "Bus

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 408

Driver". The current MIDAS distribution already has some device driver for general
I/0 and commercial High Voltage power supply system (see Supported hardware). The
necessary code composing the hardware device driver is kept simple by only requiring
a "set channel value" and "read channel value". For the High Voltage class driver, a
graphical user interface under Windows or Qt is already available. It can set, load and
print high voltages for any devices of that class.

6.8.10 History system

The MIDAS history system is a recording function embedded in the mlogger task.
Parallel to its main data logging function of defined channels, the Midas logger can
store slow control data and/or periodic events on disk file. Each history entry consists
of the time stamp at which the event has occurred and the value[s] of the parameter to
be recorded.

The activation of a recording is not controlled by the history function but by the actual
equipment (see Frontend code). This permits a higher flexibility of the history system
such as dynamic modification of the event structure without restarting the Midas logger.
At any given time, data-over-time relation can be queried from the disk file through a
Midas utility mhist task or displayed through the mhttpd task.

The history data extraction from the disk file is done using low level file function giv-
ing similar result as a standard database mechanism but with faster access time. For
instance, a query of a value, which was written once every minute over a period of
one week, is performed in a few seconds. For more information see History system,
ODB /History Tree.

6.8.11 Alarm System

The Midas alarm mechanism is a built-in feature of the Midas server. It acts upon the
description of the required alarm set defined in the Online Database (ODB). Currently
the internal alarms supports the following mechanism:

* ODB value over fixed threshold at regular time interval, a pre-defined ODB value
will be compared to a fixed value.

* Midas client control During Run state transition, pre-defined Midas client name
will be checked if currently present.

* General C-code alarm setting Alarm C function permitting to issue user defined
alarm.

The action triggered by the alarm is left to the user through the mean of running a
detached script. But basic aalrm report is available such as:

* Logging the alarm message to the experiment log file.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.9 Event Builder Functions 409

* Sending a "Electronic Log message" (see Electronic Logbook).

* Interrupt data acquisition. For more information see Alarm System,
ODB /Alarms Tree.

6.8.12 Electronic Logbook

The Electronic logbook is a feature which provides the experimenter an alternative way
of logging his/her own information related to the current experiment. This electronic
logbook may supplement or complement the standard paper logbook and in the mean
time allow "web publishing" of this information. Indeed the electronic logbook infor-
mation is accessible from any web browser as long as the mhttpd task is running in the
background of the system. For more information see Electronic Logbook, mhttpd task.

Introduction - Top - Quick Start

6.9 Event Builder Functions

Midas supports event building operation through a dedicated mevb task application.
Similar to the Midas Frontend application, the mevb task application requires the def-
inition of an equipment structure which describes its mode of operation. The set of
parameter for this equipment is limited to:

* Equipment name (appears in the Equipment list).
* Equipment type (should be 0).

* Destination buffer name (SYSTEM if destination event goes to logger).

Event ID and Trigger mask for the build event (destination event ID).

e Data format (should match the source data format).

Based on the given buffer name provided at the startup time through the -b buffer_-
name argument, the mevb task will scan all the equipments and handle the building of
an event based on the identical buffer name found in the equipment list if the frontend
equipment type includes the EQ_EB flag .

6.9.1 Principle of the Event Builder and related frontend fragment

Possibly in case of multiple frontend, the same "fragment" code may run in the different
hardware frontend. In order to prevent to build nFragment different frontend task, the -i
index provided at the start of the frontend will replicate the same application image with

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.9 Event Builder Functions

410

the necessary dynamic modification required for the proper Event Building operation.
The "-1 index" argument will provide the index to be appended to the minimal set of

parameter to distinguish the different frontends. These parameters are:

« frontend_name : Name of the frontend application.

* equipment name : Name of the equipment (from the Equipment structure).

* event buffer: Name of the destination buffer (from the Equipment structure).

Frontend code:

/* The frontend name (client name) as seen by other MIDAS clients */

char *frontend_name = "ebfe";
EQUIPMENT equipment[] = {
{"Trigger",
1, TRIGGER_ALL,
“"BUF",
EQ POLLED | EQ_EB,

“"MIDAS",

/* equipment name */
/* event 1D, trigger mask */

/* event buffer */
/* equipment type + EQ_EB flag <<<<<< */
LAM_SOURCE(O, OxFFFFFF), /* event source crate 0, all stations */

/* format */

Once the frontend is started with -i 1, the Midas client name, equipment name and

buffer name will be modified.

> ebfe -i 1 -D

odbedit

[local :midas:S]/Equipment>Ils
TriggerO1

[local :midas:S]Trigger01>Is -Ir
Key name

#Val

Size Last

Opn Mode

Value

TriggerOl
Common

Event 1D
Trigger mask
Buffer
Type
Source
Format
Enabled
Read on
Period
Event limit
Num subevents
Log history
Frontend host
Frontend name
Frontend file name

INT
STRING
BOOL
INT
INT
DOUBLE
DWORD
INT
STRING
STRING
STRING

RPRRRPRRRRPRRRPRRRRERE

N

ADOBMDDNODDWNN

18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h

[eNeoNoNoNoNoNoNoNoNoloNoNoNoNe)

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

65535
BUFO1

66
16777215
MIDAS

y

257

500

0

0

0
hostname
ebfe0l
.../eventbuilder/ebfe.c

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.9 Event Builder Functions 411

Independently of the event ID, each fragment frontend will send its data to the com-
posed event buffer (BUFxx). The event builder task will make up a list of all the
equipment belonging to the same event buffer name (BUFxx). If multiple equipments
exists in the same frontend, the equipment type (EQ_EB) and the event buffer name
will distinguish them.

The Event Builder flowchart below shows a general picture of the event process cycle of
the task. The Event Builder runs in polling mode over all the source buffers collected
at the begin of run procedure. Once a fragment has been received from all enabled
source ("../Settings/Fragment Required y"), an internal event serial number check is
performed prior passing all the fragment to the user code. Content of each fragment
can be done within the user code for further consistency check.

Event Builder Flowchart.

Midas Event Builder

SUCCESS |SKIP [ABORT =
User il i nt, destination)

- [

eb_init) User assembled? Destination Event=

Assemble fragments(y
II
Send event()

I eh_begin_of run(I

I eb_end_of_run() I

I Stop Requestf) I
State = Stopped

statistics()

AN

[T e]

Y Midas System calls

Figure 12: Event Builder Flowchart.

6.9.2 Event builder Tree

The Event builder tree will be created under the Equipment list and will appear as a
standard equipment. The sub tree /Common will contains the specific setting of the
equipment while the /Variables will remain empty. /Settings will have particular pa-
rameter for the Event Builder itself. The User Field is an ASCII string passed from
the ODB to the eb_begin_of_run() which can be used for steering the event builder.

[local:midas:S]EB>Is -Ir
Key name Type #Val Size Last Opn Mode Value

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.9 Event Builder Functions 412

EB DIR
Common DIR
Event 1D WORD 1 2 5m 0 RWD 1
Trigger mask WORD 1 2 5m 0 RWD O
Buffer STRING 1 32 5m 0 RWD SYSTEM
Type INT 1 4 5m 0 RWD O
Source INT 1 4 5m 0 RWD O
Format STRING 1 8 5m 0 RWD MIDAS
Enabled BOOL 1 4 5m 0 RWD vy
Read on INT 1 4 5m 0 RWD O
Period INT 1 4 5m 0 RWD O
Event limit DOUBLE 1 8 5m 0 RWD O
Num subevents DWORD 1 4 5m 0 RWD O
Log history INT 1 4 5m O RWD O
Frontend host STRING 1 32 5m 0 RWD hostname
Frontend name STRING 1 32 5m 0 RWD Ebuilder
Frontend file name STRING 1 256 5m 0 RWD c:\...\ebuser.c
Variables DIR
Statistics DIR
Events sent DOUBLE 1 8 3s 0 RWDE 944
Events per sec. DOUBLE 1 8 3s 0 RWDE O
kBytes per sec. DOUBLE 1 8 3s 0 RWDE O
Settings DIR
Number of Fragment INT 1 4 9s 0 RWD 2
User build BOOL 1 4 9s 0 RWD n
User Field STRING 1 64 9s 0 RWD 100
Fragment Required BOOL 2 4 9s 0 RWD
[0] y
[1]1 y

6.9.3 EB Operation

Using the "eb>" as the cwd for the example, the test procedure is the following: cwd :
midas/examples/eventbuilder -> refered as eb>

¢ Build the mevb task:

eb> setenv MIDASSYS /home/midas/midas-1.9.5
eb> make
cc -g -1/usr/local/include -1../../drivers -DOS_LINUX -Dextname -c ebuser.c
cc -g -1/usr/local/include -1../._./drivers -DOS_LINUX -Dextname -o mevb mevb.c \
ebuser.o /usr/local/lib/libmidas.a -Im -1z -lutil -Insl
cc -g -1/usr/local/include -1../.._./drivers -DOS_LINUX -Dextname \
-c ../../drivers/bus/camacnul.c
cc -g -1/usr/local/include -1../../drivers -DOS_LINUX -Dextname -o ebfe \
ebfe.c camacnul.o /Zusr/local/lib/mfe.o /usr/local/lib/libmidas.a \
-Im -1z -lutil -Insl
eb>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 413

» Start the following 4 applications in 4 differents windows connecting to a de-
fined experiment. — If no experiment defined yet, set the environment variable
MIDAS_DIR to your current directory before spawning the windows.

xterml: eb> ebfe -i 1
xterm2: eb> ebfe -i 2
xterm3: eb> mevb -b BUF
xtermd: eb> odbedit

[local :Default:S]/>Is
System

Programs

Experiment

Logger

Runinfo

Alarms

Equipment

[local :Default:S]/>scl
N[local :midas:S]EB>scl

Name Host

ebfeOl hostname
ebfe02 hostname
ODBEdit hostname
Ebuilder hostname

[local :Default:S]/>
[local :Default:S]/>start now
Starting run #2

* The xterm3 (mevb) should display something equivalent to the following, as the
print statements are coming from the ebuser code.

* The same procedure can be repeated with the fel and fe2 started on remote
nodes.

6.10 Internal features

Quick Start - Top - Utilities

This section refers to the Midas built-in capabilities. The following sections describe
in more details the essential aspect of each feature starting from the frontend to the
Electronic Logbook.

* Run Transition Sequence : Transition Sequence

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 414

e Frontend code

The Equipment structure : Frontend acquisition characteristics
x MIDAS event construction : Midas event description
% YBOS event construction : YBOS event description
% FIXED event construction :FIXED event description

Deferred Transition : Transition postpawning operation

Super Event : Short event compaction operation

Event Builder Functions : Event Builder operation

¢ ODB Structure : Online Database Trees

Hot Link : Notification mechanism

* Alarm System : Alarm scheme

* Slow Control System : Specific Slow Control mechanism
* Electronic Logbook : Essential utility

* Log file : Message, error, report

6.10.1 Run Transition Sequence

The run transition sequence has been modified since Midas version 1.9.5. The new
scheme utilize transition sequence level which provides the user a full control of the
sequencing of any Midas client.

Midas defines 3 states of Data acquistion: STOPPED, PAUSED, RUNNING

These 3 states require 4 transitions : TR_START, TR_PAUSE , TR_RESUME, TR_-
STOP

Any Midas client can request notification for run transition. This notification is done by
registering to the system for a given transition (cm_register_transition()) by specifying
the transition type and the sequencing number (1 to 1000). Multiple registration to a
given transition can be requested. This last option permits for example to invoke two
callback functions prior and after a given transition such as the start of the logger.

my_application.c
// Callback
INT before_logger(INT run_number, char *error)

printf("Initialize ... before the logger gets the Start Transition™);

return CM_SUCCESS:
H

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 415

// Callback
INT after_logger(INT run_number, char *error)

printf("'Log initial info to file... after logger gets the Start Transition');

return CM_SUCCESS;
}

INT mainQ)
{

cm_register_transition(TR_START, before_logger, 100);
cm_register_transition(TR_START, after_logger, 300);

By Default the following sequence numbers are used:

* Frontend : TR_START: 500, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
500

* Analyzer : TR_START: 500, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
500

* Logger : TR_START: 200, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
800

* EventBuilder : TR_START: 300, TR_PAUSE: 500, TR_RESUME: 500,TR_-
STOP: 700

The sequence number appears into the ODBedit under /System/Clients/

[local:midas:S]Clients>ls -Ir

Key name Type #Val Size Last Opn Mode Value
Clients DIR
1832 DIR < Frontend 1
Name STRING 1 32 21h O R ebfe01
Host STRING 1 256 21h 0 R pierre2
Hardware type INT 1 4 21h 0 R 42
Server Port INT 1 4 21h O R 2582
Transition START INT 1 4 21h O R 500
Transition STOP INT 1 4 21h O R 500
Transition PAUSE INT 1 4 21h O R 500
Transition RESUME INT 1 4 21h O R 500
RPC DIR
17000 BOOL 1 4 21h O R y
3872 DIR e ettt Frontend 2
Name STRING 1 32 21h O R ebfe02
Host STRING 1 256 21h O R pierre2
Hardware type INT 1 4 21lh 0 R 42
Server Port INT 1 4 21h O R 2585
Transition START INT 1 4 21h O R 500

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 416

Transition STOP INT 1 4 21h 0 R 500
Transition PAUSE INT 1 4 21h 0 R 500
Transition RESUME INT 1 4 21h 0 R 500
RPC DIR
17000 BOOL 1 4 21h 0 R y
2220 DIR Smmmmmm - ODBedit doesn’t need transition
Name STRING 1 32 42s 0 R ODBEdit
Host STRING 1 256 42s 0 R pierre2
Hardware type INT 1 4 42s 0 R 42
Server Port INT 1 4 42s 0 R 3429
568 DIR e it Event Builder
Name STRING 1 32 26s O R Ebuilder
Host STRING 1 256 26s O R pierre2
Hardware type INT 1 4 26s O R 42
Server Port INT 1 4 26s O R 3432
Transition START INT 1 4 26s O R 300
Transition STOP INT 1 4 26s O R 700
2848 DIR O e e Logger
Name STRING 1 32 5s 0 R Logger
Host STRING 1 256 5s 0 R pierre2
Hardware type INT 1 4 5s 0 R 42
Server Port INT 1 4 5s 0 R 3436
Transition START INT 1 4 5s 0 R 200
Transition STOP INT 1 4 5s 0 R 800
Transition PAUSE INT 1 4 5s 0 R 500
Transition RESUME INT 1 4 5s 0 R 500
RPC DIR
14000 BOOL 1 4 5s 0 R y

The /System/Clients/... tree reflects the system at a given time. If a permanent change
of a client sequence number is required, the system call cm_set_transition_sequence()
can be used.

6.10.2 Frontend code

Under MIDAS, experiment hardware is structured into "equipment” which refers to a
collection of hardware devices such as: a set of high voltage supplies, one or more
crates of digitizing electronics like ADCs and TDCs or a set of scaler. On a software
point of view, we keep that same equipment term to refer to the mean of collecting
the data related to this "hardware equipment". The data from this equipment is then
gathered into an "event" and send to the back-end computer for logging and/or analysis.

The frontend program (image) consists of a system framework contained in mfe.c (hid-
den from the user) and a user part contained in frontend.c . The hardware access is only
apparent in the user code.

Several libraries and drivers exist for various bus systems like CAMAC, VME or
RS232. They are located in the drivers directory of the MIDAS distribution. Some
libraries consist only of a header file, others of a C file plus a header file. The file
names usually refer to the manufacturer abbreviation followed by the model number of

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 417

the device. The libraries are continuously expanding to widen Midas support.

ESONE standard routines for CAMAC are supplied and permit to re-use the frontend
code among different platforms as well as different CAMAC hardware interface with-
out the need of modification of the code.

The user frontend code consists of several sections described in order below. Example
of frontend code can be found under the ../examples/experiment directory:

* [Global declaration] Up to the User global section the declarations are system
wide and should not be removed.

— frontend_name This value can be modified to reflect the purpose of the
code.

— frontend_call_loop() Enables the function frontend_loop() to run after ev-
ery equipment loop.

— display_period defined in millisecond the time interval between refresh of
a frontend status display. The value of zero disable the display. If the
frontend is started in a background with the display enabled, the stdout
should be redirected to the null device to prevent process to hang.

— max_event_size specify the maximum size of the expected event in byte.

— event_buffer_size specify the maximum size of the buffer in byte to be
allocated by the system. After these system parameters, the user may add
his or her own declarations.

// The frontend name (client name) as seen by other MIDAS clients
char *frontend_name = "Sample Frontend";

// The frontend file name, don’t change it
char *frontend_file_name = _ FILE_;

// frontend_loop is called periodically if this variable is TRUE
BOOL frontend_call_loop = FALSE;

//a frontend status page is displayed with this frequency in ms
INT display_period = 3000;

//maximum event size produced by this frontend
INT max_event_size = 10000;

//buffer size to hold events
INT event_buffer_size = 10*10000;

// Global user section
// number of channels
#define N_ADC 8
#define N_TDC 8
#define N_SCLR 8

CAMAC crate and slots
#define CRATE 0
#define SLOT_C212 23

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 418

#define SLOT_ADC 1
#define SLOT_TDC 2
#define SLOT_SCLR 3

* [Prototype functions] The first group of prototype(7) declare the pre-defined
system functions which should be present. The second group defines the user
functions associated to the declared equipments. All the fields are described in
detailed in the following section.

INT frontend_init();

INT frontend_exit();

INT begin_of _run(INT run_number, char *error);
INT end_of _run(INT run_number, char *error);
INT pause_run(INT run_number, char *error);
INT resume_run(INT run_number, char *error);
INT frontend_loop();

INT read_trigger_event(char *pevent, INT off);
INT read_scaler_event(char *pevent, INT off);

— [Remark] Each equipment has the option to force itself to run at individ-
ual transition time see ro_mode . At transition time the system functions
begin_of_run(), end_of_run(), pause_run(), resume_run() runs prior to the
equipment functions. This gives the system the chance to take basic action
on the transition request (Enable/disable LAM) before the equipment runs.
The sequence of operation is the following:

% frontend_init() : Runs once after system initialization, before equip-
ment registration.

x begin_of_run() : Runs after systerm statistics reset, before any other
Equipments at each Begining of Run request.

% pause_run(): Runs before any other Equipments at each Run Pause
request.

% resume_run(): Runs before any other Equipments at each Run Resume
request.

% end_of_run(): Runs before any other Equipments at each End of Run
request.

% frontend_exit(): Runs once before Slow Control Equipment exit.

 [Bank definition] Since the introduction of ROOT , the frontend requires to
have the definition of the banks in the case you desire to store the raw data
in ROOT format. This procedure is equivalent to the bank declaration in the
analyzer. In the case the format declared is MIDAS, the example below shows
the a structured bank and a standard variable length bank declaration for the
trigger bank list. The trigger_bank_list[] is declared in the equipment structure
(see Eq_example).

ADCO_BANK_STR(adcO_bank_str);
BANK_LIST trigger_bank_list[] = {

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 419

{""ADCO", TID_STRUCT, sizeof(ADCO_BANK), adcO_bank_str},
{"TDCO™, TID_WORD, N_TDC, NULL},
£y,

};

BANK_LIST scaler_bank_list[] = {
{"SCLR", TID_DWORD, N_ADC, NULL},
{3

}:

* [Equipment definition] See The Equipment structure for further explanation.

#undef USE_INT
EQUIPMENT equipment[] = {

{ "Trigger", // equipment name

{1, o, // event 1D, trigger mask
"“SYSTEM™, // event buffer

#ifdef USE_INT
EQ_INTERRUPT, // equipment type

#else
EQ_POLLED, // equipment type

#endif
LAM_SOURCE(CRATE, LAM_STATION(SLOT_C212)), // event source crate 0
“"MIDAS", // format
TRUE, // enabled
RO_RUNNING | // read only when running
RO_ODB, // and update 0ODB
500, // poll for 500ms
0, // stop run after this event limit
o, // number of sub events
o, // don’t log history
read_trigger_event, // readout routine
NULL, NULL,
trigger_bank_list, // bank list

* [frontend_init()] This function run once only at the application startup. Allows
hardware checking, loading/setting of global variables, hot-link settings to the
ODB etc... In case of CAMAC the standard call can be:

cam_initQ); // Init CAMAC access
cam_crate_clear(CRATE); // Clear Crate
cam_crate_zinit(CRATE); // Z crate
cam_inhibit_set(CRATE); // Set 1 crate

return SUCCESS;

* [begin_of_run()] This function is called for every run start transition. Allows to
update user parameter, load/setup/clear hardware. At the exit of this function

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 420

the acquisition should be armed and ready to test the LAM. In case of CAMAC
frontend, the LAM has to be declared to the Crate Controller. The function
cam_lam_enable(CRATE, SLOT_I0O) is then necessary in order to enable the
proper LAM source station. The LAM source station has to also be enabled
(F26).

The argument run_number provides the current run number being started. The
argument error can be used for returning a message to the system. This string
will be logged into the {b midas.log file.

// clear units

camc(CRATE, SLOT_C212, 0, 9);
camc(CRATE, SLOT_2249A, 0, 9);
camc(CRATE, SLOT_SC2, 0, 9);
camc(CRATE, SLOT_SC3, 0, 9):

camc(CRATE, SLOT_C212, 0, 26); // Enable LAM generation
cam_inhibit_clear(CRATE); // Remove 1
cam_lam_enable(CRATE, SLOT_C212); // Declare Station to CC as LAM source

// set and clear OR1320 pattern bits

camo(CRATE, SLOT_OR1320, 0, 18, 0x0330);

camo(CRATE, SLOT_OR1320, 0, 21, 0x0663); // Open run gate, reset latch
return SUCCESS;

* [poll_event()] If the equipment definition is EQ_POLLED as an acquisition
type, the poll_event() will be called as often as possible over the corresponding
poll time (ex:500ms see The Equipment structure) given by each polling equip-
ment. The code below shows a typical CAMAC LAM polling loop. The source
corresponds to a bitwise LAM station susceptible to generate LAM for that par-
ticular equipement. If the LAM is ORed for several stations and is independent
of the equipment, the LAM test can be simplified (see example below)

// Trigger event routines --—-—-———————————————— -
INT poll_event(INT source, INT count, BOOL test)
// Polling routine for events. Returns TRUE if event
// is available. If test equals TRUE, don’t return. The test
// flag is used to time the polling.

int i;
DWORD lam;

for (i=0 ; i<count ; i++)
{
cam_lam_read(LAM_SOURCE_CRATE(source), &lam);
if (lam & LAM_SOURCE_STATION(source)) // Any of the equipment LAM
// *kk or *kk
if (lam) // Any LAM (independent of the equipment)
if (Itest)
return lam;

return O;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 421

— [Remark] When multiple LAM sources are specified for a given equip-
ment like:

LAM_SOURCE(JW_C, LAM_STATION(GE_N)
| LAM_STATION(IW_N)),

The polling function will pass to the readout function the actual LAM pat-
tern read during the last polling. This pattern is a bitwise LAM station.
The content of the pevent will be overwritten. This option allows you to
determine which of the stations has been the real source of the LAM.

INT read_trigger_event(char *pevent, INT off)

{
DWORD lam;

lam = *((DWORD *)pevent);
// check LAM versus MCS station

// The clear is performed at the end of the readout function
if (lam & LAM_STATION(IW_N))

{

¥

* [read_trigger_event()] Event readout function defined in the equip-
ment list. Refer to further section for event composition ex-
planation FIXED event construction MIDAS event construction

YBOS event construction .

// Event readout --——--——-———————
INT read_trigger_event(char *pevent, INT off)

{
WORD *pdata, a;

// init bank structure
bk_init(pevent);

// create ADC bank
bk_create(pevent, "ADCO', TID_WORD, &pdata);

* [pause_run() / resume_run()] These two functions are called respectively upon
"Pause" and "Resume" command. Any code relevant to the upcoming run
state can be included. Possible commands when CAMAC is involved can be
cam_inhibit_set(CRATE) and cam_inhibit_clear(CRATE). The argument run_-
number provides the current run number being paused/resumed. The argument
error can be used for returning a message to the system. This string will be
logged into the midas.log file.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features

422

* [end_of_run()] For every "stop run" transition this function is called and provides
the opportunity to disable the hardware. In case of CAMAC frontend the LAM

should be disabled.

The argument run_number provides the current run number being ended. The
argument error can be used for returning a message to the system. This string
will be logged into the midas.log file.

// set and clear OR1320 pattern bits or close run gate.
camo(CRATE, SLOT_OR1320, 0, 18, 0xO0CC3);
camo(CRATE, SLOT_OR1320, 0, 21, 0x0990);

camc(CRATE, SLOT_C212, 0, 26); // Enable LAM generation
cam_lam_disable(CRATE, SLOT_C212); // disable LAM in crate controller
cam_inhibit_set(CRATE); // set crate inhibit

* [frontend_exit()] This function runs when the frontend is requested to terminate.
Can be used for local statistic collection etc.

6.10.2.1 The Equipment structure To write a frontend program, the user section
(frontend.c) has to have an equipment list organized as a structure definition. Here is the
structure list for a trigger and scaler equipment from the sample experiment example

frontend.c.

#undef USE_INT
EQUIPMENT equipment[] = {

{ "Trigger", // equipment name

{1, O, // event 1D, trigger mask
"SYSTEM", // event buffer

#ifdef USE_INT
EQ_INTERRUPT, // equipment type

#else
EQ_POLLED, // equipment type

#endif
LAM_SOURCE(0,OxFFFFFF),// event source crate 0, all stations
""MIDAS", // format
TRUE, // enabled
RO_RUNNING | // read only when running
RO_ODB, // and update 0ODB
500, // poll for 500ms

read_trigger_event, //
NULL, NULL,
trigger_bank_list, //
}

stop run after this event limit
number of sub events
don’t log history

readout routine

bank list

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10

Internal features 423

[“'trigger","'scaler']: Each equipment has to have a unique equipment name de-
fined under a given node. The name will be the reference name of the equipment
generating the event.

[1, 0]: Each equipment has to be associated to a unique event ID and a trigger
mask. Both the event ID and the trigger mask will be part of the event header of
that particular equipment. The trigger mask can be modified dynamically by the
readout routine to define a sub-event type on an event-by-event basis. This can
be used to mix "physics events" (from a physics trigger) and "calibration events"
(from a clock for example) in one run and identify them later. Both parameters
are declared as 16bit value. If the Trigger mask is used in a single bit-wise mode,
only up to 16 masks are possible.

["'SYSTEM'™] After composition of an "equipment", the Midas frontend mfe.c
takes over the sending of this event to the "system buffer" on the back-end com-
puter. Dedicated buffer can be specified on those lines allowing a secondary
stage on the back-end (Event builder to collect and assemble these events coming
from different buffers in order to compose a larger event. In this case the events
coming from the frontend are called fragment). In this example both events are
placed in the same buffer called "SYSTEM" (default).

[Remark] If this field is left empty ("") the readout function associated to that
equipment will still be performed, but the actual event won’t be sent to the buffer.
The positive side-effect of that configuration is to allow that particular equipment
to be mirrored in the ODB if the RO_ODB is turned on.

[EQ_xxx] The field specify the type of equipment. It can be of a single type such
as EQ_POLLED, EQ_INTERRUPT, EQ_MULTITHREAD, and EQ_SLOW.
EQ_POLLED and EQ_MULTITHREAD are similar expect for the polling func-
tion which in the case of EQ_MULTITHREAD resides in a separate thread. This
new type has been added to take advantage of the multi-core processor and free
up CPU for other task than polling.

[EQ_POLLED] In this mode, the name of the routine performing the trigger
check function is defaulted to poll_event(). As polling consists of checking a
variable for a true condition, if the loop would be infinite, the frontend would
not be able to respond to any network commands. Therefore the loop count is
determined when the frontend starts so that it returns after a given time-out if no
event is available. This time-out is usually in the order of 500 milliseconds. This
flag is mainly used for data acquisition based on a "LAM".

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 424

EQUIPMENT equipment[] = {

{ "Trigger", // equipment name
500, // poll for 500ms

* [EQ_INTERRUPT] For this mode, Midas requires complete configuration and
control of the interrupt source. This is provided by an interrupt configuration
routine interrupt_configure() that has to be coded by the user in the user section
of the frontend code. A pointer to this routine is passed to the system instead of
the polling routine. The interrupt configuration routine has the following decla-
ration:

INT interrupt_configure(INT cmd, INT source [], PTYPE adr)
switch(cmd)

case CMD_INTERRUPT_ENABLE:
cam_interrupt_enable();
break;

case CMD_INTERRUPT_DISABLE:
cam_interrupt_disable();
break;

case CMD_INTERRUPT_ATTACH:
cam_interrupt_attach((void (*)())adr);
break;

case CMD_INTERRUPT_DETACH:
cam_interrupt_detach();
break;

return CM_SUCCESS;

* [EQ_PERIODIC] In this mode the function associated to this equipment is called
periodically. No hardware requirements is necessary to trigger the readout func-
tion. The "poll" field in the equipment declaration is in this case used for period-
icity.

* [EQ_MULTITHREAD] This new equipment type is valid since version 2.0. It
implements the multi-threading capability within the frontend code. The polling

is performed within a separate thread and uses the ring buffer functions rb_xxx
for inter-thread communication.

[EQ_SLOW] Declare the equipment as a Slow Control equipment. This will
enable the call to the idle function part of the class driver.

* [EQ_MANUAL_TRIG] This flag enables the equipment to be triggered by re-
mote procedure call (RPC). If present, the web interface will provide a button for
that action.

[EQ_FRAGMENTED] This flag enables large events (beyond Midas configu-
ration limit) to be handled by the system. This flag requires to have a valid

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10

Internal features 425

max_event_size_frag variable defined in the user frontend code (frontend.c).
The max_event_size variable is used as fragment size in this case. This option is
meant to be used in experiments where the event rate is not an issue but the size
of the data needs to be extremely large. In any selected case, when the equipment
is required to run, a declared function is called doing the actual user required op-
eration. Under the four commands listed above, the user has to implement the
adequate hardware operation performing the requested action. In drivers exam-
ples can be found on such an interrupt code. See source code such as hyt1331.c,
ces8210.c.

