Midas Reference Manual
2.0.0-1

Generated by Doxygen 1.3.9.1

Thu Mar 8 23:04:47 2007

6 Midas Page Documentation 355

6 Midas Page Documentation

6.1 MIDAS Analyzer

* The Midas Analyzer application is composed of a collection of files providing
a framework in which the user can gain access to the online data during data
acquisition or offline data through a replay of a stored data save-set.

» The Midas distribution contains 2 directories where predefined set of analyzer
files and their corresponding working demo code are available. The internal
functionality of both example is similar and differ only on the histogram tool
used for the data representation. These analyzer set are specific to 2 major data
analysis tools i.e: ROOT, HBOOK:

— examples/experiment: Analyzer tailored towards ROOT analysis
— examples/hbookexpt: Analyzer tailored towards HBOOK with PAW.

* The purpose of the demo analyzer is to demonstrate the analyzer structure and to
provide the user a set of code "template” for further development. The demo will
run online or offline following the information given further down. The analysis
goal is to:

Initialize the ODB with predefined (user specific) structure (experim.h).

Allocate memory space for histogram definition (booking).

Acquire data from the frontend (or data file).

Sl A

Process the incoming data bank event-by-event through user specific code
(module).

Generate computed quantitied banks (in module).

hd

6. Fill (increment) predefined histogram with data available within the user
code.

7. Produce a result file containing histogram results and computed data (if
possible) for further replay through dedicated analysis tool (PAW, ROOT).

 The analyzer is structured with the following files:

— experim.h

% ODB experiment include file defining the ODB structure required by
the analyzer.

— analyzer.c: main user core code.

% Defines the incoming bank structures

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 356

% Defines the analyzer modules
% Initialize the ODB structure requirements
% Provides Begin_of_Run and End_of_Run functions with run info log-
ging example.
— adccalib.c, adcsum.c, scaler.c (Root example)

+ Three user analysis modules to where events from the demo frontend.c
sends data to.

— Makefile

x Specific makefile for building the corresponding frontend and analyzer
code. The frontend code is build against the camacnul.c driver pro-
viding a simulated data stream.

* ROOT histogram booking code (excerpt of experiment/adcsum.c)

— Histogram under ROOT is supported from version 1.9.5. This provides a
cleaner way to organize the histogram grouping. This functionality is im-
plemented with the function open_subfolder() and close_subfolder(). Ded-
icated Macro is also now available for histogram booking.

INT adc_summing init (void)

/* book ADC sum histo */
hAdcSum = H1_BOOK ("ADCSUM", "ADC sum", 500, 0, 10000);

/* book ADC average in separate subfolder */
open_subfolder ("Average") ;

hAdcAvg = H1_BOOK("ADCAVG", "ADC average", 500, 0, 10000);
close_subfolder() ;

return SUCCESS;

}
* HBOOK histogram booking code (excerpt of hbookexpt/adccalib.c)

INT adc_calib_init (void)
{

char name [256] ;

int 1i;

/* book CADC histos */
for (i = 0; 1 < N _ADC; i++) {
sprintf (name, "CADC%02d", 1i);
HBOOK1 (ADCCALIB ID BASE + i, name, ADC N BINS,
(float) ADC_X LOW, (float) ADC X HIGH, 0.f);

}

return SUCCESS;

* The build is also specific to the type of histogram package involved and requires
the proper libraries to generate the executable. Each directory has its own Make-
file:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 357

— ROOT (examples/experiment)

% The environment SROOTSYS is expected to point to a valid ROOT
installed path.

x The analyzer build requires a Midas core analyzer object file which
should be present in the standard midas/<os>/lib directory. In order
to have this file (rmana.o), the ROOTSYS had to be valid at the time
of the Midas build too (See HAVE_HBOOK).

— HBOOK (examples/hbookexpt)

% The analyzer build requires a Midas core analyzer object file which
should be present in the standatd midas/<os>/lib directory. This file
(hmana.o) doesn’t require any specific library.

% The analyzer build requires also at that stage to have access to some of
the cernlib library files (See HAVE_HBOOK).

— Analyzer Lite

* In the case private histogramming or simple analyzed data storage is
requested, ROOT and HBOOK can be disabled by undefining both
HAVE_ROOT and HAVE_HBOOK during the build.

x This Lite version does’t require any reference to the external his-
togramming package. Removal of specific definition histogram state-
ment, function call from all the demo code (analyzer.c, adccalib.c,
adcsum.c) needs to be done for successful build.

% This Lite version will have no option of saving computed data from
within the system analyzer framework, therefore this operation has to
be performed by the user in the user code (module).

The following MultiStage Concept section describes in more details the analyzer con-
cept and specific of the operation of the demo.

6.1.1 MultiStage Concept

In order to make data analysis more flexible, a multi-stage concept has been chosen for
the analyzer. A raw event is passed through several stages in the analyzer, where each
stage has a specific task. The stages read part of the event, analyze it and can add the
results of the analysis back to the event. Therefore each stage in the chain can read all
results from previous stages. The first stages in the chain typically deal with data cal-
ibration (adccalib.c), while the last stages contain the code which produces "physical"
(adcsum.c) results like particle energies etc. The multi stage concept allows collabora-
tions of people to use standard modules for the calibration stages which ensures that all
members deal with the identical calibrated data, while the last stages can be modified
by individuals to look at different aspects of the data. The stage system makes use of
the MIDAS bank system. Each stage can read existing banks from an event and add

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 358

more banks with calculated data. Following picture gives an example of an analyzer
consisting of three stages where the first two stages make an ADC and a MWPC cali-
bration, respectively. They add a "Calibrated ADC" bank and a "MWPC" bank which
are used by the third stage which calculates angles between particles:

raw ewent fom fo ne-end

an Chank [F an Stages
1
| fﬁDC bank |.TI:II: I:-ank_.| f'.l:l:l Sbanl: .|I _l:al. ADC bank |
2
[ﬁDF bEI'-I}LI TI:II: I:-ank._|_ E.C_I:.IS_!:-ankN!_ Elal.._ﬁfl;lli I:-anlk ||'-.-'I'tI1|'FI:I:-ank t

| Angle cakulations | T 3

[ADCbank | TOC bank | PCOS bank | Cal. ADC bank | MWPC barnk | Angle bank |y

Figure 1: Three stage analyzer.

Since data is contained in MIDAS banks, the system knows how to interpret the data.
By declaring new bank name in the analyzer.c as possible production data bank, a
simple switch in the ODB gives the option to enable the recording of this bank into the
result file. The user code for each stage is contained in a "module". Each module has
a begin-of-run, end-of-run and an event routine. The BOR routine is typically used to
book histograms, the EOR routine can do peak fitting etc. The event routine is called
for each event that is received online or off-line.

6.1.1.1 Analyzer parameters FEach analyzer has a dedicated directory in the ODB
under which all the parameters realitve to this analyzer can be accessed. The path name
is given from the "Analyzer name" specified in the analyzer.c under the analyzer_name.
In case of concurrent analyzer, make sure that no conflict in name is present. By default
the name is "Analyzer".

/* The analyzer name (client name) as seen by other MIDAS clients */
char *analyzer name = "Analyzer";

The ODB structure under it has the following fields

[host:expt:S] /Analyzer>ls -1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 359

Key name Type #Val Size Last Opn Mode Value
Parameters DIR

Output DIR

Book N-tuples BOOL 1 4 1m 0 RWD vy
Bank switches DIR

Module switches DIR

ODB Load BOOL 1 4 19h 0 RWD n
Trigger DIR

Scaler DIR

* Parameters : Created by the analyzer, contains all references to user parameters
section.

* Output : System directory providing output control of the analyzer results.

[local:midas:S] /Analyzer>ls -lr output

Key name Type #Val Size Last Opn Mode Value

Output DIR
Filename STRING 1 256 47h 0 RWD run01100.root
RWNT BOOL 1 4 47h O RWD n
Histo Dump BOOL 1 4 47h 0 RWD n
Histo Dump Filename STRING 1 256 47h 0 RWD his%05d.root
Clear histos BOOL 1 4 47h 0 RWD vy
Last Histo Filename STRING 1 256 47h 0 RWD last.root
Events to ODB BOOL 1 4 47h 0 RWD vy
Global Memory Name STRING 1 8 47h 0 RWD ONLN

Filename : Replay result file name.
RWNT : To be ignored for ROOT, N-Tuple Raw-wise data type.

Histo Dump : Enable the saving of the run results (see next field)

— Histo Dump Filename : Online Result file name

Clear Histos : Boolean flag to enable the clearing of all histograms at the
begining of each run (online or offline).

Last Histo Filename : Temporary results file for recovery procedure.

Event to ODB : Boolean flag for debugging purpose allowing a copy of
the data to be sent to the ODB at regular time interval (1 second).

— Global Memory Name : Shared memory name for communication be-
tween Midas and HBOOK. To be ignored for ROOT as the data sharing is
done through a TCP/IP channel.

e Bank switches : Contains the list of all declared banks (BANK_LIST in
analyzer.c) to be enabled for writing to the output result file. By default all the
banks are disabled.

[local:midas:S] /Analyzer>1ls "Bank switches" -1
Key name Type #Val Size Last Opn Mode Value

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 360

ADCO DWORD 1 4 1h 0 RWD 0
TDCO DWORD 1 4 1h 0 RWD 0
CADC DWORD 1 4 1h 0 RWD 0
ASUM DWORD 1 4 1h 0 RWD 0
SCLR DWORD 1 4 1h 0 RWD 0
ACUM DWORD 1 4 1h 0 RWD 0

¢ Module switches : Contains the list of all declared module (ANA_MODULE in
analyzer.c) to be controlled (by default all modules are enabled)

[local:midas:S] /Analyzer>1ls "module switches" -1

Key name Type #Val Size Last Opn Mode Value
ADC calibration BOOL 1 4 1h 0 RWD vy
ADC summing BOOL 1 4 1h 0 RWD vy
Scaler accumulation BOOL 1 4 1h 0 RWD vy

* ODB Load : Boolean switch to allow retrieval of the entire ODB structure from
the input data file. Used only during offline, this option permits to replay the data
in the same exact condition as during online. All the ODB parameter settings will
be restored to their last value as at the end of the data acquisition of this particular
run.

* Trigger, Scaler : Subdirectories of all the declared requested event.
(ANALYZE_REQUEST in analyzer.c)

* BOOK N_tuples : Boolean flag for booking N-Tuples at the initialization of the
module. This flag is specific to the HBOOK analyzer.

* BOOK TTree : Boolean flag for booking TTree at the initialization of the mod-
ule. This flag is specific to the ROOT analyzer.

6.1.1.2 Analyzer Module parameters Each analyzer module can contain a set of
parameters to either control its behavior, . These parameters are kept in the ODB under
/Analyzer/Parameters/<module name> and mapped automatically to C structures in
the analyzer modules. Changing these values in the ODB can therefore control the
analyzer. In order to keep the ODB variables and the C structure definitions matched,
the ODBEdit command make generates the file experim.h which contains C structures
for all the analyzer parameters. This file is included in all analyzer source code files and
provides access to the parameters from within the module file under the name <module
name>_param.

* Module name: adc_calib_module (extern ANA_MODULE adc_calib_module
from analyzer.c)

¢ Module file name: adccalib.c

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer

361

¢ Module structure declaration in adccalib.c:

ANA MODULE adc_calib module = {

"ADC calibration", /* module name */
"Stefan Ritt", /* author */
adc_calib, /* event routine */
adc_calib bor, /* BOR routine */
adc_calib_eor, /* EOR routine */
adc_calib_init, /* init routine */
NULL, /* exit routine */
&adccalib param, /* parameter structure */
sizeof (adccalib_param), /* structure size */
adc_calibration param str, /* initial parameters */

ODB parameter variable in the code:

moved)

the module name from the structure)

Access to the module parameter:

/* subtract pedestal */

<module name>_param ->
adccalib_param (from adc_calib_module, the _ is dropped, module is re-

ODB parameter path: /<Analyzer>/Parameters/ADC calibration/ (using

+ 0.5);

for (i = 0; 1 < N_ADC; i++)
cadc[i] = (float) ((double) pdatali] - adccalib_param.pedestal[il]
— ODB module parameter declaration
[local:midas:S] Parameters>pwd
/Analyzer/Parameters
[local:midas:S]Parameters>ls -1r
Key name Type #Val Size Last Opn Mode Value
Parameters DIR
ADC calibration DIR
Pedestal INT 8 4 47h 0 RWD
[o] 174
[1] 194
[2] 176
[3] 182
[4] 185
[5] 215
[e] 202
[7] 202
Software Gain FLOAT 8 4 47h 0 RWD
[o] 1
[1] 1
[2] 1
[3] 1
[4] 1
[5] 1
[e] 1
[7] 1
Histo threshold DOUBLE 1 8 47h 0 RWD 20
ADC summing DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 362

ADC threshold FLOAT 1 4 47h 0 RWD 5
Global DIR
ADC Threshold FLOAT 1 4 47h 0 RWD 5

6.1.1.3 Analyzer Flow chart The general operation of the analyzer can be sum-
merized as follow:

* The analyzer is a Midas client at the same level as the odb or any other Midas
Utilities application.

* When the analyzer is started with the proper argument (experiment, host for re-
mote connection or -i input_file, -o output_file for off-line use), the initialization
phase will setup the following items:

1. Setup the internal list of defined module.

ANA MODULE *trigger module[] = {
&adc_calib_module,
&adc_summing module,

NULL

}i
2. Setup the internal list of banks.

BANK LIST ana_trigger bank list[] = {

/* online banks */
{"aDCO", TID STRUCT, sizeof (ADCO_BANK), ana_ adcO bank str}

{"TDCO", TID WORD, N TDC, NULL}

'

3. Define the internal event request structure and attaching the corresponding
module and bank list.

ANALYZE REQUEST analyze request[] = {
{"Trigger", /* equipment name */
{1, /* event ID */
TRIGGER_ALL, /* trigger mask */
GET_SOME, /* get some events */
"SYSTEM", /* event buffer */
TRUE, /* enabled */
o nn'}
NULL, /* analyzer routine */
trigger module, /* module list */
ana_trigger_ bank list, /* bank list */
1000, /* RWNT buffer size */
TRUE, /* Use tests for this event */

}

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 363

Setup the ODB path for each defined module.
Book the defined histograms of each module.

Book memory for N-Tuples or TTree.

N o s

Initialize the internal "hotlinks" to the defined ODB analyzer module pa-
rameter path.

— Once the analyzer is in idle state (for online only), it will wakeup
on the transition "Begin-of-Run" and go sequencially through all the
modules BOR functions. which generally will ensure proper his-
togramming booking and possible clearing. It will resume its idle state
waiting for the arrival of an event matching one of the event request
structure declared during initialization (analyzer.c)

— In case of off-line analysis, once the initialization phase successfully com-
plete, it will go through the BOR and start the event-by-event acquisition.

INT analyzer init()
{
HNDLE hDB, hKey;
char str[80];

RUNINFO_STR (runinfo_str) ;
EXP_PARAM STR (exp_param_str) ;

GLOBAL_PARAM STR(global param str) ;
TRIGGER_SETTINGS_STR(trigger settings_str);

/* open ODB structures */

cm_get_experiment database (&hDB, NULL) ;
db_create_record(hDB, 0, "/Runinfo", strcomb(runinfo_ str));
db_find key(hDB, 0, "/Runinfo", &hKey);

if (db_open record(hDB, hKey, &runinfo, sizeof (runinfo), MODE_READ, NULL,

DB_SUCCESS) {

cm_msg (MERROR, "analyzer init", "Cannot open \"/Runinfo\" tree in ODB");

return 0;

}

1. When an event is received and matches one the the event request structure,
it is passed in sequence to all the defined module for that event request (see
in the ANALYZER_REQUEST structure the line containing the comment
module list.

— If some of the module don’t need to be invoked by the incoming
event, it can be disabled interactively through ODB from the /ana-
lyzer/Module switches directory

[1add00:p3a:Stopped]Module switches>ls

ADC calibration y
ADC summing y
Scaler accumulation Y

[1add00:p3a:Stopped] Module switches>
— if the module switch is enabled, the event will be presented in the
module at the defined event-by-event function declared in the module
structure (adccalib.c) in this case the function is adc_calib().

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

NULL)

1=

6.1 MIDAS Analyzer 364

— The Midas event header is accessible through the pointer pheader
while the data is located by the pointer pevent
INT adc_calib (EVENT_HEADER * pheader, void *pevent)

{

INT i;

WORD *pdata;
float *cadc;

/* look for ADCO bank, return if not present */
if (!bk locate(pevent, "ADCO", &pdata))
return 1;

» Refer to the example found under examples/experiment directory for ROOT
analyzer and examples/hbookexpt directory for HBOOK analyzer.

6.1.1.4 HBOOK analyzer description (old doc) PAWC_DEFINE(8000000);

This defines a section of 8 megabytes or 2 megawords of share memory for
HBOOK/Midas data storage. This definition is found in analyzer.c. In case many his-
tograms are booked in the user code, this value probably has to be increased in order
not to crash HBOOK. If the analyzer runs online, the section is kept in shared memory.
In case the operating system only supports a smaller amount of shared memory, this
value has to be decreased. Next, the file contains the analyzer name

char xanalyzer_name = "Analyzer";

under which the analyzer appears in the ODB (via the ODBEdit command scl). This
also determines the analyzer root tree name as /Analyzer. In case several analyzers
are running simultaneously (in case of distributed analysis on different machines for
example), they have to use different names like Analyzerl and Analyzer2 which then
creates two separate ODB trees /Analyzerl and /Analyzer2 which is necessary to con-
trol the analyzers individually. Following structures are then defined in analyzer.c:
runinfo, global_param, exp_param and trigger_settings. They correspond to the ODB
trees /Runinfo, /Analyzer/Parameters/Global, /Experiment/Run parameters and /Equip-
ment/Trigger/Settings, respectively. The mapping is done in the analyzer_init() routine.
Any analyzer module (via an extern statement) can use the contents of these structures.
If the experiment parameters contain an {lag to indicate the run type for example, the
analyzer can analyze calibration and data runs differently. The module declaration sec-
tion in analyzer.c defines two "chains" of modules, one for trigger events and one for
scaler events. The framework calls these according to their order in these lists. The
modules of type ANA_MODULE are defined in their source code file. The enabled
flag for each module is copied to the ODB under /Analyzer/Module switches. By set-
ting this flag zero in the ODB, modules can be disabled temporarily. Next, all banks
have to be defined. This is necessary because the framework automatically books N-
tuples for all banks at startup before any event is received. Online banks which come
from the frontend are first defined, then banks created by the analyzer:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 365

// online banks
{ "aDCO", TID DWORD, N ADC, NULL },
{ »TDCO", TID DWORD, N_TDC, NULL },

// calculated banks

{ »capc", TID FLOAT, N_ADC, NULL },

{ "asum", TID STRUCT, sizeof (ASUM_BANK) ,
asum bank_str },

The first entry is the bank name, the second the bank type. The type has to match the
type which is created by the frontend. The type TID_STRUCT is a special bank type.
These banks have a fixed length which matches a C structure. This is useful when
an analyzer wants to access named variables inside a bank like asum_bank.sum. The
third entry is the size of the bank in bytes in case of structured banks or the maximum
number of items (not bytes!) in case of variable length banks. The last entry is the
ASCII representation of the bank in case of structured banks. This is used to create the
bank on startup under /Equipment/Trigger/Variables/<bank name>.