CMD_INTERRUPT_ENABLE: to enable an interrupt
CMD_INTERRUPT_DISABLE: to disable an interrupt

CMD_INTERRUPT_INSTALL.: to install an interrupt callback routine at
address adr.

CMD_INTERRUPT_DEINSTALL: to de-install an interrupt.

[EQ_EB] This flag identifies the equipment as a fragment event and should be
ored with the EQ_POLLED in order to be identified by the Event_Builder.

[LAM_SOURCE(0,0xFFFFFF)] This parameter is a bit-wise representation of
the 24 CAMAC slots which may raise the LAM. It defines which CAMAC slot
is allowed to trigger the call to the readout routine. (See read_trigger_event()).

["MIDAS"] This line specifies the data format used for generating the event.
The following options are possible: MIDAS, YBOS and FIXED. The format has
to agree with the way the event is composed in the user read-out routine. It tells
the system how to interpret an event when it is copied to the ODB or displayed
in a user-readable form.

MIDAS and YBOS or FIXED and YBOS data format can be mixed at the
frontend level, but the data logger (mlogger) is not able to handle this format
diversity on a event-by-event basis. In practice a given experiment should keep

the data format identical throughout the equipment definition.

[TRUE] "enable" switch for the equipment. Only when enable (TRUE) the re-
lated equipment is active.

[RO_RUNNING] Specify when the read-out of an event should be occurring
(transition state) or be enabled (state). Following options are possible:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features

426

RO_RUNNING Read on state "running"

RO_STOPPED Read on state "stopped"

RO_PAUSED Read on state "paused”

RO_BOR Read after begin-of-run

RO_EOR Read before end-of-run

RO_PAUSE Read when run gets paused

RO_RESUME Read when run gets resumed

RO_TRANSITIONS Read on all transitions

RO_ALWAYS Read independently of the states and
force a read for all transitions.

RO_ODB Equipment event mirrored into ODB
under variables

These flags can be combined with the logical OR operator. Trigger events in the above
example are read out only when running while scaler events is read out when running
and additionally on all transitions. A special flag RO_ODB tells the system to copy the
event to the /Equipment/<equipment name>/Variables ODB tree once every ten sec-
onds for diagnostic. Later on, the event content can then be displayed with ODBEdit.

[500] Time interval for Periodic equipment (EQ_PERIODIC) or time out value
in case of EQ_POLLING (unit in millisecond).

[0 (stop after...)] Specify the number of events to be taken prior to forcing an
End-Of-Run transition. The value 0 disables this option.

[0 (Super Event)] Enable the Super event capability. Specify the maximum
number of events in the Super event.

[0 (History system)] Enable the MIDAS history system for that equipment. The
value (positive in seconds) indicates the time interval for generating the event to
be available for history logging by the mlogger task if running.

[nvv nnonn

,"",""] Reserved field for system. Should be present and remain empty.

[read_trigger_event()] User read-out routine declaration (could be any name).
Every time the frontend is initialized, it copies the equipment settings to the ODB
under /Equipment/<equipment name>/Common. A hot-link to that ODB tree is
created allowing some of the settings to be changed during run-time. Modifica-
tion of "Enabled" flag, RO_xxx flags, "period" and "event limit" from the ODB is
immediately reflected into the frontend which will act upon them. This function
has to be present in the frontend code and will be called for every trigger under
one of the two conditions:

— [In polling mode] The poll_event has detected a trigger request while
polling on a trigger source.

— [In interrupt mode] An interrupt source pre-defined through the interrupt_-
configuration has occurred.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 427

— [Remark 1] The first argument of the readout function provides the pointer
to the newly constructed event and points to the first valid location for stor-
ing the data.

— [Remark 2] The content of the memory location pointed by pevent prior to
its uses in the readout function contains the LAM source bitwise register.
This feature can be exploited in order to identify which slot has triggered
the readout when multiple LAM has been assigned to the same readout
function. Example:

in the equipment declaration

LAM_SOURCE(JW_C, LAM_STATION(GE_N) | LAM_STATION(JW_N)), // event source

event_dispatcher, // readout routine

INT event_dispatcher(char *pevent)

{
DWORD lam, dword;
INT size=0;
EQUIPMENT *eq;

// the *pevent contains the LAM pattern returned from poll_event
// The value can be used to dispatch to the proper LAM function

// 1111 ONLY one of the LAM is processed in the loop !!!!
lam = *((DWORD *)pevent);

// check LAM versus MCS station
if (lam & LAM_STATION(IW_N))
{

// read MCS event
size = read_mcs_event(pevent);

else if (lam & LAM_STATION(GE_N))
{

// read GE event
size = read_ge_event(pevent);

return size;

— [Remark 3] In the example above, the Midas Event Header contains the
same Event ID as the Trigger mask for both LAM. The event serial number
will be incremented by one for every call to event_dispatcher() as long as
the returned size is non-zero.

— [Remark 4] The return value should represent the number of bytes col-
lected in this function. If the returned value is set to zero, The event will be
dismissed and the serial number to that event will be decremented by one.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 428

6.10.2.2 FIXED event construction The FIXED format is the simplest event for-
mat. The event length is fixed and is mapped to a C structure that is filled by the
readout routine. Since the standard MIDAS analyzer cannot work with this format, it
is only recommended for experiment, which uses its own analyzer and wants to avoid
the overhead of a bank structure. For fixed events, the structure has to be defined twice:
Once for the compiler in form of a C structure and once for the ODB in form of an
ASCII representation. The ASCII string is supplied to the system as the "init string" in
the equipment list.

Following statements would define a fixed event with two ADC and TDC values:

typedef struct {
int adcO;
int adcl;
int tdcO;
int tdcl;
TRIGGER_EVENT;
char *trigger_event_str[] = {

"adcO = INT : 0",
"adcl = INT : 0",
"tdcO = INT : 0",
tdcl = INT : 0",
ASUM_BANK;

The trigger_event_str has to be defined before the equipment list and a reference to it
has to be placed in the equipment list like:

{
read_trigger_event, // readout routine

poll_trigger_event, // polling routine
trigger_event_str, // init string

The readout routine could then look like this, where the <...> statements have to be
filled with the appropriate code accessing the hardware:

INT read_trigger_event(char *pevent)
{
TRIGGER_EVENT *ptrg;

ptrg = (TRIGGER_EVENT *) pevent;
ptrg->adcO = <...>;

ptrg->adcl
ptrg->tdcO
ptrg->tdcl

<...>;
<...>;
<...>;

return sizeof(TRIGGER_EVENT);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 429

6.10.3 MIDAS event construction

The MIDAS event format is a variable length event format. It uses "banks" as subsets of
an event. A bank is composed of a bank header followed by the data. The bank header
itself is made of 3 fields i.e: bank name (4 char max), bank type, bank length. Usually
a bank contains an array of values that logically belong together. For example, an ex-
periment can generate an ADC bank, a TDC bank and a bank with trigger information.
The length of a bank can vary from one event to another due to zero suppression from
the hardware. Besides the variable data length support of the bank structure, another
main advantage is the possibility for the analyzer to add more (calculated) banks during
the analysis process to the event in process. After the first analysis stage, the event can
contain additionally to the raw ADC bank a bank with calibrated ADC values called
CADC bank for example. In this CADC bank the raw ADC values could be offset or
gain corrected.

MIDAS banks are created in the frontend readout code with calls to the MIDAS library.
Following routines exist:

e bk_init() , bk_init32() Initializes a bank structure in an event.

* bk_create() Creates a bank with a given name (exactly four characters)

* bk_close() Closes a bank previously opened with bk_create().

* bk_locate() Locates a bank within an event by its name.

* bk_iterate() Returns bank and data pointers to each bank in the event.

* bk_list() Constructs a string with all the banks’ names in the event.

» bk_size() Returns the size in bytes of all banks including the bank headers in an
event. The following code composes a event containing two ADC and two TDC
values, the <...> statements have to be filled with specific code accessing the
hardware:

INT read_trigger_event(char *pevent)
{
INT *pdata;
bk_init(pevent);
bk_create(pevent, "ADCO"™, TID_INT, &pdata);
*pdatat++ = <ADCO>
*pdata++ = <ADC1>
bk_close(pevent, pdata);
bk_create(pevent, "TDCO"™, TID_INT, &pdata);
*pdata++ = <TDCO>
*pdata++ = <TDC1>
bk_close(pevent, pdata);

return bk_size(pevent);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 430

Upon normal completion, the readout routine returns the event size in bytes. If the
event is not valid, the routine can return zero. In this case no event is sent to the back-
end. This can be used to implement a software event filter (sometimes called "third
level trigger").

INT read_trigger_event(char *pevent)

{
WORD *pdata, a;

// init bank structure
bk_init(pevent);

// create ADC bank
bk_create(pevent, "ADCO", TID_WORD, &pdata);

// read ADC bank

for (a=0 ; a<8 ; a++)
cami(l, 1, a, 0, pdatat+);

bk_close(pevent, pdata);

// create TDC bank
bk_create(pevent, "TDCO"™, TID_WORD, &pdata);

// read TDC bank

for (a=0 ; a<8 ; a++)
cami(l, 2, a, 0, pdatat+);

bk_close(pevent, pdata);

return bk_size(pevent);

6.10.4 YBOS event construction

The YBOS event format is also a bank format used in other DAQ systems. The advan-
tage of using this format is the fact that recorded data can be analyzed with pre-existing
analyzers understanding YBOS format. The disadvantage is that it has a slightly larger
overhead than the MIDAS format and it supports fewer bank types. An introduction to
YBOS can be found under:

YBOS

The scheme of bank creation is exactly the same as for MIDAS events, only the routines
are named differently. The YBOS format is double word oriented i.e. all incrementa-
tion are done in 4 bytes steps. Following routines exist:

* ybk_init() Initializes a bank structure in an event.

» ybk_create() Creates a bank with a given name (exactly four characters)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://www-cdf.fnal.gov/offline/ybos/ybos.html

6.10 Internal features 431

* ybk_close() Closes a bank previously opened with ybk_create().

* ybk_size() Returns the size in bytes of all banks including the bank headers in
an event.

The following code creates an ADCO bank in YBOS format:

INT read_trigger_event(char *pevent)

DWORD 1i;
DWORD *pbkdat;

ybk_init((DWORD *) pevent);

// collect user hardware data
ybk_create((DWORD *)pevent, *ADCO", 14_BKTYPE, (DWORD *)(&pbkdat));
for (i=0 ; i<8 ; i++)
*pbkdat++ = i & OxFFF;
ybk_close((DWORD *)pevent, pbkdat);

ybk_create((DWORD *)pevent, "TDCO", 12_BKTYPE, (DWORD *)(&pbkdat));
for (i=0 ; i<8 ; i++)

*((WORD *)pbkdat)++ = (WORD)(0Ox10+i) & OxFFF;
ybk_close((DWORD *) pevent, pbkdat);

ybk_create((DWORD *)pevent, "SIMU", 12_BKTYPE, (DWORD *)(&pbkdat));
for (i=0 ; i<9 ; i++)

*((WORD *)pbkdat)++ = (WORD) (0x20+i) & OxFFF;
ybk_close((DWORD *) pevent, 12_BKTYPE, pbkdat);

return (ybk_size((DWORD *)pevent));

6.10.5 Deferred Transition

This option permits the user to postpone any transition issued by any requester until
some condition are satisfied. As examples:

It may not be advised to pause or stop a run until let say some hardware has
turned off a particular valve.

» The start of the acquisition system is postponed until the beam rate has been
stable for a given period of time.

* While active, a particular acquisition system should not be interrupted until the
"cycle" is complete.

In these examples, any application having access to the state of the hardware can regis-
ter to be a "transition Deferred" client. It will then catch any transition request and post-
pone the trigger of such transition until condition is satisfied. The Deferred_Transition
requires 3 steps for setup:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 432

» Register the deferred transition.

//-- Frontend Init
INT frontend_init()

INT status, index, size;
BOOL found=FALSE;

// register for deferred transition
cm_register_deferred_transition(TR_STOP, wait_end_cycle);
cm_register_deferred_transition(TR_PAUSE, wait_end_cycle);

¢ Provide callback function to serve the deferred transition

//-- Deferred transition callback
BOOL wait_end_cycle(int transition, BOOL first)
{
if (first)
{
transition_PS_requested = TRUE;
return FALSE;

it (end_of _mcs_cycle)

{
transition_PS_requested = FALSE;
end_of_mcs_cycle = FALSE;
return TRUE;

else

return FALSE;

* Implement the condition code

... In this case at the end of the readout function...

INT read_mcs_event(char *pevent, INT offset)

{

if (transition_PS_requested)
{
// Prevent to get new MCS by skipping re_arm_cycle and GE by GE_DISABLE LAM
cam_lam_disable(JW_C,JW_N);
cam_lam_disable(GE_C,GE_N);
cam_lam_clear(QW_C,JW_N);
cam_lam_clear(GE_C,GE_N);
camc(GE_C,GE_N,0,GE_DISABLE);
end_of _mcs_cycle = TRUE;

re_arm_cycle(Q);
return bk_size(pevent);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 433

In the example above the frontend code register for PAUSE and STOP. The sec-
ond argument of the cm_register wait_end_cycle is the declaration of the call-
back function. The callback function will be called as soon as the transition
is requested and will provide the Boolean flag first to be TRUE. By setting the
transition_PS_requested , the user will have the acknowledgment of the tran-
sition request. By returning FALSE from the callback you will prevent the
transition to occur. As soon as the user condition is satisfied (end_of_mcs_-
cycle = TRUE), the return code in the callback will be set to TRUE and the
requested transition will be issued. The Deferred transition shows up in the
ODB under /runinfo/Requested transition and will contain the transition code
(see State Codes & Transition Codes). When the system is in deferred state,
an ODBedit override command can be issued to force the transition to happen.
eg: odbedit> stop now, odbedit> start now . This overide will do the transition
function regarless of the state of the hardware involved.

6.10.6 Super Event

The Super Event is an option implemented in the frontend code in order to reduce
the amount of data to be transfered to the backend by removing the bank header for
each event constructed. In other words, when an equipment readout in either MIDAS
or YBOS format (bank format) is complete, the event is composed of the bank header
followed by the data section. The overhead in bytes of the bank structure is 16 bytes
for bk_init(), 20 bytes for bk_init32() and ybk_init(). If the data section size is close
to the number above, the data transfer as well as the data storage has an non-negligible
overhead. To address this problem, the equipment can be setup to generate a so called
Super Event which is an event composed of the initial standard bank header for the
first event of the super event and up to number of sub event maximum successive
data section before the closing of the bank.

To demonstrate the use of it, let’s see the following example:

* Define equipment to be able to generate Super Event

{ "GE", // equipment name
2, 0x0002, // event 1D, trigger mask
"SYSTEM", // event buffer

#ifdef USE_INT
EQ_INTERRUPT, // equipment type

#else
EQ_POLLED, // equipment type

#endif
LAM_SOURCE(GE_C, LAM_STATION(GE_N)), // event source
“"MIDAS", // format
TRUE, // enabled
RO_RUNNING, // read only when running
200, // poll for 200ms

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 434

o, // stop run after this event limit

1000, [/ ————- > number of sub event <----- enable Super event
o, // don’t log history

read_ge_event, // readout routine

* Setup the readout function for Super Event collection.

//-- Event readout
// Global and fixed -- Expect NWORDS 16bits data readout per sub-event
#define NWORDS 3

INT read_ge_event(char *pevent, INT offset)

{
static WORD *pdata;

// Super event structure
if (offset == 0)

// FIRST event of the Super event
bk_init(pevent);
bk_create(pevent, "GERM", TID_WORD, &pdata);

else if (offset == -1)

{
// close the Super event if offset is -1
bk_close(pevent, pdata);

// End of Super Event
return bk_size(pevent);

// read GE sub event (ADC)

caml6i(GE_C, GE_N, 0, GE_READ, pdata++);
caml6i(GE_C, GE_N, 1, GE_READ, pdata++);
caml6i(GE_C, GE_N, 2, GE_READ, pdata++);

// clear hardware
re_arm_ge(Q);

if (offset == 0)
{
// Compute the proper event length on the FIRST event in the Super Event
// NWORDS correspond to the !l NWORDS WORD above !!
// sizeof(BANK_HEADER) + sizeof(BANK) will make the 16 bytes header
// sizeof(WORD) is defined by the TID_WORD in bk_create()

return NWORDS * sizeof(WORD) + sizeof(BANK_HEADER) + sizeof(BANK);
else
// Return the data section size only

// sizeof(WORD) is defined by the TID _WORD in bk_create()

return NWORDS * sizeof(WORD);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 435

The encoded description of the data section is left to the user. If the number of
words per sub-event is fixed (NWORD), the sub-event extraction is simple. In the
case of variable sub-event length, it is necessary to tag the first or the last word
of each sub-event. The content of the sub-event is essentially the responsibility
of the user.

— [Remark 1] The backend analyzer will have to be informed by the user on
the content structure of the data section of the event as no particular tagging
is applied to the Super Event by the Midas transfer mechanism.

— [Remark 2] If the Super Event is composed in a remote equipment run-
ning a different Endian mode than the backend processor, it would be nec-
essary to insure the data type consistency throughout the Super Event in
order to guarantee the proper byte swapping of the data content.

— [Remark 3] The event rate in the equipment statistic will indicates the rate
of sub-events.

6.10.7 Slow Control System

Instead of talking directly to each other, frontend and control programs exchange infor-
mation through the ODB. Each slow control equipment gets a corresponding ODB tree
under /Equipment. This tree contains variables needed to control the equipment as well
as variables measured by the equipment. In case of a high voltage equipment this is a
Demand array which contains voltages to be set, a Measured array which contains read
back voltages and a Current array which contains the current drawn from each channel.
To change the voltage of a channel, a control program writes to the Demand array the
desired value. This array is connected to the high voltage frontend via a ODB hot-link.
Each time it gets modified, the frontend receives a notification and sets the new value.
In the other direction the frontend continuously reads the voltage and current values
from all channels and updates the according ODB arrays if there has been a significant
change. This design has a possible inconvenience due to the fact that ODB is the key
element of that control. Any failure or corruption of the database can result in wrong
driver control. Therefore it is not recommended to use this system to control systems
that need redundancy for safety purposes. On the other hand this system has several
advantages:

* The control program does not need any knowledge of the frontend, it only talks
to the ODB.

* The control variables only exist at one place that guarantees consistency among
all clients.

¢ Basic control can be done through ODBEdit without the need of a special control
program.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 436

* A special control program can be tested without having a frontend running.

* In case of n frontend and m control programs, only n+m network connections
are needed instead of nxm connection for point-to-point connections. Since all
slow control values are contained in the ODB, they get automatically dumped
to the logging channels. The slow control frontend uses the same framework
as the normal frontend and behaves similar in many respects. They also create
periodic events that contain the slow control variables and are logged together
with trigger and scaler events. The only difference is that a routine is called
periodically from the framework that has the task to read channels and to update
the ODB. To access slow control hardware, a two-layer driver concept is used.
The upper layer is a "class driver", which establishes the connection to the ODB
variables and contains high level functionality like channel limits, ramping etc.
It uses a "device driver" to access the channels. These drivers implement only
very simple commands like "set channel" and "read channel". The device drivers
themselves can use bus drivers like RS232 or GPIB to control the actual device.

Class driver, Device and Bus driver in the slow control system

S . o Bus Driver ,* |
5 Class Driver 5 P i
) TR :
/ R§232 /
i Rampi e GPIB !
! 1 1 e Device Driver TCRIP :
2 Channel Limits CAMAC :
g :I Trip Reset \ VME |:
g : \ !
2] " Y s
g I Set Channel o
3 T el Read Channel RS |
5 ’
=z % i
- TmRERL A ¥
Hardware

Ny

Figure 13: Class driver, Device and Bus driver in the slow control system

The separation into class and device drivers has the advantage that it is very easy to
add new devices, because only the simple device driver needs to be written. All higher

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 437

functionality is inherited from the class driver. The device driver can implement richer
functionality, depending on the hardware. For some high voltage devices there is a
current read-back for example. This is usually reflected by additional variables in the
ODB, i.e. a Current array. Frontend equipment uses exactly one class driver, but a class
driver can use more than one device driver. This makes it possible to control several
high voltage devices for example with one frontend in one equipment. The number
of channels for each device driver is defined in the slow control frontend. Several
equipment with different class drivers can be defined in a single frontend.

Key name Type #Val Size Last Opn Mode Value
Epics DIR
Settings DIR
Channels DIR
Epics INT 1 4 25h 0O RWD 3
Devices DIR
Epics DIR
Channel name STRING 10 32 25h 0 RWD
[0] GPS:VAR1
[1] GPS:VAR2
[2]1 GPS:VAR3
Names STRING 10 32 17h 1 RWD
[0] Current
[1] Voltage
[2] Watchdog
Update Threshold MeasureFLOAT 10 4 17h O RWD
[o] 2
1] 2
[2] 2
Common DIR
Event 1D WORD 1 2 17h O RWD 3
Trigger mask WORD 1 2 17h O RWD O
Buffer STRING 1 32 17h 0 RWD SYSTEM
Type INT 1 4 17h O RWD 4
Source INT 1 4 17h O RWD O
Format STRING 1 8 17h 0 RWD FIXED
Enabled BOOL 1 4 17h 0 RWD vy
Read on INT 1 4 17h 0 RWD 121
Period INT 1 4 17h 0 RWD 60000
Event limit DOUBLE 1 8 17h O RWD O
Num subevents DWORD 1 4 17h O RWD O
Log history INT 1 4 17h O RWD 1
Frontend host STRING 1 32 17h O RWD hostname
Frontend name STRING 1 32 17h O RWD Epics
Frontend file name STRING 1 256 17h 0O RWD feepic.c
Variables DIR
Demand FLOAT 10 4 Os 1 RWD
[0] 1.56
[1] 120
[2]1 87
Measured FLOAT 10 4 2s 0 RWD
[0] 1.56
11 120
[2] 87
Statistics DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10

Internal features

438

6.10.8 Electronic Logbook

Events sent
Events per sec.
kBytes per sec.

DOUBLE 1 8 17h O RWDE 26
DOUBLE 1 8 17h O RWDE O
DOUBLE 1 8 17h O RWDE O

The Electronic logbook is an alternative way of recording experiment information.
This is implemented through the Midas web server mhttpd task (see Elog page). The
definition of the options can be found in the ODB data base under ODB /Elog Tree.

6.10.9 Log file

Midas provides a general log file midas.log for recording system and user messages
across the different components of the data acquisition clients. The location of this file
is dependent on the mode of installation of the system.

1. [without ODB /Logger Tree] In this case the location is defined by either the
MIDAS_DIR environment (see Environment variables) or the definition of the
experiment in the exptab file (see Experiment_Definition). In both cases the log
file will be in the experiment specific directory.

2. [with /Logger Tree] The midas.log will be sitting into the defined directory spec-
ified by Data Dir .

midas.log file contains system and user messages generated by any application con-
nected to the given experiment.

The MIDAS Macros definition provides a list of possible type of messages.

Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

10:
10:
10:

11
11
11
11
11
11
11
11
11

11:

11

11:
11:

48:
48:
55:
124:
124
127:
t27:
127:
t27:
127:
t27:
127
27:
:33:
42:
42:

40
40
04

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

[CHAOS] Run 8362 started

[Logger] Run #8362 started

[Lazy Tape] cni-043[10] (cp:383.6s) /dev/nst0/run08360.ybs 849.896MB file N
[MStatus] Program MStatus on host umelba started

[MStatus] Program MStatus on host umelba stopped

[Logger] stopping run after having received 1200000 events

[CHAOS] Run 8362 stopped

[SUS1YBOS] saving info in run log

[Logger] Run #8362 stopped

[Logger] starting new run

[CHAOS] Run 8363 started

[CHAOS] odb_access_file -1- /Equipment/kos_trigger/Dump not found

[Logger] Run #8363 started

[Lazy Tape] cni-043[11] (cp:391.8s) /dev/nst0/run08361.ybs 850.209MB file N
[CHAOS] Run 8363 stopped

[SUS1YBOS] saving info in run log

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.11 Introduction 439

Fri Mar 24 11:42:41 2000 [ODBEdit] Run #8363 stopped
Fri Mar 24 12:19:57 2000 [MChart] client [umelba.Triumf.CAJMChart failed watchdog test after 10 sec
Fri Mar 24 12:19:57 2000 [MChart] Program MChart on host koslIx0 stopped

Quick Start - Top - Utilities

6.11 Introduction

New Documented Features - Top - Components
... A few words...

Acquiring, collecting and analyzing data is the essence of mankind to satisfy his urge
for understanding natural phenomena by comparing "real" events to his own symbolic
representation. These fundamental steps paved human evolution and in the world of
science they have been the keys to major steps forward in our understanding of nature.
Until the last couple of decade’s -when "Silicium" was still underground, the PPP pro-
tocol (Paper, Pencil and Patience) was the basic tool for this "unique" task. With the
development of the "Central Processing Unit", data acquisition using computers wired
to dedicated hardware instrumentation became available. This has allowed scientists to
sit back and turn their minds towards finding solutions to problems such as "How do I
analyze all these data?" Since the last decade or so when "connectivity" appeared to be
a powerful word, the data acquisition system had to adapt itself to that new vocabulary.

Based on this sudden new technology, several successful systems using de-
centralization of information have been developed. But the task is not simple! If the
hardware is available, implementing a true distributed intelligence environment for a
particular application requires that each node have full knowledge of the capability of
all the other nodes. Complexity rises quickly and generalization of such systems is
tough. Recently more pragmatic approaches emerged from all this, suggesting that
central database information on a system may be more adequate, especially since pro-
cessing and networking speed are not a "real" concern these days. MIDAS and its
predecessor HIX may be counted part of the precursor packages in the field.

The old question: "How do we analyze all these data?" still remains and may have been
the driving force behind this evolution :-).

6.11.1 What is Midas?

The Maximum Integrated Data Acquisition System (MIDAS) is a general-purpose sys-
tem for event based data acquisition in small and medium scale physics experiments.
It has been developed at the Paul Scherrer Institute (Switzerland) and at TRIUMF
(Canada) between 1993 and 2000 (Release of Version 1.8.0). Presently ongoing devel-
opment are more focused on the interfacing capability of the Midas package to external
applications such as ROOT for data analysis (see MIDAS Analyzer).

Midas is based on a modular networking capability and a central database system.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 440

MIDAS consists of a C library and several applications. They run on many different
operating systems such as UNIX like, Windows NT, VxWorks, VMS and MS-DOS.
While the system is already in use in several laboratories, the development continues
with addition of new features and tools. Current development involves RTLinux for
either dedicated frontend or composite frontend and backend system.

For the newest status, check the MIDAS home page: Swi t zer | and , Canada

6.11.2 What can MIDAS do for you?

MIDAS has been designed for small and medium experiments. It can be used in dis-
tributed environments where one or more frontends are connected to the backend via
Ethernet. The frontend might be an embedded system like a VME CPU running Vx-
Works or a PC running Windows NT or Linux. Data rates around 1MB/sec through
standard Ethernet and 6.1MB/sec over Fast Ethernet can be achieved.

For small experiments and test setups the front-end program can run on the back-end
computer thus eliminating the need of network transfer, presuming that the back-end
computer has direct access to the hardware. Device drivers for common PC-CAMAC
interfaces have been written for Windows NT and Linux. Drivers for PC-VME inter-
faces are commercially available for Windows NT.

For data analysis, users can write a complete analyzer or use the standard MIDAS ana-
lyzer which uses HBOOK routines for histogramming and PAW for histogram display.

The MIDAS package contains also a slow control system which can be used to control
high voltage supplies, temperature control units etc. The slow control system is fully
integrated in the main data acquisition and act as a front-end with particular built-in
control mechanism. Slow control values can be written together with event data to
tape.

New Documented Features - Top - Components

6.12 mhttpd task

Utilities - Top - Data format

mhttpd is the Midas Web Server. It provides Midas DAQ control through the web
using any web browser.

This daemon application has to run in order to allow the user to access from a Web
browser any Midas experiment running on a given host. Full monitoring and "Almost"
full control of a particular experiment can be achieved through this Midas Web server.
The color coding is green for present/enabled, red for missing/disabled, yellow for
inactive. It is important to note the refresh of the page is not "event driven" but is
controlled by a timer (see Config- button). This mean the information at any given
time may reflect the experiment state of up to n second in the paste, where n is the
timer setting of the refresh parameter. Its basic functionality are:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://midas.psi.ch
http://midas.triumf.ca

6.12 mhttpd task 441

* Run control (start/stop).

 Frontend up-to-date status and statistics display.

» Logger up-to-date status and statistics display.

» Lazylogger up-to-date status and statistics display.
* Current connected client listing.

* Slow control data display.

* Basic access to ODB.

* Graphical history data display.

* Electronic LogBook recording/retrival messages

* Alarm monitoring/control

e ... and more ...
Each section is further described below:

» Start page - Run control page

* ODB page - Online Database manipulation (equivalent to ODBedit)
» Equipment page (Frontend info)

* CNAF page (CAMAC access page)

* Message page (Message Log)

* Elog page (Electronic Log)

— Internal Elog (Internal)
— External Elog (External)

* Program page (Program control)
* History page (History display)
* Alarm page (Alarm control)

* Custom page (User defined Web page)

mhttpd requires as argument the TCP/IP port number in order to listen to the web
based request.

* Arguments

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12

mhttpd task 442

— [-h]: help
— [-p port] : port number, no default, should be 8081 for Example .

— [-D] : start program as a daemon
Usage
>mhttpd -p 8081 -D

Description Once the connection to a given experiment is established, the main
Midas status page is displayed with the current ODB information related to this
experiment. The page is sub-divised in several sections:

-[Experiment/Date] Current Experiment, current date.

-[Action/Pages buttons] Run control button, Page switch button. At any web page level
within the Midas Web page the main status page can be invoked with the <status>
button.

[Start... button] Depending on the run state, a single or the two first buttons will
be showing the possible action (Start/Pause/Resume/Stop) (see Start page).

[ODB button] Online DataBase access. Depending on the security, R/W access
can be granted to operated on any ODB field (see ODB page).

[CNAF button] If one of the equipment is a CAMAC frontend, it is possible to
issue CAMAC command through this button. In this case the frontend is acting
as a RPC CAMAC server for the request (see CNAF page).

[Messages button] Shows the n last entries of the Midas system message log. The
last entry is always present in the status page (see below) (see Message page).

[Elog button] Electronic Log book. Permit to record permanently (file) com-
ments/messages composed by the user (see Elog page).

[Alarms button] Display current Alarm setting for the entire experiment. The
activation of an alarm has to be done through ODB under the /Alarms tree (See
Alarm System)

[Program button] Display current program (midas application) status. Each pro-
gram has a specific information record associated to it. This record is tagged as
a hyperlink in the listing (see Program page).

[History button] Display History graphs of pre-defined variables. The history
setting has to be done through ODB under the /History (see History system ,
History page).

[Config button] Allows to change the page refresh rate.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 443

* [Help button] Help and link to the main Midas web pages.

* [User button(s)] If the user define a new tree in ODB named Script than any sub-
tree name will appear as a button of that name. Each sub-tree (/Script/<button
name>/) should contain at least one string key being the script command to be
executed. Further keys will be passed as

— Arguments to the script. Midas Symbolic link are permitted.

— Example : The Example below defines a script names doit with 2 Ar-
guments (run# device) which will be invoked when the button <doit> is
pressed.

odbedit

mkdir Script

cd Script

mkdir doit

cd doit

create string cmd

In "/runinfo/run number" run
create string dest

set dest /dev/hda

[Version >= 1.8.3 Alias Hyperlink] This line will be present on the status page only
if the ODB tree /Alias. The distinction for spawning a secondary frame with the link
request is done by default. For forcing the link in the current frame, add the terminal
charater "&" at the end of the link name.

» Example : The Example will create a shortcut to the defined location in the
ODB.

odbedit

Is

create key Alias

cd Alias

In /Equipment/Trigger/Common "Trig Setting"
In /Analyzer/Output "Analyzer"

create key "Alias new window" <-- Version < 1.8.3
cd "Alias new window"
In /equipment/Scalers/Variables "Scalers Var"

or
cd Alias
In /Equipment/Trigger/Common "Trig Setting&" <-- Version >= 1.8.3

* [General info] Current run number, state, General Enable flag for Alarm, Auto
restart flag Condition of mlogger.

* [Equipment listing] Equipment name (see Equipment page), host on which its
running, Statistics for that current run, analyzed percentage by the "analyzer"
(The numbers are valid only if the name of the analyser is "Analyzer").

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 444

[Logger listing] Logger list. Multiple logger channel can be active (sin-
gle application). The hyperlink "0" will bring you to the odb tree /Log-
ger/channels/0/Settings. This section is present only when the Midas application
mlogger task is running.

[Lazylogger listing] Lazylogger list. Multiple lazy application can be active.
This section is present only when the Midas application lazylogger task is run-
ning.

[Last system message] Display a single line containing the last system message
received at the time of the last display refresh.

[Current client listing] List of the current active Midas application with the host-
name on which their running.

Midas Web server

Tile . | 'MIDAS experiment "midas" [‘Mon Dec 18 14:42:06 2000
Action'Pages |ﬂ!ﬁ[CNAF | tessages | Elog | Alams | Programs | istory | Config | Heip |
User hottonés) _y, | ﬂl M

Teiggerbuton6) _y. | Trigger Scaler evert |

Alin/ATas newwindow s || T seiting dos setting

Gmerallnﬁn{ Run #63 _

| Start: Wed Mow 22 10:00:37 2000 ‘ Stop: Wed MNew 22 10:01:48 2000

| Loggmg disabled

| Equipment | FE INode ‘ Events ‘ Event rate[/s] | Data rate[kB/s] | Analyzed
Equpmentliting | | Trigger [| o0 | 0.0 N
Scaler [o 0.0 0.0 [T
Channel ‘ Active Events MB written | GB total
Logger Clannels | || 00063 rmid | Disabled 0 0,000 [oooo
|1 run00063.mid | Disabled | 0 0000 | 0000
| Lazy Lahel \ Progress ‘ File Name | # Files | Total
Lanyogger | [Disk 01 | 0% | 0 [oo
app lication
|Tape 01 | 0% | 0 [oo
Last system message |Mnn Dec 18 14:40:06 2000 [mhttpd] Program mhttpd on host midmes04 started
— feflash [midmes04] ‘ Logger [midmes04] | Lazy Disk [midmez04]
Lary_Tape [midmes04] ‘ mhttpd [midmes04]

Figure 14: Midas Web server

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 445

6.12.1 Start page

Once the Start button is pressed, you will be prompt for experiment specific parameters
before starting the run. The minimum set of parameter is the run number, it will be
incremented by one relative to the last value from the status page. In the case you have
defined the ODB tree /Experiment/Edit on Start all the parameters sitting in this
directory will be displayed for possible modification. The OK button will proceed to
the start of the run. The Cancel will abort the start procedure and return you to the
status page.

Start run request page. In this case the user has multiple run parameters defined under
"/Experiment/Edit on Start"

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task

446

Eun munber 595
(Commernt .Test, -150 mv th
“Write Diata Vi
Exzp type | 3 mod test
Operators SCW RP
sc 1 HV (volts) IEEDD
o2 HY (volts) 1500
GAS type Ar 25 Iszo 75
71 HY (waolts) -Z2000
W1 HY (wolts) .—EEIEIEI
T2 HY (waolts) -2000
V2 HV (volts) F1750
T3 HY (waolts) -2000
Wi HY (wolts) .—EEIIZIIZI
Prearnp (m'V) 4200
Start | Cancel |

Figure 15: Start run request page.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 447

The title of each field is taken from the ODB key name it self. In the case this label
has a poor meaning and extra explanation is required, you can do so by creating a new
ODB tree under experiment Parameter Comments/ . Then by creating a string entry
named as the one in Edit on Start- you can place the extra information relative to that
key (html tags accepted).

This "parameter comment" option is available and visible ONLY under the midas web
page, the odbedit start command will not display this extra information.

[local:midas:S]/Experiment>ls -Ir

Key name Type #Val Size Last Opn Mode Value
Experiment DIR
Name STRING 1 32 17s O RWD midas
Edit on Start DIR
Write data BOOL 1 4 16m O RWD vy
enable BOOL 1 4 16m O RWD n
nchannels INT 1 4 16m O RWD O
dwelling time (ns) INT 1 4 16m O RWD O
Parameter Comments DIR
Write Data STRING 1 64 44m O RWD Enable logging
enable STRING 1 64 7m 0 RWD Scaler for expt Bl only
nchannels STRING 1 64 14m O RWD <i>maximum 1024</i>
dwelling time (ns) STRING 1 64 8m 0 RWD Check hardware now
[local:midas:S]Edit on Start>lIs -I
Key name Type #Val Size Last Opn Mode Value
Write Data LINK 1 19 50m O RWD /logger/Write data
enable LINK 1 12 22m O RWD /sis/enable
number of channels LINK 1 15 22m O RWD /sis/nchannels
dwelling time (ns) LINK 1 24 12m O RWD /sis/dwelling time (ns)

Start run request page. Extra comment on the run condition is displayed below each

entry.
Ai:;c: e Fri Qct 12 10:33:15 2001
Start new run
{Bun number]2
Write Data |
{Enable logzing &
|enable 1n
Sraler for expt B1 only
inumber of channels |D
(i 1024
dwelling tirne (ns) |D
|Check hardware now
Start | Cancel

Figure 16: Start run request page.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 448

6.12.2 ODB page

The ODB page shows the ODB root tree at first. Clicking on the hyperlink will walk
you to the requested ODB field. The Example below show the sequence for chang-
ing the variable "PA" under the /equipment/PA/Settings/Channels ODB directory. A
possible shortcut

If the ODB is Write protected, a first window will request the web password.

ODB page access.

Create Elog from this pags.
{ Equipment / PA / Settings /
Key | Value

VTP sensivty @)

[

|'I'h;esh. sensitivity(mV7)

2

‘|Tsmp sensitvity(Deg)

oz

[Volt. sensitivity(V)

IGI... = ™

Dedee: |

[Equipment/P &/Settings/Channels/P A ||_3 6

Key

| Vahe

26 (024

Figure 17: ODB page

access.

~—=S——

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 449

6.12.3 Equipment page

The equipment names are linked to their respective /Variables sub-tree. This permit
to access as a shortcut the current values of the equipment. In the case the equipment
is a slow control equipment, the parameters list may be hyperlinked for parameter
modification. This option is possible only if the parameter names have a particular
name syntax (see History system).

Slow control page.

'MIDAS experiment "e614" | Mon Dec 18 14:21:54 2000

| o8 | status| | Hep|

Eguipment: PA

Groups: All Crated Cratel

Names [D VTp M _¥Tp D_Thres M _ThresA M ThresB D TP M TP |Temp Voltage+ Voltage-
glo [o | o | o | o | ©o | o | =n |3 |-0018 -0004
[sL1 | 1ss0 | 1852 | 1011 | -1002 | -998 | n | n 313 | 5061 | -5103
[st2 |17 | 1793 | 1017 | -1002 | -999 | n | n |338 | 5099 | -5112
818 | 1775 | 1774 | 1023 | -1001 -1000 n | n [385 | 5067 | -5083
st4 [1852 | 1852 | iz | -1003 -999 n | n [348 | 5076 | -5104
SL5 | 1800 | 1800 | 1014 | -1004 ~1000 n | n [385 | 5055 | -5108
sL6 | 1786 | 1785 | 1011 | -1001 1000 | n | n |404 | 5066 | 5098
g7 | 1798 | 1798 | 1011 | -1004 -1000 n | n [373 | 5083 | 5097
sl 8 | 1795 | 1795 | 1ol | -1002 -1002 L | n |32 | 5073 | -s0m
sle | 180l | 1801 | 1016 | -1001 -1p02 [o | n [351 | sp@ | -5104
[sLio [17e7 | 1798 | 1033 | -1001 | -1000 | n | n [347 | 5065 | 5104
[sL11 | 1795 | 1796 | 1018 | -1000 | -1002 | n | n [313 | 5057 | -5102
L1z | 197 | O 1013 o | o | o | n |0 |-D02 |-0006
[sL13 | 1798 | 1798 | 1016 | -1002 | -1000 | n | n 343 | 5067 | -5102
sLid4 | 1793 | 1793 | 1016 -1000 -1000 [n | o [324 | 507 | 5095
SL15 | 1799 | 1800 | 1015 | -1000 -1001 | n | n [28% | 5088 | -50%2
s116 | 1762 | 1783 | 1007 | 1002 1001 n | n [377 | 5058 | 5099
S117 | 1798 | 1798 | 1011 | -1001 -999 n | n [333] 5104 | 5094
sL18 | 1796 | 1796 | 1017 | -1001 -1002 n | n [306 | 5078 | 5103
§1.19 | 1798 | 1797 | 1009 | -1000 -1001 n | n [347 | 507 | -5106
§120 | 1803 | 1803 | 1014 | -1002 -1000 [n | n [376 | 5086 | 51l
[s121 | 1792 | 1799 | 1oio | 1000 | -1002 | n | n 387 | 5088 | 511
[sL22 | 1s05 | 1805 | 1015 | 1000 | -1001 | n | n 331 | 5066 | -5114
[sL23 | 1793 | 1793 | 1018 | -1000 | -1001 | n | n [312 | 5055 | 509
[sL24 | 1789 | 1788 | 1018 | -10000 | -1002 | n | n 381 | 5047 | -5105

Figure 18: Slow control page.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 450

6.12.4 CNAF page
If one of the active equipment is a CAMAC based data collector, it will be possible

to remotely access CAMAC through this web based CAMAC page. The status of the
connection is displayed in the top right hand side corner of the window.

CAMAC command pages.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 451

“Soivnen |

Crate]1_-

Figure 19: CAMAC command pages.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 452

6.12.5 Message page
This page display by block of 100 lines the content of the Midas System log file starting
with the most recent messages. The Midas log file resides in the directory defined by

the experiment.

Message page.

| MIDAS experiment "bnm2" | Tue Dec 19 12:02:54 2000
I ODEIl Status | Config | Helpl

More100 I

Tue Dec 19 11:32:35 2000 [Mdarc] run saved in file home'bnmefonline/bhme2f dlog/040638 mer w39
Tue Dec 19 11:33:06 2000 [Mdarc] mon saved in file home/bamefonlinebome 2/ dlog/ 040638 mer_v40
Tue Dec 19 11:53:37 2000 [Mdarc] run saved m file thome/brmefonlime/bnmr 2/ dlog/ 040638 msr_ w4 1
Tue Dec 19 11:534:08 2000 [Mdarc] run saved m file home/brmefonline/bnmr2/dlog/ 040638 msr w42
Tue Dec 19 11:54:39 2000 [Mdarc] run saved m file thome/brmrfonline/bnmr2/dlog/ 040638 msr w43
Tue Dec 19 11:55:10 2000 [Mdarc] run saved m file home/brmefonline/bnme 2/ dlog/ 040638 msr_vdd
Tue Dec 19 11:55:41 2000 [Mdarc] run saved m file /home/bnmedonlme/bomr 2/ dlog/ 040628 mer w45
|Tue Dec 1% 11:56:12 2000 [Mdarc] run saved in file shomefbrnmefonline/bnmr2/dlog/04 0638 mar_wdé
Tue Dec 19 11:56:43 2000 [Mdarc] run saved in file home/bnmefonline/brrmnr 2/ dlog/040638 msr_ w47
Tue Dec 19 11:57:14 2000 [Mdarc] run saved m file thome/brmefonline/bnmr2/dlog/ 040638 msr_v4 3
ITue Dec 19 11:57:45 2000 [MMdarc] run saved m file thomefbrmefonline b2 dloe/040638 mer w43

Figure 20: Message page.

6.12.6 Elog page

The ELOG page provides access to an electronic logbook. This tool can replace the ex-
perimental logbook for daily entries. The main advantage of Elog over paper logbook
is the possiblity to access it remotely and provide a general knowledge of the experi-
ment. In the other hand, Elog is not limited strictly to experiments and worldwide Elog
implementation can be found on the internet.

Since version 2.0.0, Elog comes in two flavors, i.e Internal Elog where the Elog is built
in the mhttpd Midas web interface, or External Elog where the Elog runs independently
from the experiment and mhttpd as well. While the internal doesn’t requires any setup,
the latter requires a proper Elog installation which is fully described on the El og
web site. The External Elog implementation requires to have a dedicated entry in the
ODB following the code below. It requires also to have the package Elog previously
installed and properly configured. Once the ODB entry is existant, the internal ELOG
is disabled.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://midas.psi.ch/elog/

6.12 mhttpd task

6.12.6.1 Internal Elog By default the mhttpd provides the internal Elog. The entry
destination directory is established by the logger key in ODB (see Elog_Dir) The Elec-
tronic Log page shows the most recent Log message recorded in the system. The top
buttons allows you to either Create/Edit/Reply/Query/Show a message

main Elog page.

MIDAS Hlectronic Loghaok |

\
‘ New: ﬂl Reply | Quary Last 10 entries Shift Check | Runlog | Status |

Next | Previous | Last|Check a category fo browse only eniries from that category

Entry date: Sun Nov 19 06:10:20 2000 Eun number: 13079

T Author rmeier ™ Type: Shift Check

I Systern General I Subject

1 Log beam channel : [X] adjusted Bl (.5 Gauss)
2 Target T-P 0k? : [¥] MT running

3 All Chambers V-I Ok? : [X]

4 DAQ : [¥]

S5 Histogramsz, dotplots 0k? : [X]

Figure 21: main Elog page.

The format of the message log can be written in HTML format.

HTML Elog message.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task

454

MIDAS Electronic Loghook Experiment “tuda”

ME_HHI Reply | Guery Last 24 hours | Runlngl Statusl

Newt | Previous | Last| Check a category to brovese only entries from that categary

[Entry date: Thu Sep 14 14:55:34 2000 Run number 1
™ Author: midas@midmes02.triumf.ca ™ Type: Info
I System: General ™ Subject: DAQ
Hello TUDA folks,
+ The main components of the DAQ) for upcomming run is "basically’ installed
* The VME crates contains the PPC and the CEZ CEDE210 CAMAC branch driver.
* This CBD iz connected to twe A2 CAMAC Crate Controllers.
* hequisition for 168 ADCs +4x32 TDCs
CRATE 1 Modules
[Stot 01-16 [ADC 4418 Silena
Slot 17-20 [TDC 3377 LeCroy or Command kst
Slot 21 Cutput Register OF2027 SEN
Slot 22-23 Pattern Urit C212
Slot 24-25 Crate Controller A2 Jorway 71B Spec
| CERATE 2 | Modules
[Stot 01 [Hex 24bit Scalers KCS3815
Stot 22-23 [Branch terminator BHT-002/D SEC
[Slot 2425 [Crate Clontroller A2 1302 BiRa system

System Status log:

| Date

[September 14/2000

|Cptical 100BaszeT link to the Shack

Figure 22: HTML Elog message.

¢ A feature of the Elog entry page is the Shift Check button, this permit for the
experimenter in shift to go through a check list and record his findings in the
Elog system. The check list is user defined and can be found in the ODB under

/Elog

HTML Elog message.

Generated on Thu

Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 455

| Mmﬁsteﬂech'onic‘ﬁqgﬁook Experiment "xenon'"
INEw ‘ E] Reply ‘ Queryd,GasHandling\b Funlog | Status ‘

|
| Lasteh | Lostedan | Last7d |
| MNext ‘ Frevious | Last |C}sec}cacaﬁegory:o Browseanly entrigs from that category

iEnt!y date: Sat Jul 22 17:09:46 2006 !Run number=1183
IRFY™ me © nocle Bt | Type: Fix \
i " System: Electronics | [Subject: A2 and D2 a.mp¥\

EDZ and AZ fixed at ~14:00. Preamps were alive, it was missing contact in

Ipreamp input.

[211 BV back at ~16:00. | MIDAS Electronic Loghook Form "Gas Handling"
|Run program resumed = : —
\Mow running 1183 CHV=3.E5kV, Subrnit | Reseat Form I

Eniry date: Tue Aug 1 08:45:32 2006 :Run number: [1310

Author: [Pierre
Ttem Checked | Comment
|1 N2 pressure ‘ ¥ Haﬁerfilling
|2 Vessel Temperature ‘ o Hrising!
| Attachment: [Gasiog o

Figure 23: HTML Elog message.

e The code below generates the above screen. The key Gas Handling contains all
the information for a given form. There is no limit to the number of entries.
By specifying an entry with the name Attachment0,Attachmentl,... and filling it
with a fix file name, its content will be attached to the Elog entry for every shift
report.

[local :myexpt:Running]/>cd /Elog/

[local :myexpt:Running]/Elog>mkdir Forms

[local :myexpt:Running]/Elog>cd Forms/

[local :myexpt:Running]Forms>mkdir *‘Gas Handling"

[local :myexpt:Running]Forms>cd "Gas Handling"

[local :myexpt:Running]Gas Handling>create string N2 Pressure"
String length [32]:

[local :myexpt:Running]Gas Handling>create string "Vessel Temperature
String length [32]:

[local :myexpt:Running]Gas Handling>ls

N2 pressure

Vessel Temperature

[local :myexpt:Running]Gas Handling>

[local :xenon:Running]Gas Handling>create string AttachmentO
String length [32]: 64

[local :xenon:Running]Gas Handling>set AttachmentO Gaslog.txt

¢ The runlog button display the content of the file runlog.txt which is expected to
be in the data directory specified by the ODB key /Logger/Data Dir. Regardless
of its content, it will be displayed in the web page. Its common uses is to append

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 456

lines after every run. The task appending this run information can be any of the
midas application. Example is available in the examples/experiment/analyzer.c
which at each end-of-run (EOR) will write to the runlog.txt some statistical in-
formations.

Elog page, Runlog display.

| MIDAS File Display | Experiment "'lmo"

| ELog | Status

Run# Date Time Freg RE VM §till_H DMNC H Film H gec shunt Terminal
40034 20001018 16:25:25 0.000000e+00 0.000 0.000001 0.000000 0.000000 O.000000 10 D.05e076 0.006103
40035 20001018 16:25:40 7.000000e+07 0.000 0.000002 0.000000 0.000000 O.000000 10 D.058364 0.008027
40036 20001018 16:25:55 7.000000e+07 0.000 0.00000& 0.000000 0.000000 O.000000 10 D0.058364 0.006027
40037 20001016 16:26:09 7.000000e+07 0.000 0.000005 0.000000 0.000000 0.000000 10 D.058364 0.006027
40038 20001018 16:26:23 7.000000e+07 0.000 0.000006 0.000000 0.000000 O.000000 10 D.058364 0.006027
39000 20001018 17:21:31 7.000000e+07 0.000 0.000008 0.000000 0.102539 0.000000 10 0.055509 0.006256
39001 20001018 17:21:47 7.000000e+07 0.000 0.000005 0.000000 0.10253% 0.000000 10 0.056076 0.006103
39002 20001018 17:22:04 7.000000=+07 0.000 0.000003 0.000000 0.10253% 0.000000 10 D.056076 0.006103
39003 20001018 17:22:20 7.000000e+07 0.000 0.000002 0.000000 0.102539 0.000000 10 D.056076 0.006103
39004 20001018 17:22:35 7.000000e+07 0.000 0.000002 0.000000 0.102539 0.000000 10 D0.056076 0.006103
39000 20001018 17:48:25 7.000000e+07 0.000 0.000006 0.000000 0.10253% 0.000000 1000 0.054%31 0.006179
39001 20001018 18:05:11 7.000000=+07 0.000 0.000007 0.000000 0.10253%9 0.000000 1000 0.057220 0.006332
39002 20001018 18:21:56 7.000000e+07 0.000 0.000006 0.000000 0.102539 0.000000 1000 0.056076 0.006256
39003 20001018 18:38:42 7.000000e+07 0.000 0.000008 0.000000 0.102539 0.000000 1000 0.056076 0.006179
39004 20001018 18:55:27 7.000000e+07 0.000 0.000004 0.000000 0.1045%80 0.000000 1000 0.058364 0.006103
39005 20001018 19:12:14 7.000000=+07 0.000 0.000006 0.000000 0.10253% 0.000000 1000 0.053767 0.006332
39006 20001018 1%:28:5% 7.000000e+07 0.000 0.000005 0.000000 0.104380 0.000000 1000 0.053787 0.006332
39007 20001018 19:45:44 7.000000e+07 0.000 0.000005 0.000000 0.104%80 0.000000 1000 0.057220 0.006179
39008 20001018 20:02:32 7.000000«+07 0.000 0.000004 0.000000 0.104%80 0.000000 1000 0.062%42 0.006256
39008 20001018 20:18:18 7.000000e+07 0.000 0.000005 0.000000 0.1045B80 0.000000 1000 0.057220 0.006332
39010 20001018 20:36:06 7.000000e+07 0.000 0.000005 0.000000 0.107422 0.000000 1000 0.053787 0.005874
39011 20001018 20:52:52 7.000000e+07 0.000 0.000008 0.000000 O.107422 0.000000 1000 0.057220 0.006256
39012 20001018 21:09:3% 7.000000<+07 0.000 0.000006 0.000000 0.107422 0.000000 1000 0.057220 0.006332

Figure 24: Elog page, Runlog display.

When composing a new entry into the Elog, several fields are available to spec-
ify the nature of the message i.e: Author, Type, System, Subject. Under Type
and System a pulldown menu provides multiple category. These categories are
user definable through the odb under the tree /Elog/Types, /Elog/Systems. The
number of category is fixed to 20 maximum but any remaining field can be left
empty.

Elog page, New Elog entry form.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 457

\ MIDAS Hlectrouic Lagbook | Experiment " chaos"
‘ Submit
Entry date: Tue Dec 19 12:0%:13 2000 ‘Runnumber: 13397
Author ‘ Type: | Routine - I
Routine
Shift surnrmary
System: IGeneraI = Subject; Mifor Briar
] o : Severe errar
Text: B Fix
Detecmr_ Irfia __I
Electromcs Modification o~
Barget‘ Complaints
earnline Reply
Alarm
Tast
Other

H

[T Subsrit ag HTML test

Enter attachment filename(s) or CDB tree(s), use "\ as an ODE directory separator:

‘ Attachment1 | Browse...
‘ Attachment2: | Browse...
Attachment: | Browse...

Figure 25: Elog page, New Elog entry form.

6.12.6.2 External Elog The advantage of using the external Elog over the built-in
version is its felxibility. This package is used worldwide and impovement is constantly
added. A full features documentations and standalone installation can be found at the
El og web site.

It’s installation requires requires several steps described below.

* Download the Elog package from the mentioned web site.

— Windows, Linux, Mac version can be found there. Simple installation pro-
cedures are also described. Its installation can be done at the system level
or at the user level. The Elog can service multiple Electronic logbooks in
parallel and therefore an extra entry in its configuration file can provide
specific experimental elog in a similar fashion as the internal one.

— You need to take note of several consideration for its installation. You need
to determine several locations for the different files that elog deals with.

% elog resource directory (ex: /elog_installation_dir where elog is in-
stalled)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://midas.psi.ch/elog/

6.12 mhttpd task 458

% logbook directory (ex: /myexpt/logbook where the pwd and elog en-
tries are stored). The pwd file uses encryption for the user password.

— As this Elog installation is tailored towards an experiment, a restriction
applies i.e: Ensure that the mhttpd and elog applications shares at least the
same file system. This means that either both applications runs on the same
machine or a nsf mount provides file sharing.

% You need to now the node and ports for both application. As mhttpd,
elogd requires a port number for communication through the web (ex:
NodeA:mhttpd -p 8080, NodeB:elogd -p 8081.

1. copy the default midas/src/elogd.cfg from the midas distrbution to
your operating directory.

2. modify the elogd.cfg to reflect your configuration

This is a simple elogd configuration file to work with Midas
$1d: mhttpd.dox 3317 2006-09-06 04:01:31Z amaudruz $

[global]

; port under which elogd should run

port = 8081

; password file, created under ’logbook dir”

password file = elog.pwd

; directory under which elog was installed (themes etc.)

resource dir = /elog_installation_dir

; directory where the password file will end up

logbook dir = /myexpt/logbook

; anyone can create it’s own account

self register = 1

; URL under which elogd is accessible

url = http://1add00. triumf.ca:8081

; the "main"™ tab will bring you back to mhttpd

main tab = Xenon

; this is the URL of mhttpd which must run on a different port

main tab url = http://NodeA:8080

; only needed for email notifications

smtp host = your.smtp.host

; Define one logbook for online use. Severl logbooks can be defined here
[MyOnline]

; directory where the logfiles will be written to

Data dir = /myexpt/logbook

Comment = My MIDAS Experiment Electronic Logbook

; mimic old mhttpd behaviour

Attributes = Run number, Author, Type, System, Subject

Options Type = Routine, Shift Summary, Minor Error, Severe Error, Fix, Question, Inf«
Options System = General, DAQ, Detector, Electronics, Target, Beamline
Extendable Options = Type, System

; This substitution will enter the current run number

Preset Run number = $shell(odbedit -e myexpt -h NodeA -d Runinfo -c ’Is -v \"run num
Preset Author = $long_name

Required Attributes = Type, Subject

; Run number and Author cannot be changed

Locked Attributes = Run number, Author

Page Title = ELOG - $subject

Reverse sort = 1

Quick filter = Date, Type, Author

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 459

; Don”t send any emails
Suppress email to users =1
3. start the elog daemon. -X is for the shell substitution of the command

Preset Run number = $shell(... The argument invokes the odbedit re-
motely if needed to retrieve the current run number. You will have to
ensure the proper path to the odbedit and the proper -e, -h argments for
the experiment and host. You may want to verify this command from
the console.

NodeB:~>/installation_elog_dir/elogd -c elogd.cfg -x

4. start the mhttpd at its correct port and possibly in the daemon form.
NodeA:~>mhttpd -p 8080 -D

5. At this point the Elog from the Midas web page is accessing the inter-
nal Elog. To activate the external Elog, include in the ODB two entries
such as:

NodeX:> odbedit -e myexpt -h NodeA

[NodeX:myexpt:Running]/>cd elog
[NodeX:myexpt:Running]/Elog>create string Url

String length [32]: 64

[NodeX:myexpt:Running]/Elog>set Url http://NodeB:8081/MyOnline
[NodeX:myexpt:Running]

[NodeX:myexpt:Running]/Elog>create string ‘‘Logbook Dir"

String length [32]: 64

[NodeX:myexpt:Running]/Elog>set *Logbook Dir" /myexpt/logbook

[NodeX:myexpt:Running]/Elog>Is
Logbook Dir /home/myexpt/ElogBook
url http://NodeB:8081/MyOnline
6. Confirm proper operation of the external Elog by creating an entry.
You will be prompt for a username and password. Click on New reg-
istration. Full control of these features are described in the Elog docu-
mentation.

7. Stop and restart the Elogd in the background.
NodeB:~>/installation_elog_dir/elogd -c elogd.cfg -x -D

8. In the event you had previous entry under the internal elog, you can
convert the internal to external using the elconv tool.

NodeB:~> cp internal/elog_logbook/*.log /myexpt/logbook/ .
NodeB:~> cd /myexpt/logbook
NodeB:~> /installation_elog_dir/elconv

6.12.7 Program page

This page present the current active list of the task attached to the given experiment. On
the right hand side a dedicated button allows to stop the program which is equivalent
to the ODBedit command odbedit> sh <task name> .

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 460

The task name hyperlink pops a new window pointing to the ODB section related to
that program. The ODB structure for each program permit to apply alarm on the task
presence condition and automatic spawning at either the begining or the end of a run.