The next section in analyzer.c defines the ANALYZE _REQUEST list. This de-
termines which events are received and which routines are called to analyze these
events. A request can either contain an "analyzer routine" which is called to ana-
lyze the event or a "module list" which has been defined above. In the latter case
all modules are called for each event. The requests are copied to the ODB under
/Analyzer/<equipment name>/Common. Statistics like number of analyzed events
is written under /Analyzer/<equipment name>/Statistics. This scheme is very similar
to the frontend Common and Statistics tree under /Equipment/<equipment name>/.
The last entry of the analyzer request determines the HBOOK buffer size for online N-
tuples. The analyzer_init() and analyzer_exit() routines are called when the analyzer
starts or exits, while the ana_begin_of_run() and ana_end_of_run() are called at the be-
ginning and end of each run. The ana_end_of_run() routine in the example code writes
a run log file runlog.txt which contains the current time, run number, run start time and
number of received events.

If more parameters are necessary, perform the following procedure:

1. modify/add new parameters in the current ODB.

[host:expt:S]ADC calibration>set Pedestal[9] 3
[host:expt:S]ADC calibration>set "Software Gain[9]" 3
[host:expt :S]ADC calibration>create double "Upper threshold"
[host:expt:S]ADC calibration>set "Upper threshold" 400
[host:expt:S]ADC calibration>ls -1lr

Key name Type #Val Size Last Opn Mode Value
ADC calibration DIR
Pedestal INT 10 4 2m 0 RWD
(o] 174
[1] 194
[2] 176
[3] 182

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 366

[4] 185

[5] 215

[el 202

[7] 202

[8] 0

[9] 3
Software Gain FLOAT 10 4 2m 0 RWD

[0] 1

[1] 1

[2] 1

[3] 1

[4] 1

[5] 1

[e] 1

[7] 1

[8] 0

[9] 0
Histo threshold DOUBLE 1 8 53m 0 RWD 20
Upper threshold DOUBLE 1 4 3s 0 RWD 400

2. Generate experim.h

[host:expt:S]ADC calibration>make
"experim.h" has been written to /home/midas/online

3. Update the module with the new parameters.

---> adccalib.c

fi1ll ADC histos if above threshold

for (i=0 ; i<n_adc ; i++)

if ((cadc[i] > (float) adccalib_param.histo threshold)

&& (cadc[i] < (float) adccalib_param.upper threshold))
HF1 (ADCCALIB_ID BASE+i, cadc[i], 1.f);

4. Rebuild the analyzer.

In the case global parameter is necessary for several modules, start by doing the step 1
& 2 from the enumeration above and carry on with the following procedure below:

1. Declare the parameter global in analyzer.c

// ODB structures

GLOBAL_PARAM global_param;

2. Update ODB structure and open record for that parameter (hot link).

---> analyzer.c

sprintf (str, "/%s/Parameters/Global", analyzer_ name) ;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 367

db_create_record(hDB, 0, str, strcomb(global param str));
db_find key(hDB, 0, str, &hKey);
if (db_open_record(hDB, hKey, &global_ param

, sizeof (global param), MODE_READ, NULL, NULL) != DB_SUCCESS) {
cm_msg (MERROR, "analyzer init", "Cannot open \"%s\" tree in ODB", str);
return 0;

}
3. Declare the parameter extern in the required module

---> adccalib.c

extern GLOBAL_PARAM global_ param;

6.1.1.5 Online usage with PAW Once the analyzer is build, run it by entering:
analyzer [-h <host name>| [-e <exp name>>]

where <host name> and <exp name> are optional parameters to connect the analyzer
to a remote back-end computer. This attaches the analyzer to the ODB, initializes all
modules, creates the PAW shared memory and starts receiving events from the system
buffer. Then start PAW and connect to the shared memory and display its contents

PAW > global s onln
PAW > hist/list
1 Trigger
2 Scaler
1000 CADCOO
1001 CADCO1
1002 CADCO02
1003 CADCO03
1004 CADCO04
1005 CADCO5
1006 CADCO6
1007 CADCO7
2000 ADC sum

For each equipment, a N-tuple is created with a N-tuple ID equal to the event ID. The
CADC histograms are created from the adc_calib_bor() routine in adccalib.c. The N-
tuple contents is derived from the banks of the trigger event. Each bank has a switch
under /Analyzer/Bank switches. If the switch is on (1), the bank is contained in the
N-tuple. The switches can be modified during runtime causing the N-tuples to be
rebooked. The N-tuples can be plotted with the standard PAW commands:

PAW > nt/print 1

PAW > nt/plot 1.sum
PAW > nt/plot 1.sum cadc0>3000

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 368

1 CHBCT>3000
r TR
. 160 [B
s00 -
i uy
soa I
C 170
400 - —
- ED |
ng = L
- 60 |
| I
- 40 |
0n I
- M -
u' T PR B T [L L
0 00D ZDDOD | 30000 Eod0 10000 1500020000 75000 F0000
SUK M

Figure 2: PAW output for online N-tuples.

While histograms contain the full statistics of a run, N-tuples are kept in a ring-buffer.
The size of this buffer is defined in the ANALYZE_REQUEST structure as the last pa-
rameter. A value of 10000 creates a buffer which contains N-tuples for 10000 events.
After 10000 events, the first events are overwritten. If the value is increased, it might
be that the PAWC size (PAWC_DEFINE in analyzer.c) has to be increased, too. An
advantage of keeping the last 10000 events in a buffer is that cuts can be made imme-
diately without having to wait for histograms to be filled. On the other hand care has
to be taken in interpreting the data. If modifications in the hardware are made during a
run, events which reflect the modifications are mixed with old data. To clear the ring-
buffer for a N-tuple or a histogram during a run, the ODBEdit command [local]/>hi
analyzer <id>

where <id> is the N-tuple ID or histogram ID. An ID of zero clears all histograms but
no N-tuples. The analyzer has two more ODB switches of interest when running on-

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.1 MIDAS Analyzer 369

line. The /Analyzer/Output/Histo Dump flag and /Analyzer/Output/Histo Dump File-
name determine if HBOOK histograms are written after a run. This file contains all
histograms and the last ring-buffer of N-tuples. It can be read in with PAW:

PAW >hi/file 1 run00001l.rz 8190
PAW > 1ldir

The /Analyzer/Output/Clear histos flag tells the analyzer to clear all histograms and
N-tuples at the beginning of a run. If turned off, histograms can be accumulated over
several runs.

6.1.1.6 Offline usage with PAW The analyzer can be used for off-line analysis
without recompilation. It can read from MIDAS binary files (*.mid), analyze the data
the same way as online, and the write the result to an output file in MIDAS binary
format, ASCII format or HBOOK RZ format. If written to a RZ file, the output contains
all histograms and N-tuples as online, with the difference that the N-tuples contain all
events, not only the last 10000. The contents of the N-tuples can be a combination of
raw event data and calculated data. Banks can be turned on and off in the output via
the /Analyzer/Bank switches flags. Individual modules can be activated/deactivated via
the /Analyzer/Module switches flags.

The RZ files can be analyzed and plotted with PAW. Following flags are available when
the analyzer is started off-line:

* -i[filenamel] [filename2] ... Input file name(s). Up to ten different file names can
be specified in a -i statement. File names can contain the sequence "%05d" which
is replaced with the current run number in conjunction with the -r flag. Following
filename extensions are recognized by the analyzer: .mid (MIDAS binary), .asc
(ASCII data), .mid.gz (MIDAS binary gnu-zipped) and .asc.gz (ASCII data gnu-
zipped). Files are un-zipped on-the-fly.

* -0 [filename] Output file name. The file names can contain the sequence "%05d"
which is replaced with the current run number in conjunction with the -r flag.
Following file formats can be generated: .mid (MIDAS binary), .asc (ASCII
data), .rz (HBOOK RZ file), .mid.gz (MIDAS binary gnu-zipped) and .asc.gz
(ASCII data gnu-zipped). For HBOOK files, CWNT are used by default. RWNT
can be produced by specifying the -w flag. Files are zipped on-the-fly.

-1 [range] Range of run numbers to be analyzed like -r 120 125 to analyze runs
120 to 125 (inclusive). The -r flag must be used with a "%05d" in the input file
name.

-n [count] Analyze only count events. Since the number of events for all event
types is considered, one might get less than count trigger events if some scaler
or other events are present in the data.

* -n [first] [last] Analyze only events with serial numbers between first and last.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2 Data format 370

6.2

-n [first] [last] [n] Analyze every n-th event from first to last.

-c [filenamel] [filename2] ... Load configuration file name(s) before analyzing
a run. File names may contain a "%05d" to be replaced with the run number. If
more than one file is specified, parameters from the first file get superseded from
the second file and so on. Parameters are stored in the ODB and can be read by
the analyzer modules. They are conserved even after the analyzer has stopped.
Therefore, only parameters which change between runs have to be loaded every
time. To set a parameter like /Analyzer/Parameters/ADC summing/offset one
would load a configuration file which contains:

[Analyzer/Parameters/ADC summing]
Offset = FLOAT : 123

Loaded parameters can be inspected with ODBEdit after the analyzer has been
started.

-p [param=value] Set individual parameters to a specific value. Overrides
any setting in configuration files. Parameter names are relative to the /An-
alyzer/Parameters directory. To set the key /Analyzer/Parameters/ADC sum-
ming/offset to a specific value, one uses -p "ADC summing/offset"=123. The
quotation marks are necessary since the key name contains a blank. To specify
a parameter which is not under the /Analyzer/Parameters tree, one uses the full
path (including the initial "/") of the parameter like -p "/Experiment/Run Param-
eters/Run mode"=1.

-w Produce row-wise N-tuples in output RZ file. By default, column-wise N-
tuples are used.

-v Convert only input file to output file. Useful for format conversions. No data
analysis is performed.

-d Debug flag when started the analyzer from a debugger. Prevents the system to
kill the analyzer when the debugger stops at a breakpoint.

Data format

Utilities - Top - Supported hardware

Midas supports two differents data format so far. A possible new candidate would be
the NeXus format, but presently no implementation has been developed.