Program page.

|Prug}"am |Rurmmg on host |Alarm class |Autorestart

Lﬁi@f@mﬁ ! Status l'.H'ei'pﬁ]
I | Programs / lnoRC /
| Key | Value
. Auto start 1
Auto stop n
[Auto restart |g_
[Recpured o
.|Start cotnmand |@ﬂﬂ
|Adarm Class (empty)
[Checked as 00
| Adarm count |M
[Watchdog timeout 10000 {0x2710)

Figure 26: Program page.

6.12.8 History page

This page reflects the History system settings (CVS r1.271). It lists on the top of the
page the possible group names containing a list of panels defined in the ODB. Next

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 461

a serie of buttons defines the time scale of the graph with predefined time window,
T T L ST S S buttons permit the shifting of the graph in the time
direction. Other buttons will allow graph resizing, Elog attachment creation, configu-
ration of the panel and custom time frame graph display. By default a single group is
created "Default" containing the trigger rate for the "Trigger" equipment.

The configuration options for a given panel consists in:

* Zooming capability, run markers, logarithmic scale.
* Data query in time.
» Time scale in date format.

* Web based page creation ("new" button) for up to 10 history channels per page.

History page.
\ MIDAS experiment "p3a’ | Thu Aug 26 11:55:48 2004 Refi:60
‘ 0DB I Alafms-l Status |
|&;
|Default !Trigger tate
|1‘ﬂte tate

Back Detector |2 Tx

|Frunt Detector IS_Y Ty

| NEWI
‘ 0m | ih | 3n | dzn | 2ah | 3d | 7d | < | | - || Lovae | Small | CreateElog | Confis | Guery |

Back Detector/Tx

a.65 |Trigger per sec.

ed Trigger kB per sec.
.55
8.5+

8.45+

B4

.35+ “
8.2+ - <
8.254

8.2+

8.154

A.14

8.85-

A=A P AN lmr”- e e |
; R s e e T i i o e R R P R e e S

] T T
11:168 11:28 11:3A 11:40 11:56

Figure 27: History page.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task

462

History channel selection Page.

=

[saee]

Delete Panel |

| Panel "Bridge"

|Time scale: |1h

B Zero Yiow

[= Logarighmic T asis

|7 Show run markers

| Col | Event | Variable | Factor Offset

|TempEIriche j

IElridgn_a Ch 1 Measured ;l Il

|TempEiridge j

Bridge Ch 2 Measured
| Bridge Cw.aa

Bridge Ch 4 Measura

|TempBridge _j

Bridge Ch 3 Measured
| Bridge Ch 3 Meaf=UEbEil
: ~ |Bridge Ch

TempBridge

Bridge Ch ¥ Measured

[Bridge Ch 4 Mealg i 2 &1 4 Eycitation

hleters
Cryostat

Bridge Ch 2 Excitation

[Bridge Gh & Mea Bridge Ch 3 Excitation

Bridge Ch 4 Excitation

|TempElridge_ j

Bridge Ch 5 Excitation

| Bridge Ch B Mea
— Bridge Ch B Excitation

|TempBridge j

Bridge Ch 7 Excitation
Bridge Ch 1 BMES

| Bridge Ch 7 Mea

Bridge Ch 2 BMES
Bridge Ch 3 BMES

Bridge Ch 4 BMES
Bridge Ch 5 BMES
Bridge Ch B BMES

ol

Bridge Ch 7 BMES

6.12.9 Alarm page

Figure 28: History channel selection Page.

This page reflects the Alarm System settings. It presents the four type of alarms:

* [Evaluated alarms] Triggered by ODB value on given arithmetical condition.

* [Program alarms] Triggered on condition of the state of the defined task.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 463

* [Internal alarms] Trigger on internal (program) alarm setting through the use of
the al_...() functions.

* [Periodic alarms] Triggered by timeout condition defined in the alarm setting.

6.12.10 Custom page

The Custom page is available since version 1.8.3. It has been improved during version
1.9.5 (mhttpd.c CVS-1.288).

This custom web page provides to the user a mean of creating a secondary personal web
page activated within the standard Midas web interface. This custom page can contain
specific links to the ODB and therefore present in a more compact way the essential
parameter of the controlled experiment. Two mode of operations are available:

* Internal HTML document. : The html code is fully stored in the Online Database
(ODB). This page is web editable.

» External referenced HTML document. : ODB contains a link to an external html
document.

» Custom Script usage. : External html code with custom script option.

6.12.10.1 Internal HTML document. This page reflects the html content of a
given ODB key under the /Custom/ key. If keys are defined in the ODB under the
/Custom/ the name of the key will appear in the main status page as the Alias keys. By
clicking on the Custom page name, the content of the /Custom/<page> is interpreted
as html content.

Custom web page with history graph.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 464

| "PIBETA experiment ‘ Custom display
ODEIl ELDgl Alarmsl Frograms | Histnryl
Run #42708 |MHC 178916 Trigger rate 67.5 BOMMEC ratio 12.6495 |BB: 1
PiBeta
3TEZE .
: a
3?519—:
3'."6'2"3—3
3?59'3—5
3?58'3—5
S?S?B—E
3?56'3—5
LI L L LN L L L L UL L L L LY L L L L L B LA L L
-24 -2z -2 -12 -1& -14 -1z -1a] —& -4 -2 =]

Figure 29: Custom web page with history graph.

The access to the ODB field is then possible using specific HTML tags:

e <odb src=""odb field""> Display ODB field.
¢ <odb src="odb field" edit=1> Display and Editable ODB field.

e <form method="GET" action="http://hostname.domain:port/CS/<Custom_-
page_key>"> Define method for key access.

* <meta http-equiv="Refresh" content="60"> Standard page refresh in second.

e <input type=submit name=cmd value=<Midas_page>>> Define button for ac-
cessing Midas web pages. Valid values are the standard midas buttons (Start,
Pause, Resume, Stop, ODB, Elog, Alarms, History, Programs, etc).

*
Reference to an history page.

ODB /Custom/ html field.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 465

[MIDAS experiment “pibeta" | Tue Sep 4 20:02:11 2001
[Fmd | Create | Delete | Alarms | Progr. +

| Create Elog from this page [

‘ { Custom /

‘ Key | Value
<html>

<head><meta http-equiv="Refresh” content="60">

<titlerPIBETL status</titler</head>
<body><form method="GET" action="http://ww.... .psi.ch/C3/0verviews

<table border=3 cellpadding=2>

<try<th colspan=3 bgoolor=§A0AOFF>PIBEETA experiment<th colspan=3 hgoolor=§A0A0FF>Custom display
</tr>

<tr><td colspan=6 bgoolor=#COCOCO>

<input type=submit name=crd value=0DE>

<input type=submit name=cnd valus=ELog:

<input type=submit name=crd value=Alarms:

<input typessubmit name=crd value=Programs:

<input type=submit name=crmd value=Historys

</tr>

Overviews: <tr align=center:

<td>Run #<odb src="/runinfo/run murber'>

<td>MHC <odb src="/ilias/Rates/MHC">

<td>Trigger rate <odh sro="/Llias/Rates/Trigger™»

<td colspan=1>B0/MHC ratio <odb sre="/Alias/Ratios/BO-MHC">

<td colspan=2>EE: <odb sre="/Equipment/Beamline/Variables/Demand[0]" edit=1>
</try

<tr><td colspan=é>

</trs

</tahlex
</hody></html>

Edit

|<ntmi>

<head><meta http-equiv="Refresh" content="60">
<title>PIBETL status</ticler</head>

Figure 30: ODB /Custom/ html field.

The insertion of a new Custom page requires the following steps:

 Create an initial html file using your favorite HTML editor.

¢ Insert the ODB HTML tags at your wish.

Invoke ODBedit, create the Custom directory, import the html file.

» Example of loading the file mcustom.html into odb.

Tue> odbedit

[local :midas:Stopped]/>Is

System

Programs

Experiment

Logger

Runinfo

Alarms

Equipment

[local :midas:Stopped]/>mkdir Custom
[local :midas:Stopped]/>cd Custom/
[local :midas:Stopped]/Custom>import mcustom.html
Key name: Test&

[local :midas:Stopped]/Custom>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 466

* Once the file is load into ODB, you can ONLY edit it through the web (as
long as the mhttpd is active). Clicking on the ODB(button) ... Custom(Key)
... Edit(Hyperlink at the bottom of the key). The Custom page can also be ex-
ported back to a ASCII file using the ODBedit command "export"

Tue> odbedit

[local :midas:Stopped]/>cd Custom/

[local :midas:Stopped]/Custom>export testé&
File name: mcustom.html

[local :midas:Stopped]/Custom>

* The character "&" at the end of the custom key name forces the page to be open
within the current frame. If this character is omitted, the page will be spawned
into a new frame (default).

o If the custom page name is set to Status (no "&") it will become the default
midas Web page!

* html code Example mcustom.html

<ldoctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="'GENERATOR"™ content="Mozillas4.76 [en] (Windows NT 5.0; U) [Netscape]">
<meta name="Author' content="Pierre-André Amaudruz''>
<title>Set value</title>
</head>
<body text="#000000" bgcolor="#FFFFCC" link="#FF0000" vIink="#800080" alink="#0000FF">
<form method=""GET" action="http://host.domain:port/CS/WebLtno&">
<input type=hidden name=exp value="Iltno">
<center><table CELLSPACING=0 CELLPADDING=0 COLS=3 WIDTH=""100%" BGCOLOR="'#99FF99" >
<caption>LTNO
Custom Web Page</caption>
<tr BGCOLOR="#FFCC99'"'>
<td>Actions:
<input type=submit name=cmd value=Status>
<input type=submit name=cmd value=Start>
<input type=submit name=cmd value=Stop>
<td>
<input type=submit name=cmd value=0DB>
<input type=submit name=cmd value=History>
<input type=submit name=cmd value=Elog></td>
<td><div align=right>LTNO experiment </div>
</td></tr>
<tr><td>Cryostat section:

LN2 Bath Level : <odb src="/equipment/cryostat/variables/measured[12]">

Run# : <odb src="/runinfo/run number" edit=1>

Run#: <odb src="/runinfo/run number'></td>
<td WIDTH="100%" BGCOLOR="'#009900"'>RF source section:

Run#: <odb src="/runinfo/run number'></td>
<td WIDTH="50%" BGCOLOR="'#FF6600"'>Run section:

Start Time: <odb src="/runinfo/start time">

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 467

Stop Time: <odb src="/runinfo/stop time'>

Run#: <odb src="/runinfo/run number''></td>
</tr>

<tr>

<td BGCOLOR="#CC6600"'>Sucon magnet section:

Run#: <odb src="/runinfo/run number''></td>

<td BGCOLOR="#FFCC33''>Scalers section:

Beam Current: <odb src="/equipment/epics/variables/measured[10]">

Run#: <odb src="/runinfo/run number'></td>

<td BGCOLOR="#66FFFF''>Polarity section:

Run#: <odb src="/runinfo/run number''></td>
</tr>

</table></center>

<i>

 LTNO help</i>
</body>

</html>

6.12.10.2 External referenced HTML document. The new
External referenced HTML document. feature remove the html code size restric-
tion and support multiple custom web page. In addition, to each html document, a
dynamic ODB linked image extend the display presentation capability of the controlled
experiment.

In the case the custom web page is rather large and complex, it becomes easier to han-
dle such file through normal html editor and skip the reloading of the file in the ODB.
(import/export). This is now possible by providing an external reference of the web
page in the /Custom directory of the ODB. In addition special ODB settings are avail-
able to allow GIF image insertion and ODB fields bars and fillup area superimposed
on the image. This powerful new extention brings the mhttpd capability closer to other
experiment web control similar to EPICS.

The HTML examples below should operate in conjunction of the standard demo mi-
das example found in midas/examples/experiment. myexpt.html, xcumstom.odb and
myexpt.gif can be found in the midas/examples/custom directory.

Using your favorite html editor, you can create a custom page including any of the
options described in the Internal HTML document.. Once the mhttpd application is
started and connected to a valid Midas experiment, you can activate this page as follow:

[local :Default:Stopped]/>pwd

/

[local :Default:Stopped]/>mkdir Custom

[local :Default:Stopped]/>cd Custom

[local :Default:Stopped]/Custom>create string Dewpoint&

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 468

String length [32]: 256
[local :Default:Stopped]/Custom>set Dewpoint& \doc\cooling\dewpoint._html

Note: This link refers to a local html document. In the case an external HTML is
requires, the definition should be placed under /Alias (see also ODB /Alias Tree).

[local :Default:Stopped]/>mkdir Alias

[local :Default:Stopped]/>cd alias

[local :Default:Stopped]/alias>create string WebDewpoint&

String length [32]: 256

[local :Default:Stopped]/alias>set WebDewpoint& *‘http://www.decatur.de/javascript/dew/index.html"

After refreshing the Midas status web page, the link Dewpoint should be visible in
the top area of the page. The "&" is to prevent a new frame to be displayed (see
ODB /Alias Tree). Clicking on it will bring you to your custom html documentation.
In the case you want to extend the flexibility of your page by including features such
as:

* "live" ODB values position in a particular location of the page.
* "bar level" showing graphically levels or rate etc.

* "color level" where color is used as level indicator. you need to setup specific
ODB tree related to a particular page. This overlay of the requested features is
done on a GIF file representing you background experimental layout for exam-
ple. myexpt.html can be found in the examples/custom directory. For the full
operation of this custom demo, you’ll need to have the frontend "sample fron-
tend" (midas/example/experiment/frontend.c), mlogger, mhttpd running.

Html document myexpt.html

<html>
<head>
<title>MyExperiment Demo Status</title>
<meta http-equiv="Refresh" content="30">
</head>
<body>
<form name="forml" method="Get" action="/CS/MyExpt&">
<table border=3 cellpadding=2>
<tr><th bgcolor="#A0AOFF">Demo Experiment<th bgcolor="#A0OAOFF">Custom Monitor/Control</tr>
<tr><td> Actions: <input
value=""Status" name="cmd" type="'submit''> <input type="submit"
name=""cmd" value="Start"><input type="'submit” name="cmd" value="'Stop'>
</td><td>
<center> Help </center>
</td></tr>
<td>Current run #: <odb src="/Runinfo/run number'></td>
<td>#events: <odb src="/Equipment/Trigger/Statistics/Events sent''></td>
</tr><tr>
<td>Event Rate [/sec]: <odb src="/Equipment/Trigger/Statistics/Events per sec.'></td>
<td>Data Rate [kB/s]: <odb src="/Equipment/Trigger/Statistics/kBytes per sec.'></td>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 469

</tr><tr>

<td>Cell Pressure: <odb src="/Equipment/NewEpics/Variables/CellPressure'></td>
<td>FaradayCup : <odb src="/Equipment/NewEpics/Variables/ChargeFaradayCup'></td>
</tr><tr>

<td>Q1 Setpoint: <odb src="/Equipment/NewEpics/Variables/EpicsVars[17]" edit=1></td>
<td>Q2 Setpoint: <odb src="/Equipment/NewEpics/Variables/EpicsVars[19]" edit=1></td>
</tr><tr>
<th> <img src="http://localhost:8080/HS/Default/Trigger%20rate.gif?
exp=default&scale=12h&width=250">
</th>
<th> <img src="http://localhost:8080/HS/Default/Scaler%20rate.gif?
exp=default&scale=10m&width=250""></th>
</tr>
<tr><td colspan=2>
<map name="myexpt.map'>
<area shape=rect coords="140,70, 420,170"
href="http://midas.triumf.ca/doc/html/index.html" title="Midas Doc'">
<area shape=rect coords="200,200,400,400"
href="http://localhost:8080" title="Switch pump'>
<area shape=rect coords="230,515,325,600"
href="http://localhost:8080" title="Logger in color level (using Fill)">

</map>
</td></tr>
</table></form>
</body>
</html>

To activate this HTML document, it has to be defined in the ODB as follow:

[local :Default:Stopped]/>cd /Custom

[local :Default:Stopped]/Custom>create string Myexpt&

String length [32]: 256

[local :Default:Stopped]/Custom>set Myexpt& \midas\examples\custom\myexpt.html

After refresh, the ODB values will be displayed, the mapping is still not active. as no
reference to the gif location has been given yet.

[local :Default:Stopped]/Custom>mkdir Images

[local :Default:Stopped]/Custom>cd Images/

[local :Default:Stopped] Images>mkdir myexpt.gif

[local :Default:Stopped] Images>cd myexpt.gif/

[local :Default:Stopped]myexpt.gif>create string Background

String length [32]: 256

[local :Default:Stopped]myexpt.gif>set Background \midas\examples\custom\myexpt.gif

After refresh, the file myexpt.gif should by visible. The mapping based on myexpt.map
is active, hovering the mouse over the boxes will display the associated titles (Midas
Doc, Switch pump, etc), By clicking on either box the browser will go to the defined
html page specified by the map.

Custom web page with external reference to html document.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 470

Actions: SEatus‘l Start | Stop |

I Demo Experiment | Custom Monitor/Control
!Cunent i # 16

|#events: 476342

| Date Rate [kBJ]: 0.00111463
| FaradayCup : 0.00926811
|2 setpoint: 1297

!Event Rate [fzec]: 0.0203818

[Cell Presswe: 0.0586081

Q21 Setpoint: 2345

Nidas Experimen

Midas Doc

=
\ 7
%
\

7

Switch pump

Figure 31: Custom web external to html document.

In addition of these initial features, multiple ODB values can be superimposed at define

location on the image. Each entry will have a ODB tree associated to it defining the
ODB variable, X/Y position, color, etc...

[local :Default:Stopped]myexpt.gif>mkdir Labels
[local :Default:Stopped]myexpt.gif>cd labels
[local :Default:Stopped]Labels>mkdir Rate

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 471

>>>>>>>> Refresh web page <<<<<<<<

12:32:38 [mhttpd] [mhttpd.c:5508:show_custom_gif] Empty Src key for label "Rate™

Creating "Labels/<label name>" sub-directory under the gif file name, will automati-
cally at the next web page refresh complete its filling with default value for the structure
for that label.

[local :Default:Stopped]Labels>cd Rate/
[local :Default:Stopped]Rate>ls -1

Key name Type #Val Size Last Opn Mode Value
Src STRING 1 256 2m O RWD

Format STRING 1 32 2m O RWD %1.1f
Font STRING 1 32 2m O RWD Medium
X INT 1 4 2m O RWD O

Y INT 1 4 2m O RWD O
Align INT 1 4 2m O RWD O
FGColor STRING 1 8 2m 0 RwWD 000000
BGColor STRING 1 8 2m 0 RWD FFFFFF

The Src should point to a valid ODB Key variable. The X,Y fields position the top left
corner of the label. The other fields associated to this label are self-explanatory.

[local :Default:Stopped]Rate>set src "/Equipment/Trigger/statistics/kbytes per sec.”
[local :Default:Stopped]Rate>set x 330

[local :Default:Stopped]Rate>set y 250

[local :Default:Stopped]Rate>set format "Rate:%1.1f kB/s"

Once the initial label is created, the simplest way to extent to multiple labels is to copy
the existing label sub-tree and modify the label parameters.

[local :Default:Stopped]Labels>cd ..

[local :Default:Stopped]Labels>copy Rate Event

[local :Default:Stopped]Labels>cd Events/

[local :Default:Stopped]Event>set src "/Equipment/Trigger/statistics/events per sec."
[local :Default:Stopped]Event>set Format "Rate:%1.1f evt/s"

[local :Default:Stopped]Event>set y 170

[local :Default:Stopped]Event>set x 250

In the same manner, you can create bars used for level representation. This code will
setup two ODB values defined by the fields src.

[local :Default:Stopped]myexpt.gif>pwd
/Custon/ Images/myexpt.gif

[local :Default:Stopped]myexpt.gif>mkdir Bars
[local :Default:Stopped]myexpt.gif>cd bars/
[local :Default:Stopped]Labels>mkdir Rate

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 472

>>>>>>>> Refresh web page <<<<<<<<

14:05:58 [mhttpd] [mhttpd.c:5508:show_custom gif] Empty Src key for bars "Rate™
[local :Default:Stopped]Labels>cd Rate/

[local :Default:Stopped]Rate>set src "/Equipment/Trigger/statistics/kbytes per sec.”
[local :Default:Stopped]Rate>set x 4640

[local :Default:Stopped]Rate>set y 210

[local :Default:Stopped]Rate>set max 1le6

[local :Default:Stopped]Labels>cd ..

[local :Default:Stopped]Labels>copy Rate Events

[local :Default:Stopped]Labels>cd Events/

[local :Default:Stopped]Event>set src "/logger/channles/0/statistics/events written”
[local :Default:Stopped]Event>set direction 1

[local :Default:Stopped]Event>set y 240

[local :Default:Stopped]Event>set x 450

[local :Default:Stopped]Rate>set max le6

Following the same principle as for the labels, by creating Bars/<bar name>, the struc-
ture for the rate will be filled with a default setting after refreshing the custom midas
page. The different parameters are self-explanatory.

The last option available is the Fills where an area can be filled with different colors
depending on the given ODB value (src parameter). The color selection is mapped
by correspondance of the index of the Limit array to the Fillcolor array. Presently the
structure is not pre-defined and need to be entered by hand.

[/Custon/ Images/myexpt._gif/Fills/Level]
Src = STRING : [256] /Zequipment/Trigger/statistics/events sent
X = INT : 250

Y = INT - 550

Limits = DOUBLE[4] :

[0] O

[1] 10

[2] 10000

[3] 100000

Fillcolors = STRING[4]

[8] OOFFOO

[8]1 AAFFOO

[8]1 AA0000

[8] FF0000

Custom web page with external reference to html document.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 473

Actions: | Status | ﬂl St_cpl
Current run # 18 [#events: 733201
Event Rate [/zec]: 96,8015 |Dala Rate [kB/s]: 529876
Cell Pressura: 0.0586081 I‘E’a.radayCup : 0.009246811
QI Setpoint: 2345 |02 Setpoint: 12.97

Midas Experimen

h /

[Rate:96.9 evtss | [Rate:5.3 kB/s | Q:

a ‘ 1E+886

Count. ;733844 evts

Color changes based on "events writien” values
[Customfmages/myexpt gifiFills

Limits] 0 , 10 , 10000, 100000
Fillcolors] OOFFOQ, AAFFO0, AA0000, FFO000

Figure 32: Custom web external to html document.

6.12.10.3 Custom Script usage. From 1.9.5, a new feature has been implemented
for the creation of secondary web page activated by an internal or external custom page.
This permit to have truly custom page for specific scripts or data display. Use of a new

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 474

odb key is required CustomScript following the same Script syntax.
To be noted that <script> language within the .html source file is possible.

In order to provide a new frame holding input parameters with start script button using
the inputs parameters as arguments the setup is the following:

* Create the mybutton.html code as described in the Internal HTML document..
* Create a new custom (internal or External) in ODB under /Custom/mybutton&

* Create a new custom script (with argument as described in the myscript.html) in
ODB under /CustomScript/myscript&

These operations will implement a new button <mybutton>> in the main Status Midas
web page (same Ine as alias). By clicking <mybutton> a new frame will be created
as described in the mybutton.html. By clicking on the <myscript> of tht new frame,
execution of the script using all the argument above will be performed.

* mybutton.html code

<I--Custom web page for runall.

This webpage displays some experiment data,

allows the user to enter some experiment parameters,

and then uses these parameters to run a custom script.-->

<html>
<head>
<meta http-equiv="Refresh" content="10">
<title>RUNALL</title>
</head>
<body>
<form method="GET" action="http://<host>:<port>/CS/mybutton&">
<input type=hidden name=exp value="default'>
<table border ="3" cellpadding ="5" width ="40%">
<tr align ="center"<th bgcolor =#AOAOFF>
MIDAS experiment “default'</th>
<th bgcolor =#A0AOFF>

<script>

var mydate=new Date()
var year=mydate.getYear()
if (year < 1000)

year+=1900
var day=mydate.getDay()
var month=mydate.getMonth()
var daym=mydate.getDate()
var hour=mydate.getHours()
var min=mydate.getMinutes()
var sec=mydate.getSeconds()
if (daym<10)

daym=""0"+daym

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 475

if (hour<10)

hour="0"+hour
if (min<10)

min=""0"+min
if (sec<10)

sec="0"+sec
var dayarray=new Array(*'Sun","Mon",'Tue","Wed","Thur","Fri","Sat")
var montharray=new Array(*'Jan","Feb","Mar","Apr*,“May","June","July",
"Aug","'Sept","Oct",""Nov",""Dec')

document.writeln(dayarray[day], " ', montharray[month], * ", daym,™ *,
hour, ":', min, ":", sec,”" ", year);
</script>

</th>

</tr>

<tr align ="center'<th colspan ="2" bgcolor=#A0AOAO0>
<input type=submit name=cmd value=Status>
<input type=submit name=cmd value=0DB></th></tr>
<tr align ="center"><th colspan = "2" bgcolor=#CCCCFF>
End of Run Parameters</th></tr>
<tr align ="center'><th> Key </th> <th>Value </th></tr>
<tr align ="center"><td>Run number</td>
<td><odb src="/runinfo/run number'></td></tr>
<tr align ="center"><td>Number of Runs</td>
<td><odb src="/customscript/myscript/Number of Runs" edit=1></td></tr>
<tr align ="center"><td>Duration in Hours</td>
<td><odb src="/customscript/myscript/Duration in Hours" edit=1></td></tr>
<tr align ="center'<th colspan ="2" bgcolor=#D0D0OD0O>
<input type=submit name=customscript value="myscript">
</th></tr>
</table>
</form>
</body>
</html>

CustomScript usage.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.13 New Documented Features 476

Il | CustomSeript { myseript /

| Key Value
|dottus d i
R Humber ol un momber | 32533 (1nTF15)

| Fuamber of Runs 45 (0x2T)

| Disration i Hours 12 (0xC)

5E|ummf

Value

<!-—Custom web page for runall.

Thi= webpage displays some experiment data,

allows the user £o entec Some expeciment paremetecs,

and then uscs thesc PAramEters £O FuB & CuSTOm ICCipE.——>

<htmls

<head>
<mets hitp-equive"Refresh” content="10%>

(2127 Bytes total)

Figure 33: CustomScript usage.

Utilities - Top - Data format

6.13 New Documented Features

Top - Top - Introduction

Some of the midas features are not yet fully documented or even referenced anywhere
in the documentation.

This section will maintain an up-to-date information with a log of the latest documen-
tation on past and current features. It will also mention the wish list documentation on
current developments.

¢ Current doc revision: 2.0.0-1

¢ Software version: 2.0.0

. [2.0.0]

Update the whole midas package for support of 64 bits machine, OSLFAGS
should have -m32 for 32bit (Building Options).

Implementation of the external standalone Elog package (External Elog).

ODB Buffer size parameter (ODB /Experiment Tree).

Fix buffer level handling.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.13 New Documented Features a77

Improve midas.log, ODB Dump file directory destination (Data_Dir).

Multiple minor buf fixes

% Buffer level handling.

+ mdump single bank display.

% mhttpd (multiple buggies).
EQ_MULTITHREAD frontend type (see EQ_xxx).

Ring Buffer fonctions (rb_create(),...) for multi-threading and cascading
data transfer.

. [1.9.6]

— Latest tarball : 1. 9. 5- X You can retrieve the daily tarball directly from
the SVN web interface by clicking on the "tarball" link at the bottom of the
main SVN-midas page.

— LatestRPM : 1. 9. 2-1

« [Before 1.9.6]

— Switch from CVS to Subversion for Version control, this change affects
Quick Start. Check the new checkout/update commands.

New Midas VME standard functions implementation in mvmestd.h.

MIDASSYS environment variable now required for building /exam-
ples/experiment and /examples/hbookexpt

New /drivers tree structure includes camac , vme , fastbus.

New make option for minimal installation. This permits root installation of
mserver, mcleanup, dio and mhttpd only.

> make minimal_install

. [1.9.5-2]

— XML ODB format

— Separate xml SVN path for building Midas required. This package can
be extracted the same way as Midas. It has to reside at the same level as
Midas.

e [1.9.5-1]

— Custom page improvement. Implementation of external file.html and dy-
namic linked graphic to ODB values.

. [1.9.5]

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://midas.triumf.ca/download
http://midas.triumf.ca/download

6.13 New Documented Features 478

When upgrading to 1.9.5 , ALL midas applications including user applica-
tions needs to be rebuild AND the ODB.SHM (.ODB.SHM) shared mem-
ory need to be removed. Prior the removal of the ODB.SHM, the ODB
database can be saved in ASCII format for later restoration.

— Run Transition Sequence changed to multiple level scheme.
— odbedit_task support of XML format for ODB dump.

— Large File support (>2GB) from mlogger task application.
— Folder Root Histogram support within mana.

— mevb task application.

— New Midas Frontend application argument for Event Builder option (-i in-
dex).

% Documentation on "Tests" results from analyzer.
— mySQL support from mlogger task.
— Increase system wide parameters values (see midas.h).
— Fix numerous small annoying bugs...

— Improve debugging messages in mserver -d (/tmp/mserver.log).

e [<1.9.5]

— In writing

% Epics Slow Control documentation

 Introduce MIDASSYS environment variable

* Analyzer documention revision MIDAS Analyzer

* Watchdog bug fix (RH9.0)

* Restructured Midas distribution

— In the same effort as the documentation, the midas tree and CVS have been
modified. The downl oad area now contains separate directories for
doc, add-ons, publications etc.

[DOCUMENTATION in progress]

* A large effort has been put on the documentation for switching from the DOC++
to Doxygen We feel the cross-referencing to the source code is excellent and
hopefully will server better its purpose. Currently the MIDAS Analyzer is not
complete as well as the Quick Start. This Doxygen related files will be made
accessible for better update.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://midas.triumf.ca/download
http://www.stack.nl/~dimitri/doxygen/features.html

6.13 New Documented Features 479

» [Midas Short Course]

During the RealTime Conference 2003 held in Montreal, a short course
was offered to introduce the Midas DAQ to the audience. This course
(.ppt, .pdf) is now part of the Midas distribution and can be found under
the doc/course/ directory as 2 files (partl, part2). The Part 1 describes the
basic of the system and its implementation, while part 2 lists specific fea-
tures. Part 1. pdf, Part 2. pdf

. [1.9.3]

Support for ROOT files.

mlogger task : New Data format ROOT and corresponding file extension
root

rmidas task : Initial Root/Midas GUI for Histogram and Run control.

MIDAS Analyzer : New framework for Online/Offline Root analysis using
socket connection.

Makefile for ROOT, remove MANA_LITE, create HAVE_ROOT,
HAVE_HBOOK.

New Analyzer mana, hmana, rmana depending on the type of package.

. [1.9.2]

odbedit: <tab> completion is working with flags too, "Load" protect the
data dir if changed.

lazylogger task : This task has been improved for tape manilupation as well
as messages display. It has also now extra fiilds for shell scripts when the
tape rewinds. It supports also split run capability when running multiple
instance of the task. Please refer to the documentation for explanation of
the new fields.

mlxspeaker: Added possible system call to wav file for "beeping" user be-
fore message.

mhist: Add index range for -i with -v.

eventbuilder: Revised version with user code scheme. Still in a develop-
ment stage.

cm_cleanup() if you were using this call, you need now to provide an empty
char arg to make it compatible.

. [1.9.1]

This version addresses several bugs reported in the web interface, history,
logger, odbedit and implements new features in particular for the history
pages on web interface. The detail list of the modifications can be found in
CHANCELGOG .

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://midas.triumf.ca/download/course/course_rt03.zip
http://midas.triumf.ca/download/CHANGELOG

6.14 ODB Structure 480

+ [EQ_FRAGMENTED] Possibility to send extremely large event
through the system without modification of the system configuration
(see The Equipment structure)

+ [logger subdir option] Allows to redirect the data files to a sub-
directory based on the time of the creation of the data file (see
ODB /Logger Tree).

x Option for building an analyzer without the CERN library (HBOOK)
(see Midas build options and operation considerations).

+ [MOD. REQ.] This release requires several modifications in the user
code in order to compile the 1.9.1.

1. [db_get_value() function] Requires an extra parameter see
Midas Code and Libraries.

2. [max_event_size frag] Required in all the frontend code as fol-
low:

// maximum event size produced by this frontend

INT max_event_size = 10000;

// maximum event size for fragmented events (EQ_FRAGMENTED)
INT max_event_size_frag = 5*1024*1024;

— [/Logger tree] As this tree includes new field, you will need to recreate this
tree.

— [general] It is wise to create a fresh ODB when switching to 1.9.1 version.
This can be done by:
1. removing all attached midas client to your experiment
saving the current ODB to a file
removing all shared memory files (hidden files .x.SHM)
creating new ODB (odbedit -s size)
trimming the odb save file to keep user specific structures (if any).

AN

restoring the trimmed odb file.

» [<1.9.1]

— Hopefully nobody is still running an older version.

Top - Top - Introduction

6.14 ODB Structure

Internal features - Top - Data format

The Online Database contains information that system and user wants to share. Ba-
sically all transactions for experiment setup and monitoring go through the ODB. It
also contains some specific system information related to the "Midas client" currently
involved in an experiment (/system).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 481

Each ODB field or so called KEY is accessible by the user through either an in-
teractive way (see odbedit task) or by C-programming (see functions db_xxx in
Midas Code and Libraries).

The ODB information is stored in a "tree/branch" structure where each branch refers to
a specific set of data. On the first invocation of the database (first Midas application) a
minimal system record will be created. Later on each application will add its own set
of parameters to the database depending on its requirement. For instance, starting the
ODB for the first time, the tree /Runfinfo, /Experiment, /System will be created. The
application mlogger task will add its own tree /Logger/...

As mentioned earlier, ODB is the main communication platform between any Midas
application. As such, the content of the ODB is application dependent. Several "dor-
mant" trees can be awaken by the user in order to provide extra flexibility of the system.
Such "dormant" tree are Alias, Script, Edit on Start , Security, Run parameters .

* ODB /System Tree

* ODB /Runlnfo Tree

* ODB /Equipment Tree

* ODB /Logger Tree

* ODB /Experiment Tree

* ODB /History Tree

* ODB /Alarms Tree

* ODB /Script Tree

* ODB /Alias Tree

* ODB /Elog Tree

* ODB /Programs Tree

* ODB /Lazy Tree

* ODB /EBuilder Tree

* ODB /Custom Tree

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 482

6.14.1 ODB /System Tree
The system tree contains information specific to each "Midas client" currenltly con-
nected to the experiment. This information is not primarly for the user but may be

informative in some respect to the reader.

[host:expt:Stopped]/>Is -r -1 /system

Key name Type #Val Size Last Opn Mode Value
System DIR
Clients DIR
29580 DIR
Name STRING 1 32 17h O R decay
Host STRING 1 256 17h 0 R hostl
Hardware type INT 1 4 17h O R 42
Server Port INT 1 4 17h 0 R 1227
Transition Mask DWORD 1 4 17h 0 R 329
Deferred Transition DWORD 1 4 17h 0O R 6
RPC DIR
16000 BOOL 1 4 17h 0 R y
16001 BOOL 1 4 17h 0 R y
29638 DIR
Name STRING 1 32 17h 0O R MStatus
Host STRING 1 256 17h 0 R hostl
Hardware type INT 1 4 17h 0O R 42
Server Port INT 1 4 17h 0 R 1228
Transition Mask DWORD 1 4 17h 0 R 0
Deferred Transition DWORD 1 4 17h 0 R 0
29810 DIR
Name STRING 1 32 17h 0O R Nova_029810
Host STRING 1 256 17h 0 R host
Hardware type INT 1 4 17h 0O R 42
Server Port INT 1 4 17h 0 R 1235
Transition Mask DWORD 1 4 17h 0O R 0
29919 DIR
Name STRING 1 32 17h O R Epics
Host STRING 1 256 17h 0O R host
Hardware type INT 1 4 17h O R 42
Server Port INT 1 4 17h 0O R 1237
Transition Mask DWORD 1 4 17h 0 R 329
Deferred Transition DWORD 1 4 17h 0O R 0
RPC DIR
16000 BOOL 1 4 17h 0 R y
16001 BOOL 1 4 17h 0 R y
12164 DIR
Name STRING 1 32 6s 0 R ODBEdit
Host STRING 1 256 6s 0 R host2
Hardware type INT 1 4 6s 0 R 42
Server Port INT 1 4 6s 0 R 4893
Transition Mask DWORD 1 4 6s 0 R 0
Deferred Transition DWORD 1 4 6s 0 R 0
Link timeout INT 1 4 6s 0 R 10000
Client Notify INT 1 4 6s 0 RWD O
Prompt STRING 1 256 >99d 0 RWD [%h:%e:%S]%p>
Tmp DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 483

* [Remark 1] The key Prompt sets up the prompt of the ODBEdit program.

odbedit
[local :midas:Stopped]/>cd /System/
[local :midas:Stopped]/System>Is

Clients

Tmp

Client Notify 0

Prompt [%h = %e - %S]%p>

[local :midas:Stopped]/System>set Prompt my_prompt>

my_prompt>set Prompt [Host:%h-Expt:%e:State:%s]Path:%p>

[Host: local-Expt:midas-State:S]Path:/System>set Prompt [Host:%h-Expt:%e-State:%S]Path:%p>
[Host: local-Expt:midas-State:Stopped]Path:/System>

6.14.2 ODB /Runinfo Tree

This branch contains system information related to the run information. Several time
fields are available for run time statistics.

odb -e expt -h host
[host:expt:Running]/>ls -r -1 /runinfo

Key name Type #Val Size Last Opn Mode Value
Runinfo DIR
State INT 1 4 2h 0O RWD 3
Online Mode INT 1 4 2h 0 RWD 1
Run number INT 1 4 2h 0 RWD 8521
Transition in progress INT 1 4 2h 0 RWD O
Requested transition INT 1 4 2h 0 RWD O
Start time STRING 1 32 2h 0 RWD Thu Mar 23 10:03:44 2000
Start time binary DWORD 1 4 2h 0 RWD 953834624
Stop time STRING 1 32 2h 0 RWD Thu Mar 23 10:03:33 2000
Stop time binary DWORD 1 4 2h 0 RWD O

[State] Specifies in which state the current run is. The possible states are 1:
STOPPED, 2: RUNNING, 3: PAUSED.

[Online Mode] Specifies the expected acquisition mode. This parameter allows
the user to detect if the data are coming from a "real-time" hardware source or
from a data save-set. Note that for analysis replay using "analyzer" this flag will
be switched off.

[Run number] Specifies the current run number. This number is automatically
incremented by a successful run start procedure.

[Transition in progress] Specifies the current internal state of the system. This
parameter is used for multiple source of "run start" synchronization.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 484

[Requested transition] Specifies the current internal of the Deferred Transition
state of the system.

[Start Time] Specifies in an ASCII format the time at which the last run has
been started.

[Start Time binary] Specifies in a binary format at the time at which the last
run has been started This field is useful for time interval computation.

[Stop Time] Specifies in an ASCII format the time at which the last run has been
stopped.

[Stop Time binary] Specifies in a binary format the time at which the last run
has been stopped. This field is useful for time interval computation.

6.14.3 ODB /Equipment Tree

Every frontend create a entry under the /Equipment tree. The name of the sub-tree is
taken from the frontend source code in the equipment declaration (frontend.c). More
detailed explanation of the composition of that tree will be found throughout this doc-
ument.

{
"'DspecCheck", // equipment name
{
“"Scaler", // equipment name
Example:
Key name Type #Val Size Last Opn Mode Value
HistoCheck DIR
DSpecCheck DIR
HistoPoll DIR
HistoEOR DIR
DSpecEOR DIR
Scaler DIR
SuconMagnet DIR
TempBridge DIR
Cryostat DIR
Meters DIR
RFSource DIR
DSPec DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 485

The equipment tree is then split in several sections which by default the system creates.

* Common : Contains the system information. Should not be overwritten by the
user.

* Variables : Contains the equipment data if enabled (see below).

* Settings : Contains the equipment specific information that the user may want
to maintain. In the case of a Slow Control System equipment, extended tree
structure is created by the system.

» Statistics : Contains equipment statistics information such as event taken, event
rate, data rate.

[local:S]lIs -1 -r /equipment/scaler

Key name Type #Val Size Last Opn Mode Value
Scaler DIR
Common DIR
Event 1D WORD 1 2 16h O RWD 1
Trigger mask WORD 1 2 16h O RWD 256
Buffer STRING 1 32 16h O RWD SYSTEM
Type INT 1 4 16h O RWD 1
Source INT 1 4 16h O RWD O
Format STRING 1 8 16h O RWD MIDAS
Enabled BOOL 1 4 16h O RWD vy
Read on INT 1 4 16h O RWD 377
Period INT 1 4 16h O RWD 1000
Event limit DOUBLE 1 8 16h O RWD O
Num subevents DWORD 1 4 16h O RWD O
Log history INT 1 4 16h O RWD O
Frontend host STRING 1 32 16h O RWD midtisO3
Frontend name STRING 1 32 16h O RWD feLTNO
Frontend file name STRING 1 256 16h O RWD C:\online\sc_Itno.c
Variables DIR
SCLR DWORD 6 4 1s O RWD
[0] 0
[1] 0
[2] 0
[3] 0
[4] 0
[5] 0
RATE FLOAT 6 4 1s O RWD
[0] 0
[1] 0
[2] 0
[3] 0
[4] 0
[5] 0
Statistics DIR
Events sent DOUBLE 1 8 1s O RWDE 370
Events per sec. DOUBLE 1 8 1s 0 RWDE 0.789578
kBytes per sec. DOUBLE 1 8 1s 0 RWDE 0.0678543

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

486

6.14.4 ODB /Logger Tree

The /Logger ODB tree contains all the relevant information for the Midas logger utility
(mlogger task) to run properly. This utility provides the mean of storing the physical
data retrieved by the frontend to a storage media. The user has no code to write in
order for the system to operate correctly. Its general behavior can be customized and
multiple logging channels can be defined. The application supports so far three type of

storage devices i.e.: Disk, Tape and FTP channel.

Default settings are created automatically when the logger starts the first time:

Key name

#Val

Siz

e Last Opn Mode

Logger

Data dir

Message file

Write data

ODB Dump

ODB Dump File

Auto restart

Tape message

Channels

0
Settings

Active
Type
Filename
Format
ODB Dump
Log messages
Buffer
Event ID
Trigger Mask
Event limit
Byte limit
Tape capacity

Subdir format STRING 1

Current filenameSTRING 1

Statistics DIR

Events written

Bytes written

STRING
STRING
BOOL
BOOL
STRING
BOOL
BOOL
DIR
DIR
DIR
BOOL
STRING
STRING
STRING
BOOL
DWORD
STRING
INT
INT
DWORD
DOUBLE
DOUBLE
32
256

DOUBLE
DOUBLE

Bytes written toDOUBLE

Files written

INT

RPRRRRERR

NNRPRRPRRRPRRRRERRRER

= e

e

A
()]

mm#h#%hhmmm#

A 00 00 0

4h

22h
2h

22h
22h
22h
15h

RWD %Y%m%d

[eNeoNoNoNoNoNoNoNoNoNoNo)

RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

/scr0/spring2000
midas.log
n

y
run%05d.odb

y
y

y
Disk
run%05d.ybs
YBOS
y

0
SYSTEM
-1

-1

0

0

0

RWD 20020605\run00078.mid

[eNeoNoNe)

RWD
RWD
RWD
RWD

0

0
3.24316e+11
334

From Midas version 1.9.5, the logger has the possibility to store information to a my-
SQL database. This option is an alternative to the runlog.txt update hanled by the

analyzer. The two main advantages using the SQL are:

* The recording is done by the logger and therfore independent of the user ana-

lyzer.

* The definition of the parameters to be recorded in the database is entirely setup
in the ODB under /logger/SQL. This SQL option is enabled by defining at build

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 487

time the preprocessor flag HAVE_MYSQL. This option when enabled will cre-
ate a sub tree SQL under /Logger in the ODB. This tree contains information for
mySQL access with predefined mySQL database name Midas and table Runlog.
Under 2 dedicated sub directories i.e: Link_BOR and Link_EOR, predefined
links exists which will be used respectively at BOR and EOR for storing into the
database. These elements are ODB links allowing the user to extend the list with
any parameter of the ODB database. This logger mySQL option is to replace or
complement the runlog.txt functionality of the ana_end_of_run() function from
the analyzer.c.

[local :midas:S]/Logger>ls -1r SQL

Key name Type #Val Size Last Opn Mode Value
SQL DIR
Create database BOOL 1 4 27s 0 RWD n
Write data BOOL 1 4 27s 0 RWD n
Hostname STRING 1 80 27s 0 RWD localhost
Username STRING 1 80 27s O RWD root
Password STRING 1 80 27s O RWD
Database STRING 1 32 27s O RWD midas
Table STRING 1 80 27s 0 RWD Runlog
Links BOR DIR
Run number LINK 1 20 58s O RWD /Runinfo/Run number
Start time LINK 1 20 58s 0 RWD /Runinfo/Start time
Links EOR DIR
Stop time LINK 1 19 4m 0 RWD /Runinfo/Stop time

* [Data dir] Specifies in which directory files produced by the logger should be
written. Once the Logger in running, this Data_Dir will be pointing to the loca-
tion of the midas.log , ODB dump files, history files, message files. In the case
of multiple logging channels, the data path for all the channels is defaulted to the
same location. In the case where specific directory has to be assigned to each
individual logging channel, the field /logger/channel/<x>/Settings/Filename
can contain the full path of the location of the .mid, .ybs, .asc file. By finding the
OS specific SEPARATOR_DIR ("/", "\"). The field Filename will overwite the
global Data_Dir setting for that particular channel.

— [History Dir] This field is optional and doesn’t appear by default in the
logger. If present the location of the History system files is reassigned to
the defined path instead of the default Data_Dir .

— [Elog Dir] This field is optional and doesn’t appear by default in the logger.
If present the location of the Electronic Logbook files is reassigned to the
defined path instead of the default Data_Dir.

— [Message file] Specifies the file name for the log file which contains all
messages from the MIDAS message system. The message log file is a
simple ASCII file, which can be viewed at any time to see a history of what
happened in an experiment.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 488

% 2.0.0 The location of the ODB dump files can now be specified in
this field. If the string contains a DIRECTORY_SEPARATOR, is it
considered as an absolute path.

— [Write data] Global flag which turns data logging on and off for all chan-
nels. It can be set to zero temporarily to make a short test run without data
logging. The key "Write data?" is predefined logger key for enabling data
logging. This action can be overridden by setting the active key to 1.

— [ODB Dump] Specifies if a dump of the complete ODB should be written
to the file specified by ODB Dump File.

— [ODB Dump File] At the end of each run. If the file name contains a
"%", this gets replaced by the current run number similar to the printf() C
function. The format specifier 05d from above would be evaluated to a five
digit run number with leading zeros like run00002.0db. The ODB dump
file is in ASCII format and can be used for off-line analysis to check run
parameters etc. For a description of the ASCII format see db_copy().

% 2.0.0 The location of the ODB dump files can now be specified in
this field. If the string contains a DIRECTORY_SEPARATOR, is it

considered as an absolute path
[local :Default:S]/Logger>ls

Data dir \online\
Message file midas. log
Auto restart n

Write data y

ODB Dump n

ODB Dump File run%05d . odb
Tape message y

Channels

[local :Default:S]/Logger>set OD

ODB Dump

ODB Dump File
[local :Default:S]/Logger>set "ODB Dump File™ "/mypath/run%06d.odb"
[local :Default:S]/Logger>ls

Data dir \online\

Message file midas. log

Auto restart n

Write data y

ODB Dump n

ODB Dump File /mypath/run%06d.odb
Tape message y

Channels

— [Auto restart] When this flag is one, a new run gets automatically restarted
when the previous run has been stopped by the logger due to an event or
byte limit.

— [Tape message] Specifies if tape messages during mounting and writing of
EOF marks are generated. This can be useful for slow tapes to inform all
users in a counting house about the tape status.

— [channels] Sub-directory which contains settings for individual channels.
By default, only channel "0" is created. To define other channels, an exist-
ing channel can be copied:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 489

[loca]l]Logger>cd channels
[local]Channels>Is

0

[local]Channels>copy 0 1
[local]Channels>ls

0

1

The Settings part of the channel tree has the following meaning:

— [active] turns a channel on (1) or off (0). Data is only logged to channels
that are active.

— [Type] Specify the type of media on which the logging should take place.
It can be Disk, Tape or FTP to write directly to a remote computer via FTP.

— [Filename] Specify the name of a file in case of a disk logging, where 05d
is replaced by the current run number the same way as for the ODB dump
files. In the case of a tape logging, the filename specifies a tape device like
/dev/nrmt0 or /dev/nstO under UNIX or \\.\tapeO under Windows NT.

% In FTP mode, the filename specifies the access information for the FTP
server. It has the following format:
<host name>, <port number>, <user name>, <password>, <directory>, <file name>

The normal FTP port number is 21 and 1021 for a Unitree Archive like

the one used at the Paul Scherrer Institute. By using the FTP mode, a

back-end computer can directly write to the archive.
myhost.my.domain,21, john,password, /usr/users/data, run%05d.mid

— [Format] Specifies the format to be used for writing the data to the log-
ging channel. It can one of the five value: MIDAS, YBOS, ROOT, ASCII
and DUMP. The MIDAS and YBOS binary formats Midas format and
YBOS format, respectively. The extention for the file name has to match
one of the following.

% .mid for MIDAS
% .ybs for YBOS

% .root for ROOT
% .asc for ASCII

% .txt for DUMP

» The ASCII format converts events into readable text format which can be eas-
ily analyzed by programs which have problems reading binary data. While the
ASCII format tries to minimize the file size by printing one event per line, the
DUMP format gives a very detailed ASCII representation of the event including
bank information, serial numbers etc, it should be used for diagnostics. Consis-
tency of this type of format has to be maintained between the frontend declara-
tion and the logger.

* [ODB Dump] Specifies the complete dump of the ODB to the logging channel
before and after every run. The ODB content is dumped in one long ASCII

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 490

string reflecting the status at begin-of-run event and at end-of-run event. These
special events have an ID of EVENT_ID_BOR and EVENTID_EOR and a serial
number equals to the current run number. An analyzer in the off-line analysis
stage can restore the ODB to its online state.

* [Log messages] This is a bit-field for logging system messages. If a bit in this
field is set, the according system message is written to the logging channel as a
message event with an ID of EVENT_ID_MESSAGE (0x8002). The bits are 1
for error, 2 for info, 4 for debug, 8 for user, 16 for log, 32 for talk, 64 for call
messages and 255 to log all messages. For an explanation of these messages
refer to Buffer Manager, Event ID and Trigger .

* [Mask] Specify which events to log. See Frontend code to learn how events are
selected by their ID and trigger mask. To receive all events, -1 is used for the
event ID and the trigger mask. By using a buffer other than the "SYSTEM"
buffer, event filters can be realized. An analyzer can request all events from
the "SYSTEM" buffer, but only write acceptable events to a new buffer called
"FILTERED". When the logger request now only events from the new buffer
instead of the "SYSTEM" buffer, only filtered events get logged.

* [Event limit, Byte limit and Tape capacity] These fields can be used to stop a run
when set to a non-zero value. The statistics values Events written, Bytes written
and Bytes written total are checked respectively against these limits. When one
of these condition is reached, the run is stopped automatically by the logger.
Updates of the statistics branch is performed automatically every so often. This
branch contains the number of events and bytes written. These two keys are
cleared at the beginning of each run. The Bytes written total and Files written
keys are only reset when a tape is rewound with the ODBEdit command rewind.
The Bytes written total entry can therefore be used as an indicator if a tape is
full. The Files written entry can be used off-line to determine how many files on
tape have to be skipped in order to reach a specific run.

¢ [Subdir format, Current filename] In the case the Subdir format is not empty,
this field will enable the placement of the data log file into a sub directory. The
name of this subdirectory is composed by the given Subdir format string. Its
format follows the definition of the system call strftime() . Ordinary characters
placed in the format string are copied to s without conversion. Conversion spec-
ifiers are introduced by a ‘%’ character, and are replaced in s as follows for the
most used one:

Y : Year (ex: 2002)
y : Year (range:00..99)
m : Month (range: 01..12)

d : Day (range: 00..31) The other characters are: a, A, b, B, ¢, C, d, D, e,
E’ G’ g’ h? H’ I?j? k’ l’ m’ M’ n5 O’ p’ P’ r’ R’ S? S’ t’ T7 u’ U’ V’ W? W’ x? X’
v, Y, z,Z, +, %. (See man strftime() for explanations).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

491

* [Current filename] will reflect the full path of the saved data file.

6.14.5 ODB /Experiment Tree

Under this tree, the Midas system stores special features for the user in order to facili-
tate his job on controlling a run. Initially only one empty key is defined labeled Name
for the experiment name. The user can create four system keys in order to provide
extra run control flexibility i.e.: ""Run Parameter/", ""Edit on Start/", ""Lock when

running/** and " Security/*'.

 2.0.0, this directory can specify the event buffer size for each buffer involved in
the experiment. By default the event buffer is named SYSTEM. Its default size
is 2MB. This new parameter may be required to optimize the memory usage at
the frontend level in case large data transfer is needed. This method work for all
MIDAS buffers, except for ODB, where the size has to be specified at creation
time using the odbedit command "-s" argument. There is no need to increase the
SYSMSG.SHM buffer as it is used only for messages.

1. Shutdown all MIDAS programs, delete the old .SYSTEM.SHM files sitting
in the directory specified by either the exptab or MIDAS_DIR, use ipcrm

for share memory segment removal.

2. Run odbedit, go to experiment, create a directory key "Buffer Sizes", create
a DWORD key of the buffer name to be increased.

C:\online>odbedit

[local:Default:S]/>cd Experiment/

[local :Default:S]/Experiment>mkdir *"Buffer Sizes"

[local :Default:S]/Experiment>cd "Buffer Sizes/

[local :Default:S]Buffer Sizes>create DWORD SYSTEM

[local :Default:S]Buffer Sizes>set SYSTEM 4000000

3. Starts the rest of the MIDAS programs. Check that the buffer has the correct
size by looking at the size of .SYSTEM.SHM (unix, ipcs), SYSTEM.SHM

(windows).
Key name

Experiment

Name

Run Parameter
Beam Polarity
Beam Momentum
2LT: log file name?
1LT: file name?
Comment
Target Angle

DIR
STRING
DIR
STRING
FLOAT
STRING
STRING
STRING
FLOAT

#Val

Size

32
256
256

256
256

Last Opn Mode Value

o

cNeoNoNoNoNe]

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

chaos

negative

91

cni05
files.cni.zero
ch2 target

0

6.14 ODB Structure 492

Target Material STRING 1 256 2h 0 R
Edit on start DIR
Beam Momentum FLOAT 1 4 2h 0 R
Beam Polarity STRING 1 256 2h 0 R
Target Material STRING 1 256 2h 0 R
Target Angle FLOAT 1 4 2h 0 R
1LT: file name? STRING 1 256 2h 0 R
Trigger 2 BOOL 1 4 2h 0 RWD
2LT: log file name? STRING 1 256 2h 0 R
Comment STRING 1 256 2h 0 R
Write data BOOL 1 4 2h 0 RWD
Lock when running DIR
Run Parameter DIR
Beam Polarity STRING 1 256 2h 0 R
Beam Momentum FLOAT 1 4 2h 0 R
2LT: log file name? STRING 1 256 2h 0 R
1LT: file name? STRING 1 256 2h 0 R
Comment STRING 1 256 2h 0 R
Target Angle FLOAT 1 4 2h 0 R
Target Material STRING 1 256 2h 0 R
Security DIR
Password STRING 1 32 16h O RWD
Allowed hosts DIR
host.sample.domain INT 1 4 >99d 0 RWD
pierre._triumf.ca INT 1 4 >99d 0 RWD
pcchO2._triumf.ca INT 1 4 >99d 0 RWD
kosIxl.triumf.ca INT 1 4 >99d 0 RWD
kosIx2_triumf.ca INT 1 4 >99d 0 RWD
vwchaos. triumf.ca INT 1 4 >99d 0 RWD
kosIx0O._triumf.ca INT 1 4 >99d 0 RWD
Allowed programs DIR
mstat INT 1 4 >99d 0 RWD
mhttpd INT 1 4 >99d 0 RWD
Web Password STRING 1 32 16h O RWD
Name STRING 1 32 4m 0 RWD
Buffer Sizes DIR
SYSTEM DWORD 1 4 4m 0 RWD

* [Name] Specifies the name of the experiment.

* [Run Parameters] Specifies a fix directory name where you can create and define
keys which can be presented at Run start for run condition selection. The actual
activation of any of those line is done via a "logical link key" defined in the Edit
on Start/ sub-tree. The links don’t have to point to run parameters necessarily.
They can point to any ODB key including the logger settings. It can make sense
to create a link to the logger setting which enables/disables writing of data. A
quick test run can then be made without data logging for example:

[local]/>create key "/Experiment/Run parameters'
Then one or more run parameters can be created in that directory,

[localJRun parameters>create int ""Run mode"
[local]JRun parameters>create string Comment

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

ch2

91

negative

ch2

0
files.cni.zero
n

cni05

ch2 target

y

negative

91

cni05
files.cni.zero
ch2 target

0

ch2

#OD&UWF56

[eNeoNoNoNeoNoNe)

0

0
pon4@#@%SSDF2
Default

4000000

6.14

ODB Structure 493

[Edit on Start] Specifies a fix directory name where you can define an ODB
link (similar to a symbolic link in UNIX) key to the pre-defined directory Run
Parameters. Any link key present in this directory pointing to a valid ODB key
will be requested for input during the run start procedure.

A new feature has been added to this section for the possibility of preventing the
user to change the run number from the web interface during the start sequence.
By defining the key /Experiment/Edit on Start/Edit run number as a boolean
variable the ability of editing the run number is enabled or disabled. By default
if this key is not present the run number is editable.

[local]/>create key "Experiment/Edit on start"
[local]/>cd "Experiment/Edit on start"
[local]/>In "/Experiment/Run parameters/Run mode" '"‘Run mode"

When a run is started from ODBE(it, all links in /Experiment/Edit on start are
scanned and read in:

[local]/>start

Run mode [0]:1

Run number [3]:<return to accept>
Are the above parameters correct?
(Lyl/n/q): <return to accept "y'>
Starting run #2

Run #2 started

[local]/>cd "Experiment/Edit on start"
[local]/>create BOOL "Edit run number"

[Lock when running] Specifies a fix directory for defining logical link keys to be
set in Read only access mode while the run is in progress. The lock when running
can contains logical link to key(s) for setting these keys protection to "read only"
while running. In the example below, all the parameters under the declared tree
will be switched to read only preventing any parameters modification during the
run.

[local]/>create key "Experiment/Lock when running"
[local]/>cd "Experiment/Lock when running"

[local]/>In "/Experiment/Run parameters' '"Run parameter"
[local]/>In "/Logger/Write Data" "Write Data?"

[Security] Specifies a fix directory name where information regarding security
can be setup. By default, there is no restriction for user to connect locally or
remotely to a given experiment. If an access restriction has to be setup in order
to protect the experiment from unwilling access, a password mechanism has to
be defined. This directory is automatically created when the command passwd
is issued in ODB (see below).