Midas format

YBOS format

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2 Data format 371

6.2.1 Midas format

Special formats are used in MIDAS for the event header, banks and when writing to
disk or tape. This appendix explains these formats in detail. Each event carries a 16-
byte header. The header is generated by the front-end with the bm_compose_event()
routine and is used by consumers to distinguish between different events. The header
is defined in the EVENT_HEADER structure in midas.h. It has following structure:

Event and bank headers with data block.

Eve It | Trigaer Mask
Serial numbiar (1)

EVENT HEADER
Time Stamp

Ewent Dhibn Same [Logte 5) J
All Bank Size fhyies) i

= [BANE,_HEATER
= —
r;ff -_‘_-__-__-1

Eank Mame [4¢her] Eark Wame [char]

T |Mm1’rﬂ=ﬁj Type
| Data | [pave arcde (byted) \BANE32

| Daa ..

| Data. |

Teank Haine [4cbar] | D |

Tyt [Eokamsimu Bak Bt [3char]
| T | Type

Bamk sizs (Torm)
Dwn |

Figure 3: Event and bank headers with data block.

The event ID describes the type of event. Usually 1 is used for triggered events, 2
for scaler events, 3 for HV events etc. The trigger mask can be used to describe the
sub-type of an event. A trigger event can have different trigger sources like "physics
event", "calibration event", "clock event". These trigger sources are usually read in by
the front-end in a pattern unit. Consumers can request events with a specific triggering
mask. The serial number starts at one and is incremented by the front-end for each
event. The time stamp is written by the front-end before an event is read out. It uses
the time() function which returns the time in seconds since 1.1.1970 00:00:00 UTC.
The data size contains the number of bytes that follows the event header. The data area
of the event can contain information in any user format, although only certain formats

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2 Data format 372

are supported when events are copied to the ODB or written by the logger in ASCII
format. Event headers are always kept in the byte ordering of the local machine. If
events are sent over the network between computers with different byte ordering, the
event header is swapped automatically, but not the event contents.

¢ [Bank Format] Events in MIDAS format contain "MIDAS banks". A bank is a
substructure of an event and can contain only one type of data, either a single
value or an array of values. Banks have a name of exactly four characters, which
are treated, as a bank ID. Banks in an event consist of a global bank header and
an individual bank header for each bank. Following picture shows a MIDAS
event containing banks:

The "data size total" is the size in bytes of all bank headers and bank data. Flags
are currently not used. The bank header contains four characters as identification,
a bank type that is one of the TID_xxx values defined in midas.h, and the data
size in bytes. If the byte ordering of the contents of a complete event has to be
swapped, the routine bk_swap() can be used.

* [Tape Format] Events are written to disk files without any reformatting. For
tapes, a fixed block size is used. The block size TAPE_BUFFER_SIZE is defined
in midas.h and usually 32kB. Three special events are produced by the system. A
begin-of-run (BOR) and end-of-run (EOR) event is produced which contains an
ASCII dump of the ODB in its data area. Their IDs is 0x8000 (BOR) and 0x8001
(EOR). A message event (ID 0x8002) is created if Log messages is enabled in the
logger channel setting. The message is contained in the data area as an ASCII
string. The BOR event has the number MIDAS_MAGIC (0x494d or "MI’) as
the trigger mask and the current run number as the serial number. A tape can
therefore be identified as a MIDAS formatted tape. The routine tape_copy() in
the utility mtape.c is an example of how to read a tape in MIDAS format.

6.2.2 YBOS format

As mentioned earlier the YBOS documentation is available at the following URL ad-
dress: Ybos site Originally YBOS is a collection of FORTRAN functions which fa-
cilitate the manipulation of group of data. It also describes a mode of encoding/storing
data in an organized way. YBOS defines specific ways for:

* Gathering related data (bank structure).
* Gathering banks structure (logical record).

* Gathering/Writing/Reading logical record from/to storage device such as disk or
tape. (Physical record).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2 Data format 373

YBOS is organized on a 4-byte alignment structure.

The YBOS library function provides all the tools for manipulation of the above men-
tioned elements in a independent Operating System like. But the implementation of
the YBOS part in Midas does not use any reference to the YBOS library code. Instead
only the strict necessary functions have to be re-written in C and incorporated into the
Midas package. This has been motivated by the fact that only a sub-set of function is
essential to the operation of:

* The front-end code: for the composition of the YBOS event (bank structure,
logical record).
* The data logger: for writing data to storage device (physical record).
This Midas/YBOS implementation restricts the user to a subset of the YBOS package

only for the front-end part. It doesn’t prevent him/her to use the full YBOS library for
stand alone program accessing data file written by Midas.

The YBOS implementation under Midas has the following restrictions:

Single leveled bank structures only (no recursive bank allowed).

* Bank structure of the following type: ASCII, BINARY, WORD, DOUBLE
WORD, IEEE FLOATING.

* No mixed data type bank structure allowed.

* Logical Record format (Event Format) In the YBOS terminology a logical record
refers to a collection of YBOS bank while in the Midas front-end, it can be
referred to as an event. The logical record consists of a logical record length of
a 32bit-word size followed by a single or collection of YBOS bank. The logical
record length counts the number of double word (32bit word) composing the
record without counting itself.

YBOS uses "double word" unit for all length references.

* [Bank Format] The YBOS bank is composed of a bank header 5 double long
words followed by the data section which has to end on a 4 bytes boundary.

Ybos Event and bank headers with data block.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.2 Data format 374

Eve It | Trigaer Mask

Serinl numbiar (1)
Time Stamp
Feent Duta Sice (bytes) | |
Togeal Record Length | | LEL
{in T]

Bunkt Mane [4char]

Eank: mumber [=1)

Bik: Tndei (=) r‘E-:ns_B ANE,_HEADEE.

EVENT_HEADEE

Baxk, Length i 34)
Fak Type

| Daia |
Eanl: TTame [4char]
Bank rumber (=10
Banls Indpe (sl
Bank Length m (1%4)
Bagk Type

Figure 4: Ybos Event and bank headers with data block.

The bank length parameter corresponds to the size of the data section in dou-
ble word count + 1. The supported bank type are defined in the ybos.h file see
YBOS Bank Types.

 [Physical Record (Tape/Disk Format)] The YBOS physical record structure is
based on a fixed block size (8190 double words) composed of a physical record
header followed by data from logical records.

Ybos Physical record structure with data block.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.3 Supported hardware

375

The Offset is computed with the following rules:

LFE
Length of Physical Becard
(amelueive, in ™4 wnite)

LFH
Length of Fhyrical Header
=4

Bacard number
(utart wath 0)

Offzet e 1% YEOS event
(= 4 for 1" svant in FHi

Leogual Hecord Length
™)

Data ...

Data

Largsal Fecawad Length
(i T4

Data

Data

Utilities - Top - Supported hardware

6.3 Supported hardware

» YEOE FHYZREC HEADER

Figure 5: Ybos Physical record structure with data block..

If the logical record extent beyond a full block, the offset will be set to -1.

The mark of the end of file is defined with a logical record length set to -1.

Data format - Top - CAMAC and VME access function call

If the logical record fits completely in the space of the physical record, the offset
value in the physical record header will be 4.

If the block contains first the left over fragment of the previous event started in
the previous block, the offset will be equal to the length of the physical record
header + the left over fragment size.

The driver library is continuously extended to suit the needs of various experiments
based on the selected hardware modules. Not all commercially available modules are

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.3 Supported hardware 376

included as we don’t have all the modules in hand. But you’re more than welcome
to contribute by providing your driver code if the module that you’re using is not yet
listed.

The /drivers directory is subdivided in several directories which refers to either the
type of bus ie: CAMAC, FastBus, VME, PCI, USB or type of software layer such as
Class, Device, Bus.

The software layers sections are used in particular for Slow Control System. Exam-
ple are available in the distribution under examples/slowcont/frontend.c including the
hv and multi class with the nulldev device and null bus driver. Note: not all the de-
vice drivers implement the triple layer (Class,Device,Bus) as some include directly the
hardware calls in the device layer. Please contact midas for specific support or for
submitting new drivers.

Non exhaustive Drivers/ directory structure

= 555 carac B clam -5 dewion -5 dreis =5
-5 an BHED avn B an BEHES)) awm
sl W) oo _sirETe b _pa e H e L L90H £ Bl beaLT
caescrid | c_sq2seT b bb_pih B cearvr12m b]
T o] et - Bl B_pic B rearwsnnc W bt
CETIONG & | e Kl b_paih H AT M2 I'. bl b
cosh . trac caania camre?zh ﬁ bt b
B cosbh Rih dasien . RIS h B toacih
B coaure K mbic dasienlh LES S B boamh
B ez i b dastep bsiiELh K boadei h
B ek I vionedav: dastem b LEoiE P = w3100
ol dd_n 2. I113h A v
A dd_mmzy, B e W) Fgih
Fed 33 e _ca B mash B roimpesh
WAy £ wpica_cah Nk B
Eraxfdah kg 5 RTh n [o]
W oo krpsalh TR K rernih
| T kxidalc wTikh R rtmarh
B vz k5140 h SR B Fermen
FEIHGAC ¥ h K miiooah
ralédSah wwor B =100
Bl iz Kl wesich B 5000 e rab
Bl m1dzah 5D Fastian B e
§l e B am R
Le et Bl IRl B vsowe
L luse LEa ik} B ook
esthedess © il H ok
resthices:, b TR K e
resthiene - ke L1908 h
ranchbwr. b £ awm wH2E
itrankc B kTt wHzh
ok EEDwh W
mldey.c B Wb
B rdevh K| mststdc .
K| wesoh

Figure 6: Drivers/ directory structure

* CAMAC drivers This section is slowly getting obsolete. But still some ISA and
PCI interface are in use. Most recent development is the USB/CAMAC inter-
face from Wiener (CCUSB). While this interface permits CAMAC Command
Stacks this option is not yet supported by the Midas API limiting the access
speed of a R/W 24bit cycle to ~360us!

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.3 Supported hardware 377

* VME drivers The VME API has been revisited for a better function call set.
Not all the hardware modules have been ported to this new scheme. DMA and

Interrupt support have been included. The main hardware support is for the SBS
PCI/VME, SIS PCI/VME, VMIC processor.