[Password] Specifies the encrypted password for accessing current experiment.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 494

[local]/>passwd
Password : <xxxx>
Retype password :<xxxx>

To remove the full password checking mechanism, the ODB security sub-tree
has to be entirely deleted using the following command:

[local]/>rm /Experiment/Security
Are you sure to delete the key
"/Experiment/Security"

and all its subkeys? (y/[n]) y

After running the odb command passwd, four new sub-fields will be present
under the Security tree.
— Password
Allowed hosts
Allowed programs
— Web Password

* [Allowed hosts] Specifies a fix directory name where allowed remote hostname
can be defined for free access to the current experiment. While the access re-
striction can make sense to deny access to outsider to a given experiment, it can
be annoying for the people working directly at the back-end computer or for the
automatic frontend reloading mechanism (MS-DOS, VxWorks configuration).
To address this problem specific hosts can be exempt from having to supply a
password and being granted of full access.

[local]/>cd "/Experiment/Security/Allowed hosts"
[local]rhosts>create int myhost.domain
[local]rhosts>

Where <myhost>.<domain> has to be replaces by the full IP address of the
host requesting full clearance.

* [Allowed programs] Specifies a list of programs having full access to the ODB
independently of the node they running from.

[local]/>cd "/Experiment/Security/Allowed programs'
[local]:S>create int mstat
[local]:S>

* [Web Password] Specifies a separate password for the Web server access
(mhttpd task). If this field is active, the user will be requested to provide the
"Web Password" when accessing the requested experiment in a "Write Access".
In all condition the Read Only Access" is available.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 495

6.14.6 ODB /History Tree

This tree is automatically created when the logger is started. The logger will create a
default sub-tree containing the following structure:

[local :midas:S]/History>Is -1 -r

Key name Type #Val Size Last Opn Mode Value
History DIR
Links DIR
System DIR
Trigger per sec. /Equipment/Trigger/Statistics/Events per sec.

Trigger kB per sec. /Equipment/Trigger/Statistics/kBytes per sec.

[local :midas:S]/>cd /History/Links/Systemn/
[local :midas:S]System>Is -1
Key name Type #Val Size Last Opn Mode Value

Trigger per sec. LINK 1 46 >99d 0 RWD /Equipment/Trigger/Statistics/Events per sec.
Trigger kB per sec. LINK 1 46 >99d 0 RWD /Equipment/Trigger/Statistics/kBytes per sec.

A second sub-tree is added to the /History by the mhttpd task Midas web server when
the button "History" on the main status page is pressed.

[local :midas:S]/History>ls -1 -r Display

Key name Type #Val Size Last Opn Mode Value
Display DIR
Default DIR
Trigger rate DIR
Variables STRING 2 32 36h 0 RWD
[0] System:Trigger per sec.
[1] System:Trigger kB per sec.
Factor FLOAT 2 4 36h O RWD
[o] 1
11 1
Timescale INT 1 4 36h 0O RWD 3600
Zero ylow BOOL 1 4 36h 0 RWD vy

This define a default history display under the Midas web server as long as the reference
to "System" is correct. See History system for more information regarding explanation
on these fields.

Where the 2 trigger fields are symbolic links to the given path. The sub-tree System
defines a "virtual" equipment and get by the system assigned a particular "History
Event ID".

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

496

6.14.7 ODB /Alarms Tree

This branch contains system information related to alarms. Currently the overall alarm
is checked once every minute. Once the alarm has been triggered, the message associ-
ated to the alarm can be repeated at a different rate. The structure is split in 2 sections.
The ""Alarms™ itself which define the condition to be tested and the *"Classes’ which
defines the action to be taken when the alarm occurs. In order to make the system flexi-
ble, beside some default message logging (Classes/Write system message), each action
may have a particular "detached script" spawned by it (Classes/Execute command).

odb -e expt -h host
[host:expt:Stopped]/Alarms>ls -Ir

Opn Mode

Key name Type
Alarms DIR
Alarm system active BOOL
Alarms DIR
Test DIR
Active BOOL
Triggered INT
Type INT
Check interval INT
Checked last DWORD

Time triggered FirstSTRING
Time triggered last STRING

Condition STRING
Alarm Class STRING
Alarm Message STRING
wc3_anode DIR
Active BOOL
Triggered INT
Type INT
Check interval INT
Checked last DWORD

Time triggered FirstSTRING
Time triggered last STRING

Condition STRING
Alarm Class STRING
Alarm Message STRING
chaos DIR
Active BOOL
Triggered INT
Type INT
Check interval INT
Checked last DWORD

Time triggered FirstSTRING
Time triggered last STRING

Condition STRING

Alarm Class STRING

Alarm Message STRING
Classes DIR
Alarm DIR

Write system messageBOOL
Write Elog message BOOL
System message interINT

RPRRRPRRPRRERRRE RRRRPRRRRRERRER

RPRRRPRRRERRRPRR

e

Size Last
4 6h
4 31h
4 31lh
4 31h
4 31lh
4 31h
32 31h
32 31h
256 31h
32 31lh
80 31h
4 31h
4 31h
4 31h
4 31h
4 31h
32 31h
32 31h
256 31h
32 31lh
80 31h
4 31h
4 31h
4 31h
4 31h
4 31lh
32 31h
32 31h
256 31h
32 31h
80 31h
4 31h
4 31h
4 31h

[eNeoNoNeoNoNeoNoNoNoNo] [eNeoNeoNoNoNoNoNoNoNo]

[eNeoNoNoNoNoNoNoNoNa]

[eNeoNe]

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD

OO WOS>sS

/Runinfo/Run number > 10
Alarm
Run number became too large

n

0

3

10
958070825

/equipment/chv/variables/chvv[6] <
Alarm
WC3 Anode voltage is too low

ORr WwWOoOoS>S

/Equipment/B12Y/Variables/B12Y[2]
Alarm
CHAOS magnet has tripped.

[R=R

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 497

System message last DWORD 1 4 3lh 0 RWD O
Execute command STRING 1 256 31h O RWD
Execute interval INT 1 4 31h 0 RWD O
Execute last DWORD 1 4 31h O RWD O
Stop run BOOL 1 4 31h 0 RWD n
Warning DIR

Write system messageBOOL 1 4 3lh 0O RWD vy
Write Elog message BOOL 1 4 3lh 0O RWD n
System message interINT 1 4 31h O RWD 60
System message last DWORD 1 4 31h 0 RWD O
Execute command STRING 1 256 31h O RWD
Execute interval INT 1 4 31h 0 RWD O
Execute last DWORD 1 4 31h O RWD O
Stop run BOOL 1 4 31h 0 RWD n

* [Alarm system active] Overall Alarm enable flag.
* [Alarms] Sub-tree defining each individual alarm condition.

* [Classes] Sub-tree defining each individual action to be performed by a pre-
defined and requested alarm.

6.14.8 ODB /Script Tree

This branch permits to invoke scripts from the web page. By creating the ODB tree
/Script every entry in that tree will be available on the Web status page with the name
of the key. Each key entry is then composed with a list of ODB field (or links). The
first ODB field should be the executable command followed by as many arguments as
you wish to be passed to the script.

[host: :expt:Stopped]/Script>ls

BNMR Hold

Continue

Real

Test

Kill

[host:expt:Stopped]/Script>ls -Ir Continue

Key name Type #Val Size Last Opn Mode Value

Continue DIR
cmd STRING 1 128 39h O RWD /home/bnmr/perl/continue.pl
Name STRING 1 32 28s O RWD bnmrl
hold BOOL 1 4 3lh 0O RWD n

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 498

6.14.9 ODB /Alias Tree

This branch is not present until the user creates it. It is meant to contain symbolic
links list to any ODB location. It is used for the Midas web interface where all the
sub-trees will appear in the main window. By default the clicking of the button in the
web interface will spawn a new frame. To force the display of the alias link in the same
frame, a "&" has to be added to the name of the alias.

odbedit

Is

create key Alias

cd Alias

In /Equipment/Trigger/Common “Trig Setting" <-- New frame

In /Equipment/Trigger/Common "Trig Setting&" <-- Same frame

6.14.10 ODB /Elog Tree

This branch describes the Elog settings used through the Midas web server. See
mhttpd task for setting up the different Elog page display.

[local :midas:S]/Elog>ls -Ir

Key name Type #Val Size Last Opn Mode Value
Elog DIR
Email STRING 1 64 25h 0 RWD midas@triumf.ca
Display run number BOOL 1 4 25h 0 RWD vy
Allow delete BOOL 1 4 25h 0O RWD n
Types STRING 20 32 25h 0 RWD
[0] Routine
[1] Shift summary
[2] Minor error
[3] Severe error
[4] Fix
[5] Question
[6] Info
[7]1 Modification
8] Reply
o] Alarm
[10] Test
[11] Other
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
Systems STRING 20 32 25h 0 RWD
[0] General

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 499

[1] DAQ
[2] Detector
[3] Electronics
[4] Target
5] Beamline
6]
[7]
[8]
[e]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
Buttons

8h

24h

3d

7d

Host name myhost._triumf.ca
SMTP host STRING 1 64 25h 0O RWD trmail.triumf.ca

* [Email] Defines the Email address for Elog reply.

* [Display run number] Allows to disable the run number display in the Elog en-
tries.

* [Allow delete] Flag for permiting the deletion of Elog entry.

* [Types] Pre-defined types displayed when composing an Elog entry. A maximum
of 20 types are available. The list will be terminated by the encounter of the first
blank type.

* [Systems] Pre-defined categories displayed when composing an Elog entry. A
maximum of 20 types are available. The list will be terminated by the encounter
of the first blank type.

* [SMTP host] Mail server address for routing the composed Elog message to the
destination.

* [Buttons] Permits to recall up to four possible time span for the Elog command.
* [Host name] Host name.

* [Email <...>] Email address to where the message should be sent when com-
posing it under "Systems" of the type <...>,

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

500

6.14.11 ODB /Programs Tree

System created tree containing task specific characteristics such as the watchdog and

alarm condition. See Alarm System .

Key name

Programs
EBuilder
Requ
Watc
Chec
Star
Auto
Auto
Auto
Alar
Firs

ired

hdog timeout
k interval

t command
start

stop
restart

m class

t failed

6.14.12 ODB /Lazy Tree

Backup facility Tree.

DWORD
STRING
BOOL
BOOL
BOOL
STRING
DWORD

RPRRRPRRRRERR

Size Last Opn Mode Value

o
(o)}

b%h#hl\)hbh

Os
Os
Os
Os
Os
Os
Os
Os
Os

[eNeoNoNoNoNeoNoNoNo]

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

Created with default parameters on the first activation of

lazylogger task. This task connects to a defined channel (i.e: Tape). when started.
Multiple instance of the program can run contemporary.

Key name

Sett

Stat

ings

DIR

Maintain free space(INT

Stay behind

Alarm Class
Running condition
Data dir

Data format
Filename format
Backup type

INT

STRING
STRING
STRING
STRING
STRING
STRING

Execute after rewindSTRING

Path
Capacity (Bytes)
List label

STRING
FLOAT
STRING

Execute before writiSTRING
Execute after writinSTRING

istics

Backup file

File size [Bytes]
KBytes copied
Total Bytes copied
Copy progress [%]

DIR
STRING
FLOAT
FLOAT
FLOAT
FLOAT

#val

RPRRRPRRPRRRPRRRRRRER

RPRRRR

Size

32
128
256

128

64
128

128
64
64

128

A A DD

23h
23h
23h
23h
23h
23h
23h
23h
23h
23h
23h

23h
23h

Opn Mode

[eNeoNoNoNoNoNoNoNoNoNoNoNoNo)

[cNeoNeoNoNe)

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWDE
RWDE
RWDE
RWDE
RWDE

Value

15
-1

ALWAYS
/data_onl/current
YBOS

run%05d.ybs

Tape
ask_for_tape.sh
/dev/nst0

4_8e+10

tw0078

lazy prewrite.csh
rundb_addrun.pl

run05627.ybs
2.00176e+09
2.00176e+09
2.00176e+09
100

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

501

Copy Rate [bytes perFLOAT

Backup status [%]

Number of Files

Current Lazy run
List

TWOO076

6.14.13 ODB /EBuilder Tree

FLOAT
INT
INT
DIR
INT

R PR

[0]
[1]
[2]

A BADD

IN

3h RWDE 6.21462e+06
RWDE 4.17034
RWDE 1

RWDE 5627

3h
3h

[eNeoNeoNe)

3h O
5575
5576
5577

RWD

The Event Builder tree is created by mevb task and is placed in the Equipment list.

Key name

#Val

Size

Last Opn Mode Value

EBuilder
Settings
Event 1D
Trigger mask
Buffer
Format
Event mask
hostname
Statistics
Events sent
Events per sec.
kBytes per sec.
Channels
Fragl
Settings
Event 1D
Trigger mask
Buffer
Format
Event mask
Statistics
Events
Events
kBytes

sent

Frag2
Settings
Event 1D

Trigger mask
Buffer
Format
Event mask
Statistics
Events
Events
kBytes

sent

per sec.
per sec.

per sec.
per sec.

STRING
DWORD
STRING
DIR
DOUBLE
DOUBLE
DOUBLE
DIR
DIR
DIR
WORD
WORD
STRING
STRING
DWORD
DIR
DOUBLE
DOUBLE
DOUBLE
DIR
DIR
WORD
WORD
STRING
STRING
DWORD
DIR
DOUBLE
DOUBLE
DOUBLE

RPRRRR

e

RPRRPRR

R

32
32

64

00 0

65h 0 RWD 1

65h O RWD 1

65h O RWD SYSTEM
65h 0 RWD YBOS
65h O RWD 3

3h 0 RWD myhost
3h 0 RWD 653423
3h 0 RWD 1779.17
3h 0 RWD O

65h O RWD 1

65h O RWD 65535
65h O RWD YBUF1
65h 0 RWD YBOS
65h O RWD 1

3h 0O RWD 653423
3h 0 RWD 1779.17
3h 0 RWD O

65h O RWD 5

65h O RWD 65535
65h 0 RWD YBUF2
65h O RWD YBOS
65h 0 RWD 2

3h 0 RWD 653423
3h 0 RWD 1779.17
3h 0 RWD O

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 502

6.14.14 ODB /Custom Tree

Web string for custom web page. Editable ONLY from your Web browser through
Custom page .

Key name Type #Val Size Last Opn Mode Value
WebLtno& STRING 1 2976 25h 0 RWD <multi-line>
<ldoctype html public "-//w3c//dtd html 4.0 transitional//en">

<html>

<head>

<meta http-equiv=""Content-Type" content=""text/html; charset=iso-8859-1">
<meta name=""GENERATOR™ content="Mozillas4.76 [en] (Windows NT 5.0; U) [Netscape]'>
<meta name="Author" content="Pierre-Andr?Amaudruz'>
<title>Set value</title>
</head>
<body text="#000000" bgcolor="#FFFFCC" link="#FF0000" vIlink="#800080" alink="#0000FF">
<form method=""GET" action="http://myhost.triumf.ca:8081/CS/WebLtno&" >
<input type=hidden name=exp value="ltno">
<center><table CELLSPACING=1 CELLPADDING=1 COLS=3 WIDTH=""100%" BGCOLOR="'#99FF99" >
<caption>LTNO
Custom Web Page</caption>

<tr BGCOLOR="#FFCC99"'>

<td>Actions:
<input type=submit name=cmd value=Status>

<input type=submit name=cmd value=Start>

<input type=submit name=cmd value=Stop>

<td BGCOLOR="#66FFFF"">Polarity section:

Run#: <odb src="/runinfo/run number'>

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number'>

Run#: <odb src="/runinfo/run number" edit=1></td>
</tr>

</table></center>

<i>

LTNO help</i>

</body>

</html>

6.14.15 Hot Link

It is often desirable to modify hardware parameters like discriminator levels or trigger
logic connected to the frontend computer. Given the according hardware is accessible
from the frontend code, theses parameters are easily controllable when a hot-link ODB
is established between the frontend and the ODB itself.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 503

HotLink process

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 504

Contral Prograrm

oh_set walue(Equipment/Trigger/Settingsdevel1", 3217;

online Database

/Equipment/Trigger/Settings/
Lewell 321 -

Lewel2 123
fiot-
link Front-end
struct |
int lewel1;
int level2:

} trigoer_settings;

Callback routine EriQQEI’_update(j -
ropagates
" I:F?Wagﬂges set{trigger_settings.level1);
to Rartiare set(trigger_settings.level2),
}
db_open_record(Equipment/
Create hot-link Trigger/zettings”,
In main(} routing &trigger_settings,

trigger _update);

Figure 34: HotLink process

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 505

First the parameters have to be defined in the ODB under the Settings tree for the given
equipment. Let’s assume we have two discriminator levels belonging to the trigger
electronics, which should be controllable. Following commands define these levels in
the ODB:

[local]/>cd /Equipment/Trigger/
[local]Trigger>create key Settings
[local]Trigger>cd Settings
[local]Settings>create int levell
[local]Settings>create int level2
[local]Settings>Is

The frontend can now map a C structure to these settings. In order to simplify this
process, ODBEdit can be requested to generate a header file containing this C struc-
ture. This file is usually called event.h. It can be generated in the current directory
with the ODB command make which generates in the current directory the header file
experim.h :

[local]Settings>make

Now this file can be copied to the frontend directory and included in the frontend
source code. It contains a section with a C structure of the trigger settings and an
ASCII representation:

typedef struct {
INT levell;
INT level2;
TRIGGER_SETTINGS;

#define TRIGGER_SETTINGS_STR(_name) char *_name[] = {\

L1700\
"levell = INT : 0",\
"level2 = INT : 0",\
N
NULL

This definition can be used to define a C structure containing the parameters in
frontend.c:

#include <experim.h>

TRIGGER_SETTINGS trigger_settings;

A hot-link between the ODB values and the C structure is established in the
frontend_init() routine:

INT frontend_init()
{

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 506

HNDLE hDB, hkey;
TRIGGER_SETTINGS_STR(trigger_settings_str);

cm_get_experiment_database(&hDB, NULL);

db_create_record(hDB, O,
"/Equipment/Trigger/Settings",
strcomb(trigger_settings_str));

db_find_key(hDB, O,
"/Equipment/Trigger/Settings", &hkey);

if (db_open_record(hDB, hkey,
&trigger_settings,
sizeof(trigger_settings), MODE_READ,
trigger_update) != DB_SUCCESS)

{
cm_msg(MERROR, "frontend_init",

"Cannot open Trigger Settings in ODB™);
return -1;

return SUCCESS;

The db_create_record() function re-creates the settings sub-tree in the ODB from the
ASCII representation in case it has been corrupted or deleted. The db_open_record()
now establishes the hot-link between the settings in the ODB and the trigger_settings
structure. Each time the ODB settings are modified, the changes are written to the
trigger_settings structure and the callback routine trigger_update() is executed after-
wards. This routine has the task to set the hardware according to the settings in the
trigger_settings structure.

It may look like:

void trigger_update(INT hDB, INT hkey)

{
printf(""New levels: %d %d",

trigger_settings.levell,
trigger_settings.level2);

Of course the printf() function should be replaced by a function which accesses the
hardware properly. Modifying the trigger values with ODBEdit can test the whole
scheme:

[local]/>cd /Equipment/Trigger/Settings
[local]Settings>set levell 123
[local]Settings>set level2 456

Immediately after each modification the frontend should display the new values. The
settings can be saved to a file and loaded back later:

[local]/>cd /Equipment/Trigger/Settings

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 507

[local]Settings>save settings.odb
[local]Settings>set levell 789
[local]Settings>load settings.odb

The settings can also be modified from any application just by accessing the ODB.
Following listing is a complete user application that modifies the trigger level:

#include <midas.h>
main()

{
HNDLE hDB;
INT level;

cm_connect_experiment(*', "Sample', "Test",
NULL);
cm_get_experiment_database(&hDB, NULL);

level = 321;

db_set_value(hDB, O,
"/Equipment/Trigger/Settings/Levell”,
&level, sizeof(INT), 1, TID_INT);

cm_disconnect_experiment();

The following figure summarizes the involved components:

To make sure a hot-link exists, one can use the ODBEdit command sor (show open
records):

[local]Settings>cd /
[local]/>sor
/Equipment/Trigger/Settings open 1 times by ...

6.14.16 History system

The history system is an add-on capability build in the data logger (see mlogger task)
to record information in parallel to the data logging. This information is recorded with
a time stamp and saved into "data base file" like for later retrieval. One set of file is
created per day containing all the requested history events.

The history is working only if the logger is running, but it is not necessary to have any
channel enabled.

The definition of the history event is done through two different means:
» frontend history event: Each equipment has the capability to generate "history

data" if the particular history field value is different then zero. The value will
reflect the periodicity of the history logging (see The Equipment structure).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 508

* "Virtual History event": Composed within the Online Database under the spe-
cific tree "/History/Links" (see ODB /History Tree)

Both definition mode takes effects when the data logger gets a "start run" transition.
Any modification during the run is not applied until the next run is started.

* [frontend history event] As mentioned earlier, each equipment can be enabled to
generate history event based on the periodicity of the history value (in second!).
The content if the event will be completely copied into the history files using the
definition of the event as tag names for every element of the event.

The history variable name for each element of the event is composed following one of
the rules below:

* [bank event] /equipment/<...>/Variables/<bank name>>[] is the only reference
of the event, the history name is composed of the bank name follwed by the
corresponding index of the element.

* [bank event] /equipment/<...>>/Settings/Names <bank_name>[] is present, the
history name is composed of the corresponding name found in the "Names
<bank_name>" array. The size of this array should match the size of the
lequipment/<...>/Variables/<bank name[]> .

[host:chaos:Running]Target>ls -1 -r

Key name Type #Val Size Last Opn Mode Value
Target DIR
settings DIR
Names TGT_ STRING 7 32 10h O RWD

[0] Time
[1] Cryostat vacuum
[2] Heat Pipe pressure
[3] Target pressure
[4] Target temperature
[5]1 Shield temperature
[6] Diode temperature

Common DIR

Variables DIR

TGT_ FLOAT 7 4 10s O RWD

[0] 114059
[1] 4.661
[2] 23.16
[31 -0.498
[4] 22.888
[5]1 82.099
[61 40

Statistics DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 509

e [fixed event] The names of the individual element under
lequipment/<...>/variables/ will be used for the history name composi-
tion.

* [fixed event with array] If the /equipment/<...>/Settings/Names|[] exists, each
element of the array will be referenced using the corresponding name of the
/Settings/Names[] array.

* [ODB history event]

6.14.17 Alarm System

The alarm system is built in and part of the main experiment scheduler. This means
no separate task is necessary to beneficate from it, but this feature is active during
ONLINE mode ONLY . Alarm setup and activation is done through the Online Data-
Base. Alarm system includes several other features such as: sequencing control of the
experiment. The alarm capabilities are:

* Alarm setting on any ODB variables against threshold parameter.
* Alarm check frequency
* Alarm trigger frequency

* Customizable alarm scheme, under this scheme multiple choice of alarm type
can be selected.

* Program control on run transition.

Beside the setup through ODBE(dit, the Alarm can also be setup through the Midas web
page..

Midas Web Alarm setting display

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 510

MIDAS experiment "bnmr2” | Sat Aug 5 11:09:49 2000

Reset all alarms | Alarms onfoff | Status. |
‘ Evaluated alarms
‘ Alarm | State lFirst triggered ‘ Class ‘ Condition (Current value
Test [Disabled | - \Alarm /Runinfo/Run number > 100 [30327
‘RF trip !Disahled‘ - lPauise ilequipment/info odb/variables/RF state =1 ‘ 0
iFlu monitor m‘ - ‘Pauise ‘/equipment/info odb/variables/Fluor monitor counts = 0 ‘ 0
‘ Program alarms
‘ Alarm | State iFirst triggered ‘ Class ‘ Condition
‘ Internal alarms
‘ Alarm | State iFirst triggered ‘ Class ‘ ConditionMessage

Figure 35: Midas Web Alarm setting display

Midas Web Alarm setting display

- MIDAS experiment "trinat” Sat Aug 5 11:18:06 2000

Find| Create | Delote | Alarms | Programs | Status | Help |
Create Elog from this page |

| / Programs / Nova 014019 /

‘ Key | Value

!Auto start n

‘Auto stop ig

!Auto restart n

iRequired ig

Start command \(empty)

‘Alarm Class |j empty)

Checked last 965499475 (0x398C5A53)

‘Alarm count |0 {0x0)

'Watchdog timeout 110000 (0x2710)

Figure 36: Midas Web Alarm setting display

Midas Web Alarm Program status display

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 511

MIDA ‘,J S TR T Ve e

Alarms | Status |

Program |Running on host !Alarm class IAutorestart
ODBEdit 1 - | No

d

Stop ODBEdit |
Stop TRINAT FE |

|
| |
- ‘ No ‘ Stop hStatus |
| |
| |

- No Stop Logger |
Nova 014019] - No Stop Nova_014019 |

Figure 37: Midas Web Alarm Program status display

Internal features - Top - Data format

6.15 Quick Start

Components - Top - Internal features

This section is under revision to better reflect the latest installation and basic op-
eration of the Midas package.

... This section will... describes step-by-step the installation procedure of the Midas
package on several platform as well as the procedure to run a demo sample experiment.
In a second stage, the frontend or the analyzer can be moved to another computer to
test the remote connection capability.

The Midas Package source and binaries can be found at : PSI or at TRI UVF . An
online SVN web site isalso available for the latest developments.

Even though Midas is available for multiple platforms, the following description are
for Linux installation and Windows installation.

6.15.1 Linux installation

1. Extraction:

» Compressed files The compressed file contains the source and binary code.
It does expand under the directory name of midas. This extraction can be
done at the user level.

cd /home/mydir
tar -zxvf midas-1.9.x.tar.gz

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://midas.psi.ch/download
http://midas.triumf.ca/download
http://savannah.psi.ch/viewcvs/trunk/?root=midas

6.15 Quick Start 512

The midas directory structure will be composed of several subdirectories

such as:
>Is
COPYING doc/ examples/ include/ linux/ makefile.nt msch/ utils/
Cvs/ drivers/ gui/ jJava/ MakeFfile* mcleanup* src/ vxworks/

* RPM Current RPM is not fully up-to-date. We suggest that you use the
compressed files or the SVN repository. In the case of the rpm, the bina-
ries are placed in the /ust/local/bin , /ust/local/include, /ust/local/lib.

* SVN The source code can be extracted from the SVN r eposi tory. An
anonymous access is available under the username svn and password svn
which may be required several time. SVN provides also a quick tarball
creation within the web interface!

svn co svn+ssh://svn@savannah.psi.ch/afs/psi.ch/project/meg/svn/midas/trunk midas
svn co svn+ssh://svn@savannah.psi.ch/afs/psi.ch/project/meg/svn/mxml/trunk mxml

If you expect to run the ROVE anal yzer you can extract the SVN pack-
age following the same procedure.

svn co svn+ssh://svn@savannah.psi.ch/afs/psi.ch/project/meg/svn/rome/trunk rome

For the Histogram display tool ROODY the package still resides under CVS
but will be soon moved to SVN.

cvs -d anoncvs@midas.triumf.ca:/usr/local/cvsroot checkout roody

2. Installation: The installation consists in placing the image files in the
/usr/local/ directories. This operation requires superuser privilege. The open
"install" from the Makefile will automatically do this installation for you.

cd /home/mydir/midas
su -
make install

3. Configuration: Several system files needs to be modified for the full Midas
implementation.

* Jetc/services : For remote access. Inclusion of the midas service. Add
following line:

midas service
midas 1175/tcp # Midas server

« /etc/xinetd.d/midas : Daemon definition. Create new file named midas

service midas

{
flags = REUSE NOLIBWRAP
socket_type = stream
wait = no
user = root

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://savannah.psi.ch/viewcvs/trunk/?root=midas
http://midas.psi.ch/rome/index.html
http://ladd00.triumf.ca/~daqweb/doc/roody/html

6.15 Quick Start 513

server = /usr/local/bin/mserver
log_on_success += USERID HOST PID
log_on_failure += USERID HOST

disable = no

}

¢ /etc/ld.so.conf : Dynamic Linked library list. Add directory pointing to
location of the midas.so file (add /ust/local/lib).

/usr/local/lib

The system is now build by default in static which prevent to have to setup
the .so path through either the environment LD LIBRARY_PATH or the
1d.so.conf.

* /Jetc/exptab : Midas Experiment definition file (see below).

4. Experiment definition: Midas system supports multiple experiment running
contemporary on the same computer. Even though it may not be efficient, this ca-
pability makes sense when the experiments are simple detector lab setups which
shared hardware resources for data collection. In order to support this feature,
Midas requires a uniquely identified set of parameter for each experiment that is
used to define the location of the Online Database.

Every experiment under Midas has its own ODB. In order to differentiate them,
an experiment name and directory are assigned to each experiment. This allows
several experiments to run concurrently on the same host using a common Midas
installation.

Whenever a program participating in an experiment is started, the experiment
name can be specified as a command line argument or as an environment vari-
able.

A list of all possible running experiments on a given machine is kept in the file
exptab. This file exptab is expected by default to be located under /etc/exptab.
This can be overwritten by the Environment variables MIDAS_EXPTAB.

exptab file is composed of one line per experiment definition. Each line contains
three parameters, i.e: experiment name, experiment directory name and user
name. Example:

#
Midas experiment list
midas /home/midas/online midas

decay /home/slave/decay_daq slave

Experiments not defined into exptab are not accessible remotely, but can still be
accessed locally using the Environment variables MIDAS_DIR if defined. This
environment superceed the exptab definition.

5. Compilation & Build: You should be able to rebuild the full package once the
Midas tree structure has been placed in your temporary directory. The compila-
tion and link will try to generate the rmidas application which requires ROOT.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 514

The application mana will also be compiled for HBOOK and ROOT. Look in
the make listing below for the HAVE_HBOOK, HAVE_ROQT.