» USB drivers USB is getting popular in particular for the MSCB system. Follow-
ing the same concept as for the CAMAC and VME, the musbstd.h/c is available
for USB access.

GPIB drivers

* Other drivers This include the TCP/IP, Serial access layer.

6.3.1 CAMAC drivers

The CAMAC drivers can be used in different configuration and may have special be-
haviors depending on the type of hardware involved. Below are summurized some
remarks about these particular hardware modules.

e CAMAC controllers

— [hyt1331.c] This interface uses an ISA board to connect to the crate con-
troller. This card implement a "fast" readout cycle by re-triggering the
CAMAC read at the end of the previous one. This feature is unfortunately
not reliable when fast processor is used. Wrong returned data can be ex-
pected when CPU clocks is above 250MHz. Attempt on "slowing down"
the IO through software has not guaranteed perfect result. Contact has been
taken with HYTEC in order to see if possible fix can be applied to the in-
terface. First revision of the PC-card PAL has been tested but did not show
improvement. CVS version of the hyt1331.c until 1.2 contains "fast read-
out cycle" and should not be trusted. CVS 1.3 driver revision contains a
patch to this problem. In the mean time you can apply your own patch (see
Frequently Asked Questions) and also Hytec)

— [hyt1331.c Version >= 1.8.3] This version has been modified for 5331 PCI
card support running under the dio task.

— |khyt1331.c Version >= 1.8.3] A full Linux driver is available for the
5331 PCI card interfacing to the hyt1331. The kernel driver has been writ-
ten for the Linux kernel 2.4.2, which comes with RedHat 7.1. It could
be ported back to the 2.2.x kernel because no special feature of 2.4.x are
used, although many data structures and function parameters have changed
between 2.2 and 2.4, which makes the porting a bit painful. The driver
supports only one 5331 card with up to four CAMAC crates.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.3 Supported hardware 378

— [kes292x.¢] The 2926 is an 8 bit ISA board, while the 2927 is a 16bit ISA

board. An equivalent PCI interface (2915) exists but is not yet supported
by Midas (See KCS). No support for Windowx yet.
Both cards can be used also through a proper Linux driver camaclx.c. This
requires to first load a module camac-kcs292x.0. This software is available
but not part of the Midas distribution yet. Please contact midas for further
information.

— [wece32.c] The CAMAC crate controller CC32 interface to a PCI card...
you will need the proper Linux module... Currently under test. Windows-
NT and W95 drivers available but not implemented under Midas. (see
cC32)

— [dsp004.c] The dsp004 is an 8 bit ISA board PC interface which connect
to the PC6002 CAMAC crate controller. This module is not being man-
ufactured anymore, but somehow several labs still have that controller in
use.

— [ces8210.c] The CAMAC crate controller CBD8210 interface is a VME
module to give access up to 7 CAMAC crate. In conjunction with the
mvmestd.h and mcstd.h, this driver can be used on any Midas/VME inter-
face.

— [jorway73a.c] The CAMAC crate controller Jorway73a is accessed
through SCSI commands. This driver implement the mcstd.h calls.

e CAMAC drivers

— [camacnul.c] Handy fake CAMAC driver for code development.

— [camacrpc.c] Remote Procedure Call CAMAC driver used for accessing
the CAMAC server part of the standard Midas frontend code. This driver
is used for example in the mcnaf task, mhttpd task utilities.

6.3.2 VME drivers

The VME modules drivers can be interfaced to any type of PCI/VME controller. This
is done by dedicated Midas VME Standard calls from the mvmestd.h files.

¢ PCI/VME interface

— [sis1100.c] PCI/VME with optical fiber link. Driver is under development
(March 2002). (see SIS).

— [bt617.c] Routines for accessing VME over SBS Bit3 Model 617 interface
under Windows NT using the NT device driver Model 983 and under Linux
using the vmehb device driver. The VME calls are implemented for the
"mvmestd" Midas VME Standard. (see Bit3).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.3 Supported hardware 379

— [wevmemm.c] PCI/VME Wiener board supported. (see Wiener PCI).

— [vxXVME.c] mvmestd implementation for VxWorks Operating System.
Does require cross compiler for the VxWorks target hardware processor
and proper WindRiver license.

¢ VME modules

— [rs1190.c] LeCroy Dual-port memory ECL 32bits.
— [rs1151.c] LeCroy 16 ECL 32bits scalers.

— [1rs2365.c
— [1rs2373.c
— [sis3700.c] SIS FERA Fifo 32 bits.

— [sis3801.c] SIS MultiChannel Scalers 32 channels.

— [s1s3803.c] SIS Standard 32 Scalers 32 bits.

— [ps7106.c] Phillips Scientific Discriminator.

— [ces8210.c] CES CAMAC crate controller.

— [vmeio.c] Triumf VMEIO General purpose 1/O 24bits.

LeCroy Logic matrix.

]
]
]
] LeCroy Memory Lookup unit.
]
]

6.3.3 USB drivers
This section is under development for the Wiener USB/CAMAC CCUSB controller.
Support for Linux and XP is undergo. Please contact midas for further information.

For GPIB Linux support please refer to The Linux Lab Project

6.3.4 GPIB drivers

There is no specific GPIB driver part of the Midas package. But GPIB is used at
Triumf under WindowsNT for several Slow Control frontends. The basic GPIB DLL
library is provided by National Instrument. Please contact midas for further
information.

For GPIB Linux support please refer to The Linux Lab Project

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.4 CAMAC and VME access function call 380

6.3.5 Other drivers

* [Serial driver] rs232.c communication routines.
* [Network driver] tcpip.c/h TCP/IP socket communication routines.

* [SCSI driver] Support for the jorway73a SCSI/CAMAC controller under Linux
has been done by Greg Hackman (see CAMAC drivers).

Data format - Top - CAMAC and VME access function call

6.4 CAMAC and VME access function call

Supported hardware - Top - Midas build options and operation considerations

Midas defines its own set of CAMAC, VME and FASTBUS calls in order to unify the
different hardware modules that it supports. This interface method permits to be totally
hardware as well as OS independent. The same user code developed on a system can
be used as a template for another application on a different operating system.

While the file mcstd.h (Midas Camac Standard) provides the interface for the CAMAC
access, the file mvmestd.h (Midas VME Standard) is for the VME access. An extra
CAMAC interface built on the top of mestd provides the ESONE standard CAMAC
calls (esone.c).

Refers to the corresponding directories under /drivers to find out what module of each
family is already supported by the current Midas distribution. /drivers/divers contains
older drivers which has not yet been converted to the latest API.

6.4.1 Midas CAMAC standard functions

Please refer to mestd.h for function description.

6.4.2 ESONE CAMAC standard functions

Not all the functionality of ESONE standard have been fully tested

Please refer to esone.c for function description.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.4 CAMAC and VME access function call 381

6.4.3 Midas VME standard functions

This API provides basic VME access through a simple set of functions. Refer to
mvmestd.h for more specific information. mvme_open() contains a general access
code sample summarizing most of the mvme commands.

6.4.4 Computer Busy Logic

A "computer busy logic" has to be implemented for a front-end to work properly. The
reason for this is that some ADC modules can be re-triggered. If they receive more
than one gate pulse before being read out, they accumulate the input charge that leads
to wrong results. Therefore only one gate pulse should be sent to the ADC’s, additional
pulses must be blocked before the event is read out by the front-end. This operation is
usually performed by a latch module, which is set by the trigger signal and reset by the
computer after it has read out the event:

The output of this latch is shaped (limited in its pulse with to match the ADC gate
width) and distributed to the ADC’s. This scheme has two problems. The computer
generates the reset signal, usually by two CAMAC output functions to a CAMAC 10
unit. Therefore the duration of the pulse is a couple of ms. There is a non-negligible
probability that during the reset pulse there is another hardware trigger. If this happens
and both inputs of the latch are active, its function is undefined. Usually it generates
several output pulses that lead to wrong ADC values. The second problem lies in the
fact that the latch can be just reset when a trigger input is active. This can happen since
trigger signals usually have a width of a few tens of nanoseconds. In this case the latch
output signal does not carry the timing of the trigger signal, but the timing of the reset
signal. The wrong timing of the output can lead to false ADC and TDC signals. To
overcome this problem, a more elaborate scheme is necessary. One possible solution is
the use of a latch module with edge-sensitive input and veto input. At PSI, the module
"D. TRIGGER / DT102" can be used. The veto input is also connected to the computer:

Latched trigger layout.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.4 CAMAC and VME access function call 382

Hardware trigoer Latch ADC gate
L Set out ————@
Feset

Event readout finished
(via computer 12 moduale)

Figure 7: Latched trigger layout.

To reset this latch, following bit sequence is applied to the computer output (signals are
displayed active low):

Improved Latched trigger layout.

Hardware trigoer Latch ADC gate
L lnput Qut———l
Vet
Resat

L
To cormputer output

Figure 8: Improved Latched trigger layout.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 383

The active veto signal during the reset pulse avoids that the latch can receive a "set"
and a "reset" simultaneously. The edge sensitive input ensures that the latch can only
trigger on a leading edge of a trigger signal, not on the removing of the veto signal. This
ensures that the timing of the trigger is always carried at the ADC/TDC gate signal.

WELD

Feset

Veto Timing.

Figure 9: Veto Timing.

Supported hardware - Top - Midas build options and operation considerations

6.5

Midas build options and operation considerations

CAMAC and VME access function call - Top - Midas Code and Libraries

The section covers the Building Options for customization of the DAQ system as well
as the different Environment variables options for its operation.

6.5.1

Building Options

By default Midas is build with a minimum of pre-compiler flags. But the Make-
file contains options for the user to apply customization by enabling internal
options already available in the package.

— YBOS_VERSION_3_3 , EVID_TWIST , INCLUDE_FTPLIB |,
INCLUDE_ZLIB , SPECIFIC_OS_PRG

Other flags are avaiable at the application level:
— HAVE_CAMAC , HAVE_ROOT , HAVE_HBOOK , HAVE_MYSQL ,
USE_EVENT_CHANNEL , DM_DUAL_THREAD , USE_INT

By default the midas applications are built for use with dynamic library libmi-
das.so. If static build is required the whole package can be built using the option
static.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 384

> make static

The basic Midas package builds without external package library reference. But
it does try to build an extra core analyzer application to be used in conjunc-
tion with ROOT if $SROOTSYS is found. This is required ONLY if the exam-
ples/experiment makefile is used for generating a complete Midas/ROOT ana-
lyzer application.

In case of HBOOK/PAW analyzer application, the build should be done from
examples/hbookexpt directory and the environment variable CERNLIB_PACK
should be pointing to a valid cernpacklib.a library.

For development it could be useful to built individual application in static. This
can be done using the USERFLAGS option such as:

> rm linux/bin/mstat; make USERFLAGS=-static linux/bin/mstat

The current OS support is done through fix flag established in the general Make-
file . Currently the OS supported are:

— OS_OSF1 , OS_ULTRIX , OS_FREEBSD , OS_LINUX , OS -
SOLARIS.

For OS_IRIX please contact Pierre. The OS_VMS is not included in the Make-
file as it requires a particular makefile and since several years now the VMS
support has been dropped.

OSFLAGS = -DOS_LINUX ...

OSFLAGS [2.0.0] For 32 bit built, the OSFLAGS should contains the -m32.
By default this flag is not enabled. It has to be applied to the Makefile for the
frontend examples too.

add to compile midas in 32-bit mode
OSFLAGS += -m32

Other OS supported are:

— OS_WINNT : See file makefile.nt.
— OS_VXWORKS : See file makefile.ppc_tri.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 385

6.5.2 USERFLAGS

This flag can be used at the command prompt for individual application built.

make USERFLAGS=-static linux/bin/mstat

6.5.3 MIDAS_PREF_FLAGS

This flag is for internal global Makefile preference. Included in the OSFLAGS.

MIDAS PREF_FLAGS = -DYBOS_VERSION_3_3 -DEVID_TWIST

6.5.4 HAVE_CAMAC

This flag enable the CAMAC RPC service within the frontend code. The application
mcnaf task and the web CNAF page are by default not CAMAC enabled (HAVE_-
CAMAC undefined).

6.55 HAVE_ROOT

This flag is used for the midas analyzer task in the case ROOT environment is re-
quired. An example of the makefile resides in examples/experiment/Makefile. This
flag is enabled by the presence of a valid ROOTSYS environment variable. In the case
ROOTSYS is not found the analyzer is build without ROOT support. In this later
case, the application rmidas task will be missing. refer to MIDAS Analyzer for further
details.

6.5.6 HAVE _HBOOK

This flag is used for examples/hbookexpt/Makefile for building the midas
analyzer task against HBOOK and PAW. The path to the cernlib is requested and ex-
pected to be found under /cern/pro/lib (see makefile). This can always be overwritten
during the makefile using the following command:

make CERNLIB PACK=<your path>/libpacklib.a

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 386

6.5.7 HAVE_MYSQL

This flag is used for the mlogger task to building the application with mySQL support.
The build requires to have access to the mysql include files as well as the mysql library.

* For operation of the analyzer without HBOOK or ROOT, refer to
MIDAS Analyzer for further details.

6.5.8 SPECIFIC_OS_PRG
This flag is for internal Makefile preference. Used in particular for addi-
tional applications build based on the OS selection. In the example below

mspeaker, mlxspeaker tasks and dio task are built only under OS_LINUX.

SPECIFIC_OS_PRG = $(BIN DIR)/mlxspeaker task $(BIN DIR)/dio task

6.5.9 INCLUDE_FTPLIB

FTP support "INCLUDE_FTPLIB" Application such as the mlogger task,
lazylogger task can use the ftp channel for data transfer.

6.5.10 INCLUDE_ZLIB

The applications lazylogger task, mdump task can be built with zlib.a in order to gain
direct access to the data within a file with extension mid.gz or ybs.gz. By default this
option is disabled except for the system analyzer core code mana.c.

make USERFLAGS=-DINCLUDE ZLIB linux/lib/ybos.o
make USERFLAGS=-static linux/bin/mdump

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.5 Midas build options and operation considerations 387

6.5.11 YBOS_VERSION 3 3

The default built for ybos support is version 4.0. If lower version is required include
YBOS_VERSION_3_3 during compilation of the ybos.c

make USERFLAGS=-DYBOS VERSION 3 3 linux/lib/ybos.o

6.5.12 DM_DUAL_THREAD
Valid only under VxWorks. This flag enable the dual thread task when running the

frontend code under VxWorks. The main function calls are the dm_xxxx in midas.c
(Contact Pierre for more information).

6.5.13 USE_EVENT_CHANNEL

To be used in conjunction with the DM_DUAL_THREAD.

6.5.14 USE_INT

In mfe.c. Enable the use of interrupt mechanism. This option is so far only valid under
VxWorks Operating system. (Contact Stefan or Pierre for further information).

6.5.15 Environment variables

Midas uses a several environment variables to facilitate the different application startup.

6.5.15.1 MIDASSYS From version 1.9.4 this environmental variable is required. It
should point to the main path of the installed Midas package. The application odbedit
will generate a warning message in the case this variable is not defined.

6.5.15.2 MIDAS _EXPTAB This variable specify the location of the exptab file
containing the predefined midas experiment. The default location is for OS_UNIX:
Jetc, /. For OS_WINNT: \system32, \system.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 388

6.5.15.3 MIDAS SERVER HOST This variable predefines the names of the host
on which the Midas experiment shared memories are residing. It is needed when con-
nection to a remote experiment is requested. This variable is valid for Unix as well as
Windows OS.

6.5.15.4 MIDAS_EXPT NAME This variable predefines the name of the exper-
iment to connect by default. It prevents the requested application to ask for the ex-
periment name when multiple experiments are available on the host or to add the -e
<expt_name> argument to the application command. This variable is valid for Unix
as well as Windows OS.

6.5.15.5 MIDAS_DIR This variable predefines the LOCAL directory path where
the shared memories for the experiment are located. It supersede the host_name and
the expt_name as well as the MIDAS_SERVER_HOST and MIDAS_EXPT_NAME
as a given directory path can only refer to a single experiment.

6.5.15.6 MCHART _DIR This variable is ... for later... This variable is valid only
under Linux as the -D is not supported under WindowsXX

CAMAC and VME access function call - Top - Midas Code and Libraries

6.6 Midas Code and Libraries

Midas build options and operation considerations - Top - Frequently Asked Questions

This section covers several aspect of the Midas system.

* State Codes & Transition Codes
* Midas Data Types
— Midas bank examples
* YBOS Bank Types
— YBOS bank examples
* Midas Code and Libraries

6.6.1 State Codes & Transition Codes

o State Codes : These number will be apparent in the ODB under the
ODB /Runlnfo Tree.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 389

— STATE_STOPPED
— STATE_PAUSED
— STATE_RUNNING
* Transition Codes These number will be apparent in the ODB under the
ODB /RunlInfo Tree.
— TR_START
— TR_STOP
— TR_PAUSE
— TR_RESUME

6.6.2 Midas Data Types

Midas defined its own data type for OS compatibility. It is suggested to use them in
order to insure a proper compilation when moving code from one OS to another. f/oat
and double retain OS definition.

BYTE unsigned char

* WORD unsigned short int (16bits word)

* DWORD unsigned 32bits word

* INT signed 32bits word

* BOOL OS dependent.
When defining a data type either in the frontend code for bank definition or in user
code to define ODB variables, Midas requires the use of its own data type declaration.
The list below shows the main Type IDentification to be used (refers to Midas Define
for complete listing):

* TID_BYTE unsigned byte 0 255

» TID_SBYTE signed BYTE -128 127

* TID_CHAR single character 0 255

» TID_WORD two BYTE 0 65535

» TID_SHORT signed WORD -32768 32767

TID_DWORD four bytes 0 2:#%32-1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 390

o TID_INT signed DWORD -2x*31 2%x31-1
» TID_BOOL four bytes bool 0 1
» TID_FLOAT four bytes float format

» TID_DOUBLE eight bytes float format

6.6.3 Midas bank examples

There are several examples under the Midas source code that you can check. Please
have a look at

* Frontend code midas/examples/experiment/frontend.c etc...

* Backend code midas/examples/experiment/analyzer.c etc...

6.6.4 YBOS Bank Types

YBOS defines several type but all types should be 4 bytes aligned. Distinction of
signed and unsigned is not done. When mixing MIDAS and YBOS in the frontend for
RO_ODB see The Equipment structure make sure the bank types are compatible (see

also YBOS Define)
* I1_BKTYPE Bank of Bytes
* 12 BKTYPE Bank of 2 bytes data
* 14 BKTYPE Bank of 4 bytes data
* F4 BKTYPE Bank of float data
* D8 BKTYPE Bank of double data
* A1_BKTYPE Bank of ASCII char

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 391

6.6.5 YBOS bank examples

Basic examples using YBOS banks are available in the midas tree under exam-
ples/ybosexpt.

* Frontend code Example 1, 2 shows the bank creation with some CAMAC ac-
quisition.