> cd /home/mydir/midas

> make

cc -c -g -02 -Wall -linclude -ldrivers -LIinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/midas.o src/midas.c

cc -c -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/system.o src/system.c

cc -c -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/mrpc.o src/mrpc.c

cc -¢c -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/odb.o src/odb.c

cc -¢c -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/ybos.o src/ybos.c

cc -c -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/ftplib.o src/ftplib.c

rm -f linux/lib/libmidas.a

ar -crv linux/lib/libmidas.a linux/lib/midas.o linux/lib/system.o linux/lib/mrpc.o
linux/lib/odb.o linux/lib/ybos.o linux/lib/ftplib.o

a - linux/lib/midas.o
a - linux/lib/system.o
a - linux/lib/mrpc.o
a - linux/lib/odb.o
a - linux/lib/ybos.o

a - linux/lib/ftplib.o

rm -F linux/lib/libmidas.so

Id -shared -o linux/lib/libmidas.so linux/lib/midas.o linux/lib/system.o
linux/lib/mrpc.o linux/lib/odb.o linux/lib/ybos.o linux/lib/ftplib.o -lutil
-Ipthread -Ic

cc -c -g -02 -Wall -linclude -ldrivers -LIinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/mana.o src/mana.c

cc -Dextname -DHAVE_HBOOK -c -g -02 -Wall -linclude -ldrivers -Llinux/lib
-DINCLUDE_FTPLIB -DOS_LINUX -fPIC -0 linux/lib/hmana.o src/mana.c

g++ -DHAVE_ROOT -c -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB
-DOS_LINUX -fPIC -D_REENTRANT -1/homel/midas/ root/include -o linux/lib/rmana.o
src/mana.c

g+t+ -c -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINU
-fPIC -0 linux/lib/mfe.o src/mfe.c

cc -Dextname -c -g -02 -Wall -linclude -ldrivers -Llinux/lib

-DINCLUDE_FTPLIB -DOS_LINUX -fPIC -0 linux/lib/fal.o src/fal.c

cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mserver src/mserver.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mhttpd src/mhttpd.c src/mgd.c -Imidas -lutil -lIpthread -Im

g++ -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-DHAVE_ROOT -D_REENTRANT -1/homel/midas/root/include

-0 linux/bin/mlogger src/mlogger.c -Imidas

-L/homel/midas/root/lib -1Core -ICint -IHist -IGraf -1Graf3d -IGpad -I1Tree

-IRint -lPostscript -IMatrix -IPhysics -Ipthread -Im -1dl -rdynamic -lutil -Ipthread
cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/odbedit src/odbedit.c src/cmdedit.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mtape utils/mtape.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -Ildrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 515

-0 linux/bin/mhist utils/mhist.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -Ildrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mstat utils/mstat.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -Ildrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mcnaf utils/mcnaf.c drivers/bus/camacrpc.c -Imidas -lutil -lpthread
cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mdump utils/mdump.c -Imidas -1z -lutil -Ipthread

cc -g -02 -Wall -linclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/lazylogger src/lazylogger.c -Imidas -1z -lutil -Ipthread

cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mchart utils/mchart.c -Imidas -lutil -Ipthread

cp -f utils/stripchart.tcl linux/bin/.

cc -g -02 -Wall -linclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/webpaw utils/webpaw.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/odbhist utils/odbhist.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/melog utils/melog.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mlxspeaker utils/mlxspeaker.c -Imidas -lutil -Ipthread

cc -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/dio utils/dio.c -Imidas -lutil-Ipthread

g++ -g -02 -Wall -linclude -ldrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-DHAVE_ROOT -D_REENTRANT -1/homel/midas/root/include -o linux/bin/rmidas src/rmidas.c
-Imidas -L/homel/midas/root/lib -1Core -ICint -IHist -IGraf -1Graf3d -1Gpad
-ITree -IRint -lPostscript -IMatrix -1Physics -1Gui -Ipthread -Im -1dl -rdynamic
-lutil -lpthread

6. Demo examples: The midas file structure contains examples of code which
can be (should be) used for template. In the midas/examples/experiment you
will find a full set for frontend and analysis code. The building of this example
is performed with the Makefile of this directory. The reference to the Midas
package is done relative to your current location (../../include). In the case the
content of this directory is copied to a different location (template), you will need
to modify the local parameters within the Makefile

H e e -
The following lines define direcories. Adjust if necessary
#
DRV_DIR = ../../drivers/bus
INC_DIR = ../../include
LIB_ DIR = ../../linux/lib
Replace by:
- ey gy gy My
The following lines define direcories. Adjust if necessary
#
DRV_DIR = /home/mydir/midas/drivers/bus
INC_DIR = /usr/local/include
LIB_DIR = /usr/local//1ib

> cd /home/mydir/midas/examples/experiment

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 516

> make

gcc -g -02 -Wall -g -1../..7include -1../._/drivers/bus -DOS_LINUX -Dextname -c
-0 camacnul.o ../../drivers/bus/camacnul.c

g++ -g -02 -Wall -g -1../..7include -1../._/drivers/bus -DOS_LINUX -Dextname -0

frontend frontend.c

camacnul.o ../._./linux/lib/mfe.o ../../linux/lib/libmidas.a -Im -1z -lutil
-Insl -lIpthread

g++ -D_REENTRANT -1/homel/midas/root/include -DHAVE_ROOT -g -02 -Wall -g
-1._./../7include -1../._/drivers/bus -DOS_LINUX -Dextname -o analyzer.o

-c analyzer.c

g++ -D_REENTRANT -1/homel/midas/root/include -DHAVE_ROOT -g -02 -Wall -g
-1../..7include -1._./../drivers/bus -DOS_LINUX -Dextname -0 adccalib.o -c adccalib.c
g++ -D_REENTRANT -1/homel/midas/root/include -DHAVE_ROOT -g -02 -Wall -g
-1._./../7include -1._/._./drivers/bus -DOS_LINUX -Dextname -0 adcsum.o -c adcsum.c
g++ -D_REENTRANT -1/homel/midas/root/include -DHAVE_ROOT -g -02 -Wall -g
-1._./../7include -1._/._./drivers/bus -DOS_LINUX -Dextname -o scaler.o -c scaler.c
g++ -0 analyzer ../../linux/lib/rmana.o analyzer.o adccalib.o adcsum.o scaler.o
/.. /linux/lib/libmidas.a -L/homel/midas/root/lib -ICore -ICint -IHist -1Graf
-IGraf3d -IGpad -1Tree -IRint -1Postscript -IMatrix -IPhysics -Ipthread -Im -1dl
-rdynamic -1Thread -Im -1z -lutil -Insl -Ipthread

For testing the system, you can start the frontend as follow:

> frontend
Event buffer size : 100000
Buffer allocation : 2 x 100000
System max event size : 524288

User max event size 10000
User max frag. size 5242880
of events per buffer 10
Connect to experiment ...Available experiments on local computer:
0 : midas
1 : root
Select number:0 <---- predefined experiment from exptab file
Sample Frontend connected to <local>. Press "I" to exit 17:27:47
Run status: Stopped Run number O
Equipment Status Events Events/sec Rate[kB/s] ODB->FE FE->0DB
Trigger OK 0 0.0 0.0 0 0
Scaler oK 0 0.0 0.0 0 0
In a different terminal window
>odbedit
Available experiments on local computer:
0 : midas
1 : root

Select number: O

[local :midas:S]/>start now
Starting run #1

17:28:58 [ODBEdit] Run #1 started
[local :midas:R]/>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 517

The run has been started as seen in the frontend terminal window. See the /ex-
amples/experiment/frontend.c for data generation code.

Sample Frontend connected to <local>. Press "I" to exit 17:29:07
Run status: Running Run number 1

Equipment Status Events Events/sec Rate[kB/s] ODB->FE FE->0DB
Trigger oK 865 9.3 54 o 9o
Scaler oK 1 0.0 0.0 0 1

6.15.2 Windows installation

1. Extraction:

2. Installation:

3. Configuration:

4. Experiment definition:

5. Compilation:

6. Demo examples:

Components - Top - Internal features Internal features - Top - Data format

The Midas system provides several off-the-shelf programs to control, monitor, debug
the data aquisition system. Starting with the main utility (odbedit) which provide ac-
cess to the Online data base and run control.

¢ odbedit task : Online Database Editor

— ODB Structure

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 518

» Midas Frontend application : Midas Frontend application
 mstat task : Midas ASCII status report
* analyzer task : Midas data analyzer
— MIDAS Analyzer
* mlogger task : Midas data logger
* lazylogger task : Background data logger
* mdump task : Event dump application
» mevb task : Event Builder application
» mspeaker, mlxspeaker tasks : Speech synthesizer
» mcnaf task : CAMAC standalone application
» mhttpd task : Midas Web server
* melog task : Electronic entry application
 mhist task : History retrieval application
* mchart task : Standalone Chart display application
» mtape task : Tape device manipulator
* dio task : Direct IO provider
» stripchart.tcl file : Tcl/Tk for chart display
» rmidas task : Root/Midas Simple GUI application
* hvedit task : High Voltage Slow Control GUI

¢ Midas Remote server : Midas Remote server

6.15.3 Midas Frontend application

The purpose of the Midas Frontend application is to collect data from hardware and
transmit this information to a central place where data logging and analysis can be
performed. This task is achieved with a) a specific code written by the user describing
the sequence of action to acquire the hardware data and b) a framework code handling
the data flow control, data transmission and run control operation. From Midas version
1.9.5 a new argument (-i index) has been introduced to facilitate the multiple frontend
configuration operation required for the Event Builder Functions.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 519

* Arguments

— [-h]: help

— [-h hostname] : host name (see odbedit task)

— [-e exptname] : experiment name (see odbedit task)
— [-D] : Become a Daemon.

— [-O] : Become a Daemon but keep stdout

— [-d] : Used for debugging.

— [-iindex] : Set frontend index (used with mevb task).

» Usage

6.15.4 odbedit task

odbedit refers to the Online DataBase Editor. This is the main application to interact
with the different components of the Midas system.

See ODB Structure for more information.

» Arguments

— [-h]: help.
— [-h hostname] :Specifies host to connect to. Must be a valid IP host name.

This option supersedes the MIDAS_SERVER_HOST environment vari-
able.

— [-e exptname] :Specifies the experiment to connect to. This option super-
sedes the MIDAS_EXPT_NAME environment variable.

— [-c command] :Perform a single command. Can be used to perform oper-
ations in script files.

— [-c @commandFile] :Perform commands in sequence found in the
commandFile.

— [-s size] : size in byte (for creation). Specify the size of the ODB file to be
created when no shared file is present in the experiment directory (default
128KB).

— [-d ODB tree] :Specify the initial entry ODB path to go to.

» Usage ODBedit is the MIDAS run control program. It has a simple command
line interface with command line editing similar to the UNIX tcsh shell. Follow-
ing edit keys are implemented:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 520

[Backspace] Erase the character left from cursor

[Delete/Ctrl-D] Erase the character under cursor
[Ctrl-W/Ctrl-U] Erase the current line
[Ctrl-K] Erase the line from cursor to end

[Left arrow/Ctrl-B] Move cursor left

[Right arrow/Ctrl-F] Move cursor right

[Home/Ctrl-A] Move cursor to beginning of line

[End/Ctrl-E] Move cursor to end of line

[Up arrow/Ctrl-P] Recall previous command

— [Down arrow/Ctrl-N] Recall next command

[Ctrl-F] Find most recent command which starts with current line

[Tab/Ctrl-1] Complete directory. The command Is /Sy <tab> yields to Is
/System.

* Remarks

— ODBedit treats the hierarchical online database very much like a file sys-
tem. Most commands are similar to UNIX file commands like Is, cd,
chmod, In etc. The help command displays a short description of all com-
mands.

— From Midas version 1.9.5, the ODB content can be saved into XML format
if the file extension is .xml

C:\odbedit
[local :midas:S]/>save odb.xml
[local :midas:S]/>q
more odb.xml
<?xml version="1.0" encoding=""1S0-8859-1"?>
<!-- created by ODBEdit on Wed Oct 06 22:48:26 2004 -->
<dir name="root'>
<dir name='"System'>
<dir name="Clients'>
<dir name=''3880">
<key name="Name" type="'STRING" size="32">ebfe0l</key>
<key name="Host" type="STRING" size="256">pierre2</key>
<key name=""Hardware type" type="INT''>42</key>
<key name=''Server Port" type="INT''>4658</key>

[local :midas:Stopped]/>help
Database commands ([] are options, <> are placeholders):

alarm - reset all alarms

cd <dir> - change current directory
chat - enter chat mode

chmod <mode> <key> - change access mode of a key

1=read | 2=write | 4=delete

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start

521

cleanup
copy <src> <dest> -
create <type> <key> -
create <type> <key>[n] -
del/rm [-17 [-F]1 \<key>

-1

-f
exec <key>/<cmd>
find <pattern> -
help/? [command] -
hi [analyzer] [id] -
In <source> <linkname>
load <file>
Is/dir [-lhvrp] [<pat>] -

-1

-h

-v

-r
make [analyzer name] -
mem -
mkdir <subdir> -

delete hanging clients
copy a subtree to a new location
create a key of a certain type
create an array of size [n]
- delete a key and its subkeys
follow links
force deletion without asking
execute shell command (stored in key) on server
find a key with wildcard pattern
print this help [for a specific command]
tell analyzer to clear histos
create a link to <source> key
load database from .0DB file at current position
show database entries which match pattern
detailed info
hex format
only value
show database entries recursively
pause between screens
create experim.h
show memeory Usage
make new <subdir>

move <key> [top/bottom/[n]] - move key to position in keylist

msg [user] <msg> -
old -
passwd -
pause -
pwd -
resume -
rename <old> <new> -
rewind [channel] -
save [-c -s] <file> -

-Cc
-s
set <key> <value> -
set <key>[i] <value> -
set <key>[*] <value> -
set <key>[i..j] <value> -
scl [-w] -
shutdown <client>/all -
sor -
start [number] [now] [-V]

stop [-Vv]

trunc <key> <index> -
ver -
webpasswd -
wait <key> -
quit/exit -

» Example

>odbedit -c stop
>odbedit

compose user message

display old messages

change MIDAS password

pause current run

show current directory

resume current run

rename key

rewind tapes in logger

save database at current position

in ASCII1 format

as a C structure

as a #define’d string

set the value of a key

set the value of index i

set the value of all indices of a key

set the value of all indices i..j

show all active clients [with watchdog info]

shutdown individual or all clients

show open records in current subtree
- start a run [with a specific number], [without question]
[-v verbose the transaction to the different clients]
- stop current run
[-v verbose the transaction to the different clients]

truncate key to [index] values

show MIDAS library version

change WWW password for mhttpd

wait for key to get modified

exit

[hostxxx:exptxxx:Running]/> Is /equipment/trigger

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start

522

6.15.5 mstat task

mstat is a simple ASCII status display. It presents in a compact form the most valuable
information of the current condition of the Midas Acquisition system. The display is
composed at the most of 5 sections depending on the current status of the experiment.

The section displayed in order from top to bottom refer to:

¢ Run information.

» Equipment listing and statistics if any frontend is active.

* Logger information and statistics if mlogger is active.

» Lazylogger status if lazylogger is active.

* Client listing.

e Arguments

[-h]: help

the command.

[-h hostname] : host name (see odbedit task)

[-1]: loop. Forces mstat to remain in a display loop. Enter

[-e exptname] : experiment name (see odbedit task)

to terminate

[-w time] : refresh rate in second. Specifies the delay in second before

refreshing the screen with up to date information. Default: 5 seconds. Has
to be used in conjunction with -1 switch. Enter "R" to refresh screen on

next update.

—————————— Mon Apr 3 11:52:52 2000-*

Experiment:chaos Run#:8699 State:Running Run time :00:11:34

» Usage
>mstat -1
*-v1.8.0- MIDAS status page ---——-—-——————-——-
Start time:Mon Apr 3 11:41:18 2000
FE Equip. Node Event Taken
B12Y pcch02 67
CUM_Scaler vwchaos 23
CHV pcch02 68
KOS_Scalers vwchaos 330
KOS_Trigger vwchaos 434226
KOS_File vwchaos 0
Target pcch02 66

Logger Data dir: /scr0/spring2000

Event Rate[/s] Data Rate[Kb/s]
0.0 0.0

comooo0o

coRBhxon
N

copro0O0O

co@moN
w

Message File: midas.log

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 523

Chan. Active Type Filename Events Taken KBytes Taken
0 Yes Disk run08699.ybs 434206 4.24e+06

Lazy Label Progress File name #Files Total

cni-53 100[%] run08696.ybs 15 44 . 3[%]

Clients: MStatus/kosIx0 Logger/kosIx0 Lazy Tape/koslIx0
CHV/pcch02 MChart1/umelba ODBEdit/kosIx0
CHAOS/vwchaos ecl/kosIx0 Speaker/kosIx0
MChart/umelba targetFE/pcch02 HV_MONITOR/umelba
SUS1YBOS/kosIx0 History/kosal?2 MStatusl/dasdevpc

6.15.6 analyzer task

analyzer is the main online / offline event analysis application. analyzer uses fully the
ODB capabilities as all the analyzer parameters are dynamically controllable from the
Online Database editor odbedit task.

For more detailed information see MIDAS Analyzer

» Arguments

— -c <filenamel> <filename2> Configuration file name(s). May contain a
"%05d’ to be replaced by the run number. Up to ten files can be specified
in one "-c" statement.

— -d Debug flag when starts the analyzer from a debugger. Prevents the sys-
tem to kill the analyzer when the debugger stops at a breakpoint

— -D Start analyzer as a daemon in the background (UNIX only).
— -e <experiment> MIDAS experiment to connect to. (see odbedit task)

— -f Filter mode. Write original events to output file only if the analyzer
accepts them (doesn’t return ANA_SKIP).

— -h <hostname> MIDAS host to connect to when running the analyzer on-
line (see odbedit task)

— -1 <filenamel> <filename2> Input file name. May contain a *%05d’ to
be replaced by the run number. Up to ten input files can be specified in one
"-1" statement.

— -11If set, don’t load histos from last histo file when running online.

— -L HBOOK LREC size. Default is 8190.

— -n <count> Analyze only "count" events.

— -n <first> <last> Analyze only events from "first" to "last".

— -n <first> <last> <n> Analyze every n-th event from "first" to "last".

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 524

— -0 <filename> Output file name. Extension may be .mid (MIDAS binary),
.asc (ASCII) or .rz (HBOOK). If the name contains a *%05d’, one output
file is generated for each run. Use "OFLN" as output file name to creaate a
HBOOK shared memory instead of a file.

— -p <param=value> Set individual parameters to a specific value. Overrides
any setting in configuration files

— -P <ODB tree> Protect an ODB subtree from being overwritten with the
online data when ODB gets loaded from .mid file

— -q Quiet flag. If set, don’t display run progress in offline mode.

— -r <range> Range of run numbers to analyzer like "-r 120 125" to analyze
runs 120 to 125 (inclusive). The "-r" flag must be used with a >%05d’ in
the input file name.

— -s <port#> Specify the ROOT server TCP/IP port number (default 9090).

— -v Verbose output.

— -w Produce row-wise N-tuples in outpur .rz file. By default, column-wise
N-tuples are used.

* Remarks

— The creation of the experim.h is done through the odbedit> make
<analyzer>. In order to include your analyzer section, the ODB
/<Analyzer>/Parameters has to be present.

» Usage

>analyzer

>analyzer -D -r 9092

>analyzer -i run00023.mid -0 run00023.rz -w
>analyzer -i run%05d.mid -o runall.rz -r 23 75 -w

6.15.7 mlogger task

mlogger is the main application to collect data from the different frontends under cer-
tain conditions and store them onto physical device such as disk or tape. It also acts
as a history event collector if either the history flags are enabled in the frontend equip-
ment (see The Equipment structure or if the ODB tree /History/Links is defined (See
History system). See the ODB /Logger Tree for reference on the tree structure.

e Arguments

— [-h]: help

— [-e exptname] : experiment name (see odbedit task)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 525

— [-D] : start program as a daemon (UNIX only).
— [-s] : Save mode (debugging: protect ODB).

— [-v] : Verbose (not to be used in conjunction with -D).

» Usage

>mlogger -D

* Remarks

The mlogger application requires to have an existing /Equipment/ tree in
the ODB!

— As soon as the mlogger starts to run, the history mechanism is enabled.

— The data channels as well as the history logging is rescanned automatically
at each "begin of run" transition. In other word, additional channel can be
defined while running but effect will take place only at the following begin
of run transition.

— The default setting defines a data "Midas" format with a file name of the
type "run\%05d.mid". Make sure this is the requested setting for your
experiment.

— Once the mlogger is running, you should be able to monitor its state.
through the mstat task or through the mhttpd task web browser.

— From version 1.9.5

% mlogger will not run if started remotely (argument -h hostname has
been removed).

% The file size limitation (<2GB) has been removed for older OS ver-
sion.

+ mySQL data entry support.

6.15.8 lazylogger task

lazylogger is an application which decouples the data aquisition from the data log-
ging mechanism. The need of such application has been dictated by the slow response
time of some of the media logging devices (Tape devices). Delay due to tape mount-
ing, retension, reposition implies that the data acquisition has to hold until operation
completion. By using mlogger to log data to disk in a first stage and then using lazy-
logger to copy or move the stored files to the "slow device" we can keep the acquisition
running without interruption.

* Multiple lazyloggers can be running comtemporary on the same computer, each
one taking care of a particular channel.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start

526

» Each lazylogger channels will have a dedicated ODB tree containg its own in-

formation.

¢ All the lazylogger channel will be under the ODB /Lazy/<channel_name>/...

 Each channel tree is composed of three sub-tree Settings, Statistics, List.

Self-explanatory the Settings and Statistics contains the running operation of the chan-
nel. While the List- will have a dynamic list of run number which has been sucessfully
manipulated by the Lazylogger channel. This list won’t exist until the first successful

operation of the channel is completed.

* Arguments

[-h]: help.

[-h hostname] : host name.

[-e exptname] : experiment name.

[-D] : start program as a daemon.

— [-z] : zap statistics. Clear the statistics tree of all the defined lazylogger

channels.

» ODB parameters (Settings/)

Settings DIR
Maintain free space(%) INT
Stay behind INT
Alarm Class STRING
Running condition STRING
Data dir STRING
Data format STRING
Filename format STRING
Backup type STRING
Execute after rewind STRING
Path STRING
Capacity (Bytes) FLOAT
List label STRING
Execute before writing file STRING
Execute after writing file STRING
Modulo.Position STRING
Tape Data Append BOOL

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

4
4
32
128
256
8
128
8
64
128
4
128
64
64
8

4

3m
3m
3m
3m
3m
3m
3m
3m
3m
3m
3m
3m
11h
11h
11h
11h

[-c channel] : logging channel. Specify the lazylogger to activate.

[eNelNooNoNeoNoNoNoNoNoNoNoNoNoNe)

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

— [Maintain free space] As the Data Logger (mlogger) runs independently

from the Lazylogger, the disk contains all the recorded data files. Under

this condition, Lazylogger can be instructed to "purge" the data logging
device (disk) after successful backup of the data onto the "slow device".
The Maintain free space(%) parameter controls (if none zero) the percent-
age of disk space required to be maintain free.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

0
-3

ALWAYS
/home/midas/online
MIDAS

run%05d.mid

Tape

5e+09

lazy prewrite.csh
rundb_addrun.pl
2.1

y

6.15 Quick Start 527

% The condition for removing a data file is defined as:
The data file corresponding to the given run number following
the format declared under "'Settings/Filename format™ 1S
PRESENT on the ""Settings/Data Dir** path. AND The given run
number appears anywhere under the ""List/*" directory of ALL
the Lazy channel having the same *'Settings/Filename format''as
this channel. AND The given run number appears anywhere
under the "'List/" directory of that channel

— [Stay behind] This parameter defines how many consecutive data files
should be kept between the current run and the last lazylogger run.

= Example with "'Stay behind =-3"" :

1. Current acquisition run number 253 -> run00253.mid is being logged
by mlogger.

2. Files available on the disk corresponding to run #248, #249, #250,
#251, #252.

3. Lazylogger will start backing up run #250 as soon as the new run 254
starts. -3 "Stay behind = -3" corresponds to 3 file untouched on the
disk (#251, #252, #253). The negative sign instructs the lazylogger to
always scan the entire "Data Dir" from the oldest to the most recent
file sitting on the disk at the "Data Dir" path- for backup. If the "Stay
behind" is positive, lazylogger will backup starting from- x behind the
current acquisition run number. Run order will be ignored.

— [Alarm Class] Specify the Alarm class to be used in case of triggered
alarm.

— [Running condition] Specify the type of condition for which the lazylog-
ger should be actived. By default lazylogger is ALWAYS running. In the
case of high data rate acquisition it could be necessary to activate the lazy-
logger only when the run is either paused, stopped or when some external
condition is satisfied such as "Low beam intensity". In this latter case, con-
dition based on a single field of the ODB can be given to establish when
the application should be active.

= Example :
odbedit> set "Running condition" WHILE_ACQ_NOT_RUNNING
odbedit> set "Running condition® */alias/max_rate \< 200"

— [Data dir] Specify the Data directory path of the data files. By default if
the "/Logger/Data Dir" is present, the pointed value is taken otherwise the
current directory where lazylogger has been started is used.

— [Data format] Specify the Data format of the data files. Currently sup-
ported formats are: MIDAS and YBOS.

— [Filename format] Specify the file format of the data files. Same format
as given for the data logger.

— [Backup type] Specify the "slow device" backup type. Default Tape. Can
be Disk or Ftp.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 528

— [Execute after rewind] Specify a script to run after completion of a lazy-
logger backup set (see below "Capacity (Bytes)").

— [Path] Specify the "slow device" path. Three possible types of Path:

% For Tape : /dev/nst0- (UNIX like).
% For Disk : /datal/myexpt
+ For Ftp : host,port,user,password,directory
— [Capacity (Bytes)] Specify the maximum "slow device" capacity in bytes.
When this capacity is reached,the lazylogger will close the backup device
and clear the "List Label" field to prevent further backup (see below). It
will aslo rewind the stream device if possible.

— [List label] Specify a label for a set of backed up files to the "slow device".
This label is used only internaly by the lazylogger for creating under the
"/List" a new array composed of the backed up runs until the "Capacity"
value has been reached. As the backup set is complete, lazylogger will
clear this field and therefore prevent any further backup until a none empty
label list is entered again. In the other hand the list label will remain under
the "/List" key to display all run being backed up until the corresponding
files have been removed from the disk.

— [Exec preW file] Permits to run a script before the begining of the lazy
job. The arguments passed to the scripts are: input file name , output file
name, current block number.

— [Exec postW file] Permits to run a script after the completion of the lazy
job. The arguments passed to the scripts are: list label, current job num-
ber, source path, file name, file size in MB, current block number.

— [Modulo.Position] This field is for multiple instances of the lazylogger
where each instance works on a sub-set of run number. By specifying
the Modulo.Position you’re telling the current lazy instance how many
instances are simultaneously running (3.) and the position of which this
instance is assigned to (.1). As an example for 3 lazyloggers running con-
temporaneously the field assignment should be :

Channel Field Run#

Lazy_ 1 3.0 21, 24, 27, ...
Lazy 2 3.1 22, 25, 28, ...
Lazy 3 3.2 23, 26, 29, ...

— [Tape Data Append] Enable the spooling of the Tape device to the End_-
of_Device (EOD) before starting the lazy job. This command is valid only
for "Backup Type" Tape. If this flag is not enabled the lazy job starts at the
current tape position.

— [Statistics/] ODB tree specifying general information about the status of
the current lazylogger channel state.

— [List/] ODB tree, will contain arrays of run number associated with the
array name backup-set label. Any run number appearing in any of the
arrays is considered to have been backed up.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 529

» Usage lazylogger requires to be setup prior data file can be moved. This setup
consists of 4 steps:

— [Step 1] Invoking the lazylogger once for setting up the appropriate ODB
tree and exit.

>lazylogger -c Tape

— [Step 2] Edit the newly created ODB tree. Correct the setting field to match
your requirement.

> odbedit -e midas

[local :midas:Stopped]/>cd /Lazy/tape/
[local :midas:Stopped]tape>Is

[local :midas:Stopped]tape>ls -Ir

Key name Type #Val Size Last Opn Mode Value
tape DIR
Settings DIR
Maintain free space(%) INT 1 4 3m 0 RWD O
Stay behind INT 1 4 3m 0 RwWD -3
Alarm Class STRING 1 32 3m 0 RWD
Running condition STRING 1 128 3m 0 RWD ALWAYS
Data dir STRING 1 256 3m O RWD /home/midas/online
Data format STRING 1 8 3m O RWD MIDAS
Filename format STRING 1 128 3m O RWD run%05d.mid
Backup type STRING 1 8 3m 0 RWD Tape
Execute after rewind STRING 1 64 3m 0 RWD
Path STRING 1 128 3m O RWD
Capacity (Bytes) FLOAT 1 4 3m 0 RWD 5e+09
List label STRING 1 128 3m O RWD
Statistics DIR

Backup file STRING 1 128 3m 0 RWD none
File size [Bytes] FLOAT 1 4 3m 0 RWD O
KBytes copied FLOAT 1 4 3m 0O RwWD O
Total Bytes copied FLOAT 1 4 3m 0 RWD O
Copy progress [%] FLOAT 1 4 3m 0O RwWD O
Copy Rate [bytes per s] FLOAT 1 4 3m 0O RwWD O
Backup status [%] FLOAT 1 4 3m 0 RWD O
Number of Files INT 1 4 3m 0O RWD O
Current Lazy run INT 1 4 3m 0 RWD O

[local :midas:Stopped]tape>cd Settings/
[local :midas:Stopped]Settings>set "Data dir"” /data
[local :midas:Stopped]Settings>set '"Capacity (Bytes)" 15e9

— [Step 3] Start lazylogger in the background
>lazylogger -c Tape -D

— [Step 4] At this point the lazylogger is running and waiting for the "list
label" to be defined before starting the copy procedure. mstat task will
display information regarding the status of the lazylogger.

> odbedit -e midas
[local :midas:Stopped]/>cd /Lazy/tape/Settings
[local :midas:Stopped]Settings>set "List label"™ cni-043

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start

530

* Remarks

— For every major operation of the lazylogger a message is sent to the Mes-
sage buffer and will be appended to the default Midas log file (midas.log).
These messages are the only mean of finding out What/When/Where/How
the lazylogger has operated on a data file. See below a fragment of the
midas::log for the chaos experiment. In this case the Maintain free space()
field was enabled which produces the cleanup of the data files and the entry
in the List tree after copy.