77777777 example 1 -------- Simple 16 bits bank construction

void read_cft (DWORD *pevent)

{

DWORD *pbkdat, slot;

ybk_create ((DWORD *)pevent, "TDCP", I2 BKTYPE, &pbkdat) ;
for (slot=FIRST CFT;slot<=LAST CFT;slot++)
{
cami (3,slot, 1,6, (WORD *)pbkdat) ;
((WORD *)pbkdat) ++;
camléi_rqg(3,slot, 0,4, (WORD **)&pbkdat,16) ;
}
ybk_close ((DWORD *)pevent, I2 BKTYPE, pbkdat);
return;

77777777 example 2 -------- Simple 32bit bank construction
DWORD *pbkdat;

ybk_create ((DWORD *)pevent, "TICS", I4 BKTYPE, &pbkdat);
camo(2,22,0,17,ZERO) ;

cam24i_r(2,22,0,0, (DWORD **) &pbkdat,10) ;
cam24i_r(2,22,0,0, (DWORD **) &pbkdat,10) ;
cam24i_r(2,22,0,0, (DWORD **) &pbkdat,10)
cam24i_r(2,22,0,0, (DWORD **) &pbkdat,10)
cam24i_r(2,22,0,0, (DWORD **) &pbkdat,9) ;
ybk _close ((DWORD *)pevent, I4_ BKTYPE, pbkdat);
return 0;

i

i

Example 3 shows a creation of an EVID bank containg a duplicate of the midas header.
As the Midas header is stripped out of the event when data are logger, it is necessary to
compose such event to retain event information for off-line analysis. Uses of predefined
macros (see Midas Code and Libraries) are available in order to extract from a pre-
composed Midas event the internal header fields i.e. Event ID, Trigger mask, Serial
number, Time stamp. In this EVID bank we added the current run number which is
retrieve by the frontend at the begin of a run.

———————— example 3 -------- Full equipment readout function
INT read cum_scaler_ event (char *pevent, INT off)

{

INT i;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 392

DWORD *pbkdat, *pbktop, *podbvar;
ybk_init ((DWORD *) pevent) ;

// collect user hardware SCALER data
ybk_create ((DWORD *)pevent, "EVID", I4 BKTYPE, (DWORD *) (&pbkdat)) ;

* (pbkdat) ++ = gbl_tgt counter++; // event counter
* ((WORD *)pbkdat) = EVENT_ID (pevent) ; ((WORD *)pbkdat) ++;

* ((WORD *)pbkdat) = TRIGGER_MASK (pevent); ((WORD *)pbkdat)++;

* (pbkdat) ++ = SERIAL_NUMBER (pevent) ;

* (pbkdat) ++ = TIME STAMP (pevent) ;

* (pbkdat) ++ = gbl_run number; // run number

ybk_close ((DWORD *)pevent, pbkdat);

// BEGIN OF CUMULATIVE SCALER EVENT
ybk_create ((DWORD *)pevent, "CUSC", I4_ BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; i<NSCALERS ; i++)

*pbkdat++ = scaler[i] .cuvall0];

*pbkdat++ = scaler[i] .cuvallll];

}

ybk_close (DWORD *)pevent, I4_ BKTYPE, pbkdat);
// END OF CUMULATIVE SCALER EVENT

// event in bytes for Midas
return (ybk size ((DWORD *)pevent)) ;

* Backend code If the data logging is done through YBOS format (see
ODB /Logger Tree Format) the events on the storage media will have been
stripped from the MIDAS header used for transfering the event from the fron-
tend to the backend. This means the logger data format is a "TRUE" YBOS
format. Uses of standard YBOS library is then possible.

--- Example of YBOS bank extraction ----

void process_event (HNDLE hBuf, HNDLE request_id, EVENT_HEADER *pheader, void *pevent)
{

INT status;

DWORD *plrl, *pybk, *pdata, bklen, bktyp;

char banklist[YB STRING BANKLIST MAX] ;

// pointer to data section
plrl = (DWORD ¥*) pevent;

// Swap event
yb_any event_ swap (FORMAT YBOS,plrl);

// bank name given through argument list
if ((status = ybk find (plrl, sbank name, &bklen, &bktyp, (void *)&pybk)) == YB SUCCESS)
{
// given bank found in list
status = ybk list (plrl, banklist);
printf ("#banks:%1i Bank list:-%s-\n", status,banklist) ;
printf ("Bank:%s - Length (I*4):%i - Type:%i - pBk:0x%p\n",sbank name, bklen, bktyp, pybk);

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 393

// check id EVID found in event for id and msk selection
if ((status = ybk find (plrl, "EVID", &bklen, &bktyp, (void *)&pybk)) == YB_SUCCESS)

{

pdata = (DWORD *) ((YBOS_BANK HEADER *)pybk + 1);

}

// iterate through the event
pybk = NULL;
while ((bklen = ybk_iterate(plrl, &pybk, (void *)&pdata))
&& (pybk != NULL))
printf ("bank length in 4 bytes unit: %d\n",bklen) ;
}

else

{

status = ybk list (plrl, banklist);
printf ("Bank -%s- not found (%i) in ",sbank name, status);
printf ("#banks:%1i Bank list:-%s-\n",status,banklist);

}

6.6.6 Midas Code and Libraries

The Midas libraries are composed of 5 main source code and their corresponding
header files.

1. The midas.h & midas.c : Midas abstract layer.

2. The msystem.h & system.c : Midas function implementation.

3. The mrpc.h & mrpc.c : Midas RPC functions.

4. The odb.c : Online Database functions.

5. The ybos.h & ybos.c : YBOS specific functions.
Within these files, all the functions have been categorized depending on their scope.

e al_xxx(...) : Alarm system calls
* bk_xxx(...) : Midas bank manipulation calls
* bm_xxx(...) : Buffer management calls

e cm_xxx(...) : Common system calls

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 394

6.6.7

db_xxx(...) : Database managment calls
el _xxx(...) : Electronic Log book calls
hs_xxx(...) : History manipulation calls
ss_xxx(...) : System calls

ybk_xxx(...) : YBOS bank manipulation

MIDAS Macros

Several group of MACROs are available for simplifying user job on setting or getting
Midas information. They are also listed in the Midas Code and Libraries. All of them
are defined in the Midas Macros, System Macros, YBOS Macros header files.

Message Macros. These Macros compact the 3 first arguments of the cm_msg()
call. It replaces the type of message, the routine name and the line number in the
C-code. See example in cm_msg().

— MERROR : For error (MT_ERROR, __ FILE_, _LINE_)

— MINFO : For info (MT_INFO, _ FILE_ , LINE)

— MDEBUG : For debug MT_DEBUG, _ FILE_ , _LINE)

— MUSER : Produced by interactive user (MT_USER, __ FILE_ , _ LINE_-

2

— MLOG : Info message which is only logged (MT_LOG, _ FILE_ , _ -
LINE_)

— MTALK : Info message for speech system (MT_TALK, _ FILE_ , _ -
LINE_)

— MCALL : Info message for telephone call MT_CALL, _ FILE_ , _ -
LINE_)

DAQ Event/LAM Macros. To be used in the frontend/analyzer code.

— CAMAC LAM manipulation. These Macros are used in the frontend
code to interact with the LAM register. Usualy the CAMAC Crate Con-
troler has the feature to register one bit per slot and be able to present this
register to the user. It may even have the option to mask off this register
to allow to set a "general" LAM register containing either "1" (At least one
LAM from the masked LAM is set) or "0" (no LAM set from the maksed
LAM register). The poll_event() uses this feature and return a variable
which contains a bit-wise value of the current LAM register in the Crate
Controller.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.6 Midas Code and Libraries 395

— LAM_SOURCE

— LAM_STATION

— LAM_SOURCE_CRATE
— LAM_SOURCE_STATION

* BYTE swap manipulation. These Macros can be used in the backend analyzer
when little-endian/big-endian are mixed in the event.

— WORD_SWAP
— DWORD_SWAP
— QWORD_SWAP

* MIDAS Event Header manipulation. Every event travelling through the Midas
system has a "Event Header" containing the minimum information required to
identify its content. The size of the header has been kept as small as possible
in order to minimize its impact on the data rate as well as on the data storage
requirment. The following macros permit to read or override the content of the
event header as long as the argument of the macro refers to the top of the Midas
event (pevent). This argument is available in the frontend code in any of the user
readout function (pevent). It is also available in the user analyzer code which
retrieve the event and provide directly access to the event header (pheader) and
to the user part of the event (pevent). Sub-function using pevent would then be
able to get back the the header through the use of the macros.

— TRIGGER_MASK
— EVENT_ID
— SERIAL_NUMBER
— TIME_STAMP
% from examples/experiment/adccalib.c

INT adc_calib (EVENT_HEADER *pheader, void *pevent)

{
INT i, n_adc;
WORD *pdata;
float *cadc;

// look for ADCO bank, return if not present
n_adc = bk_locate(pevent, "ADCO", &pdata);
if (n_adc == 0 || n_adc > N_ADC)

return 1;

// create calibrated ADC bank
bk_create (pevent, "CADC", TID_FLOAT, &cadc);

.

% from examples/experiment/frontend.c

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.7 Frequently Asked Questions 396

INT read_trigger_ event (char *pevent, INT off)

WORD *pdata, a;
INT g, timeout;

// init bank structure
bk_init (pevent) ;

}

— Frontend C-code fragment from running experiment:

INT read _ge_ event (char *pevent, INT offset)

{

static WORD *pdata;
INT i, x, q;
WORD temp;

// Change the time stamp in millisecond for the Super event
TIME STAMP (pevent) = ss_millitime();

bk_init (pevent) ;
bk _create (pevent, "GERM", TID_WORD, &pdata) ;

}

— Frontend C-code fragment from running experiment

lam = * ((DWORD *)pevent) ;

if (lam & LAM_STATION (JW_N))

{

// compose event header
TRIGGER_MASK (pevent) = JW_MASK;
EVENT_ID (pevent) = JW_ID;
SERIAL NUMBER (pevent)= eqg->serial number++;
// read MCS event
size = read mcs_event (pevent) ;
// Correct serial in case event is empty
if (size == 0)
SERIAL NUMBER (pevent) = eqg->serial_ number--;

6.6.7.1 YBOS library Exportable ybos functions through inclusion of ybos.h

Midas build options and operation considerations - Top - Frequently Asked Questions

6.7 Frequently Asked Questions

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.7 Frequently Asked Questions 397

Midas Code and Libraries - Top - Data format

Feel free to ask questions to one of wus (Stefan Ritt
Pierre-Andre Amaudruz) or visitthe Midas Forum

’

1. Why the CAMAC frontend generate a core dump (linux)?

 If you're not using a Linux driver for the CAMAC access, you need to
start the CAMAC frontend application through the task launcher first. See
dio task or mcnaf task. This task laucher will grant you access permission
to the 10 port mapped to your CAMAC interface.