Fri Mar 24 14:
Fri Mar 24 14:
Fri Mar 24 14:
Fri Mar 24 14:
Fri Mar 24 14:
Fri Mar 24 14:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:
Fri Mar 24 15:

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

[Lazy _Tape] 8351 (rm:16050ms) /scr0/spring2000/run08351.ybs file
[Lazy_Tape] Tape run#8351 entry REMOVED

[Logger] stopping run after having received 1200000 events
[CHAOS] Run 8366 stopped

[Logger] Run #8366 stopped

[SUS1YBOS] saving info in run log

[Logger] starting new run

[CHAOS] Run 8367 started

[Logger] Run #8367 started

[Lazy Tape] cni-043[15] (cp:410.6s) /dev/nst0/run08365.ybs 864 .02
[Lazy _Tape] 8352 (rm:25854ms) /scr0/spring2000/run08352.ybs file
[Lazy_Tape] Tape run#8352 entry REMOVED

[Lazy Tape] 8353 (rm:23693ms) /scr0/spring2000/run08353.ybs file
[Lazy_Tape] Tape run#8353 entry REMOVED

[Logger] stopping run after having received 1200000 events
[CHAOS] Run 8367 stopped

[Logger] Run #8367 stopped

[SUS1YBOS] saving info in run log

[Logger] starting new run

[CHAOS] Run 8368 started

[Logger] Run #8368 started

[Lazy Tape] cni-043[16] (cp:395.4s) /dev/nst0/run08366.ybs 857.67
[Lazy_Tape] 8354 (rm:28867ms) /scr0/spring2000/run08354.ybs file
[Lazy Tape] Tape run#8354 entry REMOVED

— Once lazylogger has started a job on a data file, trying to terminate the
application will result in producing a log message informing the actual per-
centage of the backup completed so far. This message will repeat it self
until completion of the backup and only then the lazylogger application

will terminate.

If an interruption of the lazylogger is forced (kill...) The state of the backup

device is undertermined. Recovery is not possible and the full backup set
has to be redone. In order to do this, you need:

entries.

To rewind the backup device.

Delete the /Lazy/<channel_name>/List/<list label> array.
Restart the lazylogger with the -z switch which will "zap" the statistics

In order to facilitate the recovery procedure, lazylogger produces an ODB

ASCII file of the lazy channel tree after completion of successful operation.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 531

This file (Tape_recover.odb) stored in Data_Dir can be used for ODB as
well as lazylogger recovery.

6.15.9 mdump task

This application allows to "peep" into the data flow in order to display a snap-shot of
the event. Its use is particularly powerful during experiment setup. In addition mdump
has the capability to operate on data save-set files stored on disk or tape. The main
mdump restriction is the fact that it works only for events formatted in banks (i.e.:
MIDAS, YBOS bank).

* Arguments for Online

— [-h] : help for online use.

— [-h hostname] : Host name.

— [-e exptname] : Experiment name.

— [-b bank name] : Display event containg only specified bank name.

— [-c compose] : Retrieve and compose file with either Add run# or Not
(def:N).

— [-f format] : Data representation (x/d/ascii) def:hex.

— [-g type] : Sampling mode either Some or All (def:S). >>> in case of -c
it is recommented to used -g all.

— [-1id] : Event Id.
— [-j]: Display bank header only.

— [-kid] : Event mask. >>> -i and -k are valid for YBOS ONLY if EVID
bank is present in the event

— [-] number] : Number of consecutive event to display (def:1).

— [-m mode] : Display mode either Bank or Raw (def:B)

— [-p path] : Path for file composition (see -c)

— [-s] : Data transfer rate diagnositic.

— [-w time] : Insert wait in [sec] between each display.

— [-x filename] : Input channel. data file name of data device. (def:online)
— [-y]: Display consistency check only.

— [-z buffer name] : Midas buffer name to attach to (def:SYSTEM)

¢ Additional Arguments for Offline

— [-x -h] : help for offline use.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 532

— [-t type] : Bank format (Midas/Ybos). >>> if -x is a /dev/xxx, -t has to
be specified.

— [-r #] : skip record(YBOS) or event(MIDAS) to #.

— [-w what] : Header, Record, Length, Event, Jbank_list (def:E) >>>
Header & Record are not supported for MIDAS as it has no physical record
structure.

» Usage mdump can operate on either data stream (online) or on save-set data file.
Specific help is available for each mode.

> mdump -h
> mdump -Xx -h

Tue> mdump -xX run37496.mid | more

———————————————————————— Event# 0 - -—-————————— -
———————————————————————— Event# 1 ————————————
Evid:0001- Mask:0100- Serial:1- Time:0x393c299a- Dsize:72/0x48
#banks:2 - Bank list:-SCLRRATE-

Bank:SCLR Length: 24(1*1)/6(1*4)/6(Type) Type:Integer*4
1-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Bank:RATE Length: 24(1*1)/6(1*4)/6(Type) Type:Real*4 (FMT machine dependent)
1-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

———————————————————————— Event# 2 - - ——————— -

Evid:0001- Mask:0004- Serial:1- Time:0x393c299a- Dsize:56/0x38

#banks:2 - Bank list:-MMESMMOD-

Bank:MMES Length: 24(1*1)/6(1*4)/6(Type) Type:Real*4 (FMT machine dependent)
1-> 0x3de35788 0x3d0b0e29 0x00000000 0x00000000 0x3f800000 0x00000000

Bank:MMOD Length: 4(1*1)/1(1*4)/1(Type) Type:Integer*4

1-> 0x00000001
———————————————————————— Event# 3 ——-————————
Evid:0001- Mask:0008- Serial:1- Time:0x393c299a- Dsize:48/0x30
#banks:1 - Bank list:-BMES-

Bank:BMES Length: 28(1*1)/7(1*4)/7(Type) Type:Real*4 (FMT machine dependent)
1-> 0x443d7333 0x444cf333 0x44454000 0x4448e000 0x43bca667 0x43ce0000 0x43F98000
———————————————————————— Event# 4 ———————————
Evid:0001- Mask:0010- Serial:1- Time:0x393c299a- Dsize:168/0xa8
#banks:1 - Bank list:-CMES-

Bank:CMES Length: 148(1*1)/37(1*4)/37(Type) Type:Real*4 (FMT machine dependent)
1-> Ox3F2F9fe2 Ox3fFfF77fd6 Ox3f173fe6 Ox3daeffe2 0x410f83e8 0x40ac07e3 0x3f6ebfd8 0x3c47ffde
9-> 0x3e60ffda 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x3F800000
17-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
25-> 0x3f800000 0x3f800000 0x3F800000 0x00000000 0x3F800000 0x00000000 0x3F¥800000 0x3F800000
33-> 0x3f800000 0x3f800000 0x3f800000 0x3f800000 0x00000000

———————————————————————— Event# 5 ——-————————

Evid:0001- Mask:0020- Serial:1- Time:0x393c299a- Dsize:32/0x20

#banks:1 - Bank list:-METR-

Bank:METR Length: 12(1*1)/3(1*4)/3(Type) Type:Real*4 (FMT machine dependent)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 533

1-> 0x00000000 0x39005d87 0x00000000

» Example

> mdump -j

6.15.10 mevb task

mevb is an event builder application taking several frontends Midas data source and
assembles a new overall Midas event.

In the case where overall data collection is handled by multiple physically separated
frontends, it could be necessary to assemble these data fragments into a dedicated event.
The synchonization of the fragment collection is left to the user which is done usu-
ally through specific hardware mechanism. Once the fragments are composed in each
frontend, they are sent to the "Event Builder" (eb) where the serial number (pheader-
>serial_number) of each fragment is compared one event at a time for serial match. In
case of match, a new event will be composed with its own event ID and serial number
followed by all the expected fragments. The composed event is then sent to the next
stage which is usually the data logger (mlogger).

The mhttpd task will present the status of the event builder as an extra equipment with
its corresponding statistical information.

* Arguments

[-h]: help

[-h hostname] : host name

[-e exptname] : experiment name
[-b] : Buffer name

[-v]: Show wheel

[-d] : debug messages

— [-D] : start program as a daemon
» Usage

Thu> mevb -e midas
Program mevb/EBuilder version 2 started

¢ See Event Builder Functions for more details

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 534

6.15.11 mspeaker, mixspeaker tasks

mspeaker, mlxspeaker are utilities which listen to the Midas messages system and
pipe these messages to a speech synthesizer application. mspeaker is for the Windows
based system and interface to the Fi r st Byt e/ Pr oVoi ce package. The mlxs-
peaker is for Linux based system and interface to the Fest i val . In case of use of
either package, the speech synthesis system has to be installed prior to the activation of
the mspeaker, milxspeaker.

» Arguments
— [-h]: help
— [-h hostname] : host name
— [-e exptname] : experiment name
— [-t mt_talk_cmd] : Specify the talk alert command (ux only).
— [-u mt_user_cmd] : Specify the user alert command (ux only).

— [-s shut up time]: Specify the min time interval between alert [s] The -t &
-u switch require a command equivalent to: ’-t play —volume=0.3 file.wav’

— [-D] : start program as a daemon

e Usage

> mlxspeaker -D

6.15.12 mcnaf task

mcnaf is an interactive CAMAC tool which allows "direct" access to the CAMAC
hardware. This application is operational under either of the two following conditions:

1. mcnaf has been built against a particular CAMAC driver (see CAMAC drivers).

2. A user frontend code using a valid CAMAC driver is currently active. In this
case the frontend acts as a RPC CAMAC server and will handle the CAMAC
request. This last option is only available if the frontend code (mfe.c) from the
Building Options has included the HAVE_CAMAC pre-compiler flag.

* Arguments

— [-h]: help

— [-h hostname] : host name

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

http://www.fbyte.com
http://www.cstr.ed.ac.uk/projects/festival

6.15 Quick Start 535

— [-e exptname] : experiment name
— [-f frontend name] : Frontend name to connect to.

— [-s RPC server name] : CAMAC RPC server name for remote connection.

 Building application The midas/utils/makefile.mcnaf will build a collection
of mcnaf applications which are hardware dependent, see Example below:

— [miocnaf] cnaf application using the declared CAMAC hardware DRIVER
(kcs2927 in this case). To be used with dio CAMAC application starter (see
dio task).

— [mwecnaf] cnaf application using the WI-E-N-ER PCI/CAMAC interface
(see CAMAC drivers). Please contact: m das@ri unf. ca for further
information.

— [mcnaf] cnaf application using the CAMAC RPC capability of any Midas
frontend program having CAMAC access.

— [mdrvcnaf] cnaf application using the Linux CAMAC driver for ei-
ther kcs2927, kes2926, dsp004. This application would require to have
the proper Linux module loaded in the system first. Please contact
mailto:m das@ r i unf . ca for further information.

Thu> cd /midas/utils

Thu> make - makefile.mcnaf DRIVER=kcs2927

gcc -03 -1..7include -DOS_LINUX -c -o mcnaf.o mcnaf.c

gcc -03 -1..7/include -DOS_LINUX -c -0 kcs2927.0 ../drivers/bus/kcs2927.c

gcc -03 -1..7include -DOS_LINUX -o miocnaf mcnaf.o kcs2927.0 ../linux/lib/libmidas.a -lutil
gcc -03 -1..7include -DOS_LINUX -c -o wecc32.0 ../drivers/bus/wecc32.c

gcc -03 -1..7include -DOS_LINUX -o mwecnaf mcnaf.o wecc32.0 ../linux/lib/libmidas.a -lutil
gcc -03 -1..7/include -DOS_LINUX -c -0 camacrpc.o ../drivers/bus/camacrpc.c

gcc -03 -1..7include -DOS_LINUX -o mcnaf mcnaf.o camacrpc.o ../linux/lib/libmidas.a -lutil
gcc -03 -1../include -DOS_LINUX -c -o camaclx.o ../drivers/bus/camaclx.c

gcc -03 -1..7/include -DOS_LINUX -o mdrvcnaf mcnaf.o camaclx.o ../linux/lib/libmidas.a -lutil
rm *.o

* Running application

— Direct CAMAC access: This requires the computer to have the proper CA-
MAC interface installed and the BASE ADDRESS matching the value
defined in the corresponding CAMAC driver. For kcs2926.c, kes2927.c,
dsp004.c, hyt1331.c, the base address (CAMAC_BASE) is set to 0x280.

>dio miocnaf

— RPC CAMAC through frontend: This requires to have a frontend running
which will be able to serve the CAMAC RPC request. Any Midas frontend
has that capability built-in but it has to have the proper CAMAC driver
included in it.

>mcnaf -e <expt> -h <host> -f <fe_name>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

mailto:midas@triumf.ca
mailto:midas@triumf.ca

6.15 Quick Start 536

6.15.13 melog task

Electronic Log utility. Submit full Elog entry to the specified Elog port.

* Arguments

[-h]: help

[-h hostname] : host name

[-1 exptname or logbook |

[-u username password]

[-f <attachment>] : up to 10 files.

— -a <attribute>=<value> : up to 20 attributes. The attribute "Author=..."
must at least be present for submission of Elog.

— -m <textfile>> | text> Arguments with blanks must be enclosed in quotes.
The elog message can either be submitted on the command line or in a file
with the -m flag. Multiple attributes and attachments can be supplied.

» Usage By default the attributes are "Author", "Type", "System" and "Subject".
The "Author" attribute has to be present in the elog command in order to success-
fully submit the message. If multiple attributes are required append before "text"
field the full specification of the attribute. In case of multiple attachements, only
one "-f" is required followed by up to 10 file names.

>melog -h myhost -p 8081 -1 myexpt -a author=pierre "Just a elog message"
>melog -h myhost -p 8081 -1 myexpt -a author=pierre -f file2attach.txt \
"Just this message with an attachement"
>melog -h myhost -p 8081 -1 myexpt -a author=pierre -m file_containing_the_message.txt
>melog -h myhost -p 8081 -1 myexpt -a Author=pierre -a Type=routine -a system=general \
-a Subject="my test" "A full Elog message"

* Remarks

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 537

6.15.14 mhist task

History data retriever.

* Arguments

— [-h]: help

— [-e Event ID] : specify event ID

— [-v Variable Name] : specify variable name for given Event ID

— [-1 Index] : index of variables which are arrays

— [-i Index1:Index2] index range of variables which are arrays (max 50)
— [-t Interval] : minimum interval in sec. between two displayed records
— [-h Hours] : display between some hours ago and now

— [-d Days] : display between some days ago and now

— [-f File] : specify history file explicitly

— [-s Start date] : specify start date DDMMY Y[.HHMM]JSS]]

— [-p End date] : specify end date DDMMYY[.HHMM][SS]]

— [-1] : list available events and variables

— [-b] : display time stamp in decimal format

— [-z] : History directory (def: cwd).

e Usage
» Example

-—- All variables of event ID 9 during last hour with at least 5 minutes interval.
> mhist

Available events:

ID 9: Target

ID 5: CHV

ID 6: B12Y

ID 20: System

Select event ID: 9

Available variables:
: Time

Cryostat vacuum
Heat Pipe pressure
Target pressure
Target temperature
Shield temperature
Diode temperature

O WNEO

Select variable (0..6,-1 for all): -1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 538

How many hours: 1
Interval [sec]: 300

Date Time Cryostat vacuum Heat Pipe pressure Target pressure Target temperature
Jun 19 10:26:23 2000 104444 4.614 23.16 -0.498 22.931 82.163 40
Jun 19 10:31:24 2000 104956 .602 23.16 -0.498 22.892 82.108 40
Jun 19 10:36:24 2000 105509 597 23.099 -0.498 22.892 82.126 40
Jun 19 10:41:33 2000 110021 .592 23.16 -0.498 22.856 82.08 40
Jun 19 10:46:40 2000 110534 597 23.147 -0.498 22.892 82.117 40
Jun 19 10:51:44 2000 111046 .622 23.172 -0.498 22.907 82.117 40
Jun 19 10:56:47 2000 111558 .617 23.086 -0.498 22.892 82.117 40
Jun 19 11:01:56 2000 112009 .624 23.208 -0.498 22.892 82.117 40
Jun 19 11:07:00 2000 112521 .629 23.172 -0.498 22.896 82.099 40
Jun 19 11:12:05 2000 113034 .639 23.074 -0.498 22.896 82.117 40
Jun 19 11:17:09 2000 113546 .644 23.172 -0.498 22.892 82.126 40
Jun 19 11:22:15 2000 114059 .661 23.16 -0.498 22.888 82.099 40

AADAMDMDIMDIMDIMDIDDDN

 Single variable "I-WC1+_Anode" of event 5 every hour over the full April
24/2000.

mhist -e 5 -v "I-WC1+_Anode"™ -t 3600 -s 240400 -p 250400
Apr 24 00:00:09 2000 160
Apr 24 01:00:12 2000 160
Apr 24 02:00:13 2000 160
Apr 24 03:00:14 2000 160
Apr 24 04:00:21 2000 180
Apr 24 05:00:26 2000 0
Apr 24 06:00:31 2000 160
Apr 24 07:00:37 2000 160
Apr 24 08:00:40 2000 160
Apr 24 09:00:49 2000 160
Apr 24 10:00:52 2000 160
Apr 24 11:01:01 2000 160
Apr 24 12:01:03 2000 160
Apr 24 13:01:03 2000 0
Apr 24 14:01:04 2000 0
Apr 24 15:01:05 2000 -20
Apr 24 16:01:11 2000 0
Apr 24 17:01:14 2000 0
Apr 24 18:01:19 2000 -20
Apr 24 19:01:19 2000
Apr 24 20:01:21 2000
Apr 24 21:01:23 2000
Apr 24 22:01:32 2000
Apr 24 23:01:39 2000

oOoooo

* Remarks : History data can be retrieved and displayed through the Midas web
page (see mhttpd task).

» Example

Midas Web History display.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 539

MIDAS experiment "e614" Mon Dec 18 14:23:45 2000
‘ ODBl ‘ Alérmsl ‘ Statusl

|Panel: ALL Triggerrate PA hp

@ IE @ @ @ @ E E ‘ Largel | Smalll ‘ Create ELogi ‘ Conﬁgl

hp

26
3 {H3HPLOT

9 [wanpra | M”J’Nj M b

QQ—:'\JW M WMM/ M“"mwmmm““” “

20, [H3HPI3] | el

18 [naupr4n [

] P e P27 o o o N R) 02 o U o e o 9 o O o S B 2 (A el) P e B e
=78 —55 58 =55 =58 =43 —40 =325 —26 =235 =28 =1 —ig =5 |

Figure 38: Midas Web History display.

6.15.15 mchart task

mchart is a periodic data retriever of a specific path in the ODB which can be used in
conjunction with a stripchart graphic program.

* In the first of two step procedure, a specific path in the ODB can be scanned
for composing a configuration file by extracting all numerical data references
file.conf .

* In the second step the mchart will produce at fix time interval a refreshed data
file containing the values of the numerical data specified in the configuration file.
This file is then available for a stripchart program to be used for chart recording
type of graph.

Two possible stripchart available are:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 540

* gstripchart The configuration file generated by mchart is compatible with the
GNU stripchart which permits sofisticated data equation manipulation. On the
other hand, the data display is not very fency and provides just a basic chart
recorder.

» stripchart.tcl file This tcl/tk application written by Gertjan Hofman provides a
far better graphical chart recorder display tool, it also permits history save-set
display, but the equation scheme is not implemented.

* Arguments

— [-h]: help

— [-h hostname] : host name.

— [-e exptname] : experiment name.

— [-D] : start program as a daemon.

— [-u time] : data update periodicity (def:5s).

— [-ffile] : file name (+.conf: if using existing file).

— [-q ODBpath] : ODB tree path for extraction of the variables.
— [-c]: ONLY creates the configuration file for later use.

— [-b lower_value] : sets general lower limit for all variables.
— [-t upper_value] : sets general upper limit for all variables.
— [-g1: spawn the graphical stripchart if available.

— [-gg] : force the use of gstripchart for graphic.

— [-gh] : force the use of stripchart (tcl/tk) for graphic.

» Usage : The configuration contains one entry for each variable found under the
ODBpath requested. The format is described in the gstripchart documentation.

Once the configuration file has been created, it is possible to apply any valid operation
(equation) to the parameters of the file following the gstripchart syntax.
In the case of the use of the stripchart from G.Hofman, only the "filename", "pattern”,

non

"maximum", "minimum" fields are used.

When using mchart with -D Argument, it is necessary to have the MCHART_DIR
defined in order to allow the daemon to find the location of the configuration and data
files (see Environment variables).

chaos:~/chart> more trigger.conf

#Equipment: >/equipment/kos_trigger/statistics
menu: on

slider: on

type: gtk

minor_ticks: 12

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 541

major_ticks: 6
chart-interval: 1.000
chart-filter: 0.500
slider-interval: 0.200
slider-filter: 0.200
begin: Events_sent
filename: /home/chaos/chart/trigger
fields: 2
pattern: Events_sent
equation: \$2
color: \$blue
maximum: 1083540.00
minimum: 270885.00
id_char: 1
end: Events_sent
begin: Events_per_sec.
filename: /home/chaos/chart/trigger
fields: 2
pattern: Events_per_sec.
equation: $2
color: \$red
maximum: 1305.56
minimum: 326.39
id_char: 1
end: Events_per_sec.
begin: kBytes_per_sec.
filename: /home/chaos/chart/trigger
fields: 2
pattern: kBytes_per_sec.
equation: $2
color: \$brown
maximum: 898.46
minimum: 224.61
id_char: 1
end: kBytes_per_sec.

A second file (data file) will be updated a fixed interval by the {mchart} utility.

chaos:~/chart> more trigger
Events_sent 6.620470e+05
Events_per_sec. 6.463608e+02
kBytes_per_sec. 4.424778e+02

» Example

* Creation with ODBpath being one array and one element of 2 sitting under vari-
ables/:

chaos:~/chart> mchart -f chvv -q /Zequipment/chv/variables/chvv -c
chaos:~/chart> Is -1 chvv*

-rwW-r—-r-- 1 chaos users 474 Apr 18 14:37 chvv
-rw-r—-r-- 1 chaos users 4656 Apr 18 14:37 chvv.conf

* Creation with ODBpath of all the sub-keys sittings in variables:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 542

mchart -e myexpt -h myhost -f chv -q Zequipment/chv/variables -c

* Creation and running in debug:

chaos:~/chart> mchart -f chv -q Zequipment/chv/variables -d
CHWV : size:68

#name:17 #Values:17

CHVI : size:68

* Running a pre-existing conf file (chv.conf) debug:

chaos:~/chart> mchart -f chv.conf -d
CHVWV : size:68

#name:17 #Values:17

CHVI : size:68

#name:17 #Values:17

* Running a pre-existing configuration file and spawning gstripchart:

chaos:~/chart> mchart -f chv.conf -gg

spawning graph with gstripchart -g 500x200-200-800 -f /home/chaos/chart/chv.conf ...

* Running a pre-existing configuration file and spawning stripchart, this will work
only if Tcl/Tk and bltwish packages are installed and the stripchart.tcl has been
installed through the Midas Makefile.

chaos:~/chart> mchart -f chv.conf -gh
spawning graph with stripchart /home/chaos/chart/chv.conf ...

6.15.16 mtape task
Tape manipulation utility.

* Arguments

[-h]: help

[-h hostname] : host name

[-e exptname] : experiment name

[-D] : start program as a daemon

* Usage
» Example

>mtape

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 543

6.15.17 dio task

Direct I/O task provider (LINUX).

If no particular Linux driver is installed for the CAMAC access, the dio- program will
allow you to access the I/O ports to which the CAMAC interface card is connected to.
e Arguments
— [application name] : Program name requiring I/O permission.

* Usage

>dio miocnaf
>dio frontend

* Remark
» This "hacking" utility restricts the access to a range of I/O ports from 0x200 to
0x3FF.

* As this mode if I/O access by-passes the driver (if any), concurrent access to the
same I/O port may produce unexpected result and in the worst case it will freeze
the computer. It is therefore important to ensure to run one and only one dio
application to a given port in order to prevent potential hangup problem.

¢ Interrupt handling, DMA capabilities of the interface will not be accessible under
this mode of operation.

6.15.18 stripchart.tcl file

Graphical stripchart data display. Operates on mchart task data or on Midas history
save-set files. (see also History system).
* Arguments
— [-mhist] : start stripchart for Midas history data.

» Usage : stripchart <-options> <config-file>> -mhist: (look at history file
-default) -dmhist: debug mhist -debug: debug stripchart -config_file: see
mchart_task

> stripchart.tcl -debug
> stripchart._tcl

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 544
» Example
> stripchart.tcl -h
gstripchart display with parameters and data pop-up.
= -lo/x]
|Ei|e Help
v e el e el e e vl e e il e e il f k|
-[5]x]
- FParam i:urren"Tup I
A S PC_diff 140, 281, =101 x|
He_Dnff_ -.B76 000
F'C_diﬁ|He_Diﬂ’_J.ﬂ\tmnsphere]F'C_F'umpl Atmosphere 755K 1.51K ressl
Pararm ‘value PC_Pump 218, 438
ldentifier PC_diff
Calor blue
Filename junk.
Pattern PC_diff
Equation 52
Expected range 703 ..
Displayed range 705 ..
Current value 140.

I~ Active

& ok ‘

& Cancel I ‘ 2 Help

Figure 39: gstripchart display with parameters and data pop-up.

stripchart.tcl mhist mode: main window with pull-downs.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start

545

exit help detail-single detail-all
/

scroll time mhist

~

r 2
plus15_crateZ navy
pluss_crate2 yellow
minusZ_crateZ orange
minuss_crateZ red
minus15_crate? cyan
plus15_cratel DarkGreen
pluss_cratel blue3
minus2_cratel brown
minus3_cratel green
minus15_cratel goldenrod

100 s

| Today’s MHIST

<~ 5 mins
<~ 30 mins
% 1 hour
<~ 10 hours

Open old history file
Same file, Hew event
Set history-file path

4~ 24 hours

Mode of Operation:

mhist : Display of history files.

update : Real time display used
with mchart.

Figure 40: stripchart.tcl mhist mode: main window with pull-downs.

stripchart.tcl Online data, running in conjunction with mchart

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 546

& s00m watineg lelt e

el .Eﬁr ! Ve | -
e | B]
rseare g
e 22]
clewe || TPEEE : et | il
1 i - alhan PERn —

T T T T T T T 1
mimaaglicem s s sl i

MAmE | waseen DEONEY Gomad inpms | feeace

Zoorm using mouse dragging. Vx| | Eeereh k|
el
e] 1 R 2

kT _rale2

Rulofea e e v

vine

S e || FRER]
[l R A AAAAARY, p— —— . - i
-523 W Vb sl W WA Ay MALMDE M40 SRITERIE BTG 0aidas oEan
fataitip | 4t i ¥ o oo A : LR i

|| s 1 i P g

= Py 4
wsearn || Hi00H i
T T T T T T W™
25111041 2119340 R — A . __,/ — S S

A et] - UM M@ I A 0303 | R
Frkasesle || P1O000 f: ™ ,/l]
! ! — 0k e
_] /YA wen] o]
Reseal [=
= | 13600 —| ! \ | 1_(\‘ P]
throctelp 1 i % 2 Pl Uiy P T]
) i 4 L et ‘ s
Harccony || 103800 | J\f \ \ T
/ e
Eioas & N

T T T T T E 1
2110006 A1 040 B G643 DIA20I48 05:208E0 054218

snme T miew aiien o ouems | mis
Rescale button Detail-all selection from main window:

- Display 4 graphs per page.

- Page selection on top of window.

Figure 41: stripchart.tcl Online data, running in conjunction with mchart

6.15.19 rmidas task

Root/Midas remote GUI application for root histograms and possible run control under
the ROOT. environment.
e Arguments

— [-h]: help
— [-h hostname] : host name

— [-e exptname] : experiment name
e Usage to be written.

e Example

>rmidas midasserver.domain

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 547

rmidas display sample. Using the example/experiment/ demo setup.

BMidas connected to midas !IEE{
Eile
Histo | status |
FHIS00 I ADC sum |
FHIZ A!JCSUM
ADCSURM Entries 3059
CADCO0 60 Mean 1385
CaDcm RMS 546.9
cabcoz
cabcos 50

40

30

20

10

J|IIII|II IIII|IIII|IIII|JIII|IIII|IIII|IIII

1000 2000 3000 4000 5000 6000 7000 B000 S000 10000

nulll

Llpd_arel C_Ie‘arl

Figure 42: rmidas display sample. Using the example/experiment/ demo setup.

6.15.20 hvedit task

High Voltage editor, graphical interface to the Slow Control System. Originally for
Windows machines, but recently ported on Linux under Qt by Andreas Suter.
e Arguments

— [-h]: help
— [-h hostname] : host name

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 548

— [-e exptname] : experiment name

— [-D] : start program as a daemon
» Usage : To control the high voltage system, the program HVEdit can be used
under Windows 95/NT. It can be used to set channels, save and load values from
disk and print them. The program can be started several times even on different
computers. Since they are all linked to the same ODB arrays, the demand and

measured values are consistent among them at any time. HVEdit is started from
the command line:

» Example

>hvedit

6.15.21 Midas Remote server

mserver provides remote access to any midas client. This task usually runs in the
background and doesn’t need to be modified. In the case where debugging is required,
the mserver can be started with the -d flag which will write an entry for each transaction
appearing onto the mserver. This log entry contains the time stamp and RPC call
request.

e Arguments
— [-h]: help
— [-s]: Single process server
— [-t] : Multi thread server
— [-m] : Milti process server (default)
— [-d] : Write debug info to /tmp/mserver.log

— [-D] : Become a Daemon

e Usage

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

	Midas Data Acquisition
	Midas Module Documentation
	Midas Directory Documentation
	Midas Data Structure Documentation
	Midas File Documentation
	Midas Page Documentation