2. Where does Midas log file resides?

* Assoon as any midas application is started, a file midas.log is produce. The
location of this file depends on the setup of the experiment.

(a) if exptab is present and contains the experiment name with the correspond-
ing directory, this is where the file midas.log will reside.

(b) if the midas logger mlogger task is running the midas.log will be in the
directory pointed by the "Data Dir" key under the /logger key in the ODB
tree.

(c) Otherwise the file midas.log will be created in the current directory in
which the Midas application is started.

3. How do I protected my experiment from being controlled by aliases?

* Every experiment may have a dedicated password for accessing the exper-
iment from the web browser. This is setup through the ODBedit program
with the command webpass. This will create a Security tree under /Ex-
periment with a new key Web Password with the encrypted word. By
default Midas allows Full Read Access to all the Midas Web pages. Only
when modification of a Midas field the web password will be requested.
The password is stared as a cookie in the target web client for 24 hours See
ODB /Experiment Tree.

* Other options of protection are described in ODB /Experiment Tree which
gives to dedicated hosts access to ODB or dedicated programs.

4. Can I compose my own experimental web page?

* Only under 1.8.3 though. You can create your own html code using your
favorite HMTL editor. By including custom Midas Tags, you will have
access to any field in the ODB of your experiment as well as the standard
button for start/stop and page switch. See mhttpd task , Custom page.

5. How do I prevent user to modify ODB values while the run is in progress?

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.7 Frequently Asked Questions 398

* By creating the particular /Experiment/Lock when running/ ODB tree,
you can include symbolic links to any odb field which needs to be set to
Read Only field while the run state is on. See ODB /Experiment Tree.

6. Is there a way to invoke my own scripts from the web?

* Yes, by creating the ODB tree /Script every entry in that tree will be avail-
able on the Web status page with the name of the key. Each key entry is
then composed with a list of ODB field (or links) starting with the exe-
cutable command followed by as many arguments as you wish to be passed
to the script. See ODB /Script Tree.

7. I’ve seen the ODB prompt displaying the run state, how do you do that?
* Modify the /System/prompt field. The "S" is the trick.

Fri> odb -e bnmrl -h isdagO0l
[host:expt:Stopped] /cd /System/
[host :expt :Stopped] /System>1ls
Clients

Client Notify 0
Prompt [
Tmp

[host :expt :Stopped] /System
[host:expt:Stopped] /Systemset prompt [%$h:%e:%S]%p>
[host :expt :Stopped] /System>1ls
Clients

Client Notify 0
Prompt [
Tmp

[host:expt:Stopped] /System>set Prompt [%h:%e:%s]%p>
[host:expt:S]/System>set Prompt [%$h:%e:%S]%p>

[host :expt : Stopped] /System>

$h:%e:%S]%p>

8. I’ve setup the alarm on one parameter in ODB but I can’t make it trigger?

e The alarm scheme works only under ONLINE. See ODB /RunlInfo Tree
for Online Mode. This flag may have been turned off due to analysis replay
using this ODB. Set this key back to 1 to get the alarm to work again.

9. How do I extend an array in ODB?

* When listing the array from ODB with the -1 switch, you get a column indi-
cating the index of the listed array. You can extend the array by setting the
array value at the new index. The intermediate indices will be fill with the
default value depending on the type of the array. This can easly corrected
by using the wildcard to access all or a range of indices.

[local:midas

:8]/>mkdir tmp
[local:midas:

/>cd tmp

[local :midas /tmp>create int number
[local:midas /tmp>create string foo
String length [32]:
[local:midas:S]/tmp>ls -1

n n n n

]
]
]
]

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 399

Key name Type #Val Size Last Opn Mode Value
number INT 1 4 >99d 0 RWD O
foo STRING 1 32 1s 0 RWD

[local:midas:S]/tmp>set number[4] 5
[local:midas:S]/tmp>set fool[3]
[local:midas:S]/tmp>1ls -1

Key name Type #Val Size Last Opn Mode Value
number INT 5 4 12s 0 RWD

[o] 0

[1] 0

[2] 0

[3] 0

[4] 5
foo STRING 4 32 2s 0 RWD

[o]

[1]

[2]

[3]
[local:midas:S] /tmp>set number[1..3] 9
[local:midas:S]/tmp>set foo[2] "A default string"
[local:midas:S]/tmp>ls -1

Key name Type #Val Size Last Opn Mode Value
number INT 5 4 26s 0 RWD
[o] 0
[1] 9
[2] 9
[31] 9
[4] 5
foo STRING 4 32 3s 0 RWD
[ol
[1]
[2] A default string
[3]
1. HowdolI ...

Midas Code and Libraries - Top - Data format

6.8 Components

Introduction - Top - Quick Start

Midas system is based on a modular scheme that allows scalability and flexibility. Each
component’s operation is handled by a sub-set of functions. but all the components are
grouped in a single library (libmidas.a, libmidas.so(UNIX), midas.dlI(NT)).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 400

The overall C-code is about 80’000 lines long and makes up over 450 functions (version
1.9.0). But from a user point of view, only a subset of these routines are needed for
most operations.

Each Midas component is briefly described below but throughout the documentation
more detailed information will be given regarding each of their capabilities. All these
components are available from the "off-the-shelf" package. Basic components such
as the Buffer Manager, Online Database, Message System, Run Control are by default
operationals. The other needs are to be enabled by the user simply by either starting an
application or by activation of the component through the Online Database. A general
picture of the Midas system is displayed below.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 401

MIDAS : Maximum Integrated Data Acquisition System

hitp 'mudas.pai.ch Stefen Bt midas@psi.ch

bty ‘oadas. tropmf.ca Picrre-André Amaudnez nudas i triumd oo
MIDAS

Suppsrted 05
MSDOS, WindawaNT,
Limu %, Salaris, O5F1
VeWerks

Midas spplicstions:

o be-dir @ camiral

mdmmp: event Sump

matas: mwins displar

mbixi: hiveery tool

mcnal: CAMALC wal

meape; tape tosl

mebg: Elecorsmic log
Laxylogger: laxy bgger
michart: chart server
sirigchart: chart display

mics praker: speech syuthezer
ansbvzer: wier snalyzsr
wehpaw: PAW web/ midas
TErver

maerver: midan remote werver
mbinpd: mldap wel perver

Supperted hard ware
CAMAT:

«Kineticy 292677 (15:4)
«Harter 1231 {I5A)

€ * odbedt lRun coniteo]
' ; mdimy IE-.rcmdump DSEOD (I54)
WCCAR Wiemer [PC1]

3 CEDAE1D {VaW srks)
§ r
" PAW SME:

-SBE BT&17 (PCI)
"_\—__'___'___'_'_"_"f

WEVMEM3I LT
Figure 10: Components

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 402

The main elements of the Midas package are listed below with a short description of
its functionality.

* Buffer Manager Data flow and messages passing mechanism.

Message System Specific Midas messages flow.

¢ Online Database Central information area.

Frontend Acquisition code.

¢ Midas Server Remote access server (RPC server).
* Data Logger Data storage.

* Analyzer Data analyzer.

* Run Control Data flow control.

* Slow Control system Device monitoring and control.

History system Event history storage and retrival.

* Alarm System Overall system and user alarm.

Electronic Logbook Online User Logbook.

6.8.1 Buffer Manager

The "buffer manager" consists of a set of library functions for event collection and
distribution. A buffer is a shared memory region in RAM, which can be accessed
by several processes, called "clients". Processes sending events to a buffer are called
"producers", processes reading events are called "consumers".

A buffer is organized as a FIFO (First-In-First-Out) memory. Consumers can specify
which type of events they want to receive from a buffer. For this purpose each event
contains a MIDAS header with an event ID and other pertinent information.

Buffers can be accessed locally or remotely via the MIDAS server. The data through-
put for a local configuration composed of one producer and two consumers is about
10MB/sec on a 200 MHz Pentium PC running Windows NT. In the case of remote
access, the network may be the essential speed limitation element.

A common problem in DAQ systems is the possible crash of a client, like a user ana-
lyzer. This can cause the whole system to hang up and may require a restart of the DAQ
inducing a lost of time and eventually precious data. In order to address this problem,
a special watchdog scheme has been implemented. Each client attached to the buffer

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 403

manager signals its presence periodically by storing a time stamp in the shared mem-
ory. Every other client connected to the same buffer manager can then check if the
other parties are still alive. If not, proper action is taken consisting of removing the
dead client hooks from the system leaving the system in a working condition.

6.8.2 Message System

Any client can produce status or error messages with a single call using the MIDAS
library. These messages are then forwarded to any other clients who maybe susceptible
to receive these messages as well as to a central log file system. The message system
is based on the buffer manager scheme. A dedicated buffer is used to receive and
distribute messages. Predefined message type contained in the Midas library covers
most of the message requirement.

6.8.3 Online Database

In a distributed DAQ environment configuration data is usually stored in several files on
different computers. MIDAS uses a different approach. All relevant data for a partic-
ular experiment are stored in a central database called "Online Database" (ODB). This
database contains run parameters, logging channel information, condition parameters
for front-ends and analyzers and slow control values as well as status and performance
data.

The main advantage of this concept is that all programs participating in an experiment
have full access to these data without having to contact different computers. The pos-
sible disadvantage could be the extra load put on the particular host serving the ODB.

The ODB is located completely in shared memory of the back-end computer. The
access function to an element of the ODB has been optimized for speed. Measurement
shows that up to 50,000 accesses per second local connection and around 500 accesses
per second remotely over the MIDAS server can be obtained.

The ODB is hierarchically structured, similar to a file system, with directories and
sub-directories. The data is stored in pairs of a key/data, similar to the Windows NT
registry. Keys can be dynamically created and deleted. The data associated with a key
can be of several types such as: byte, words, double words, float, strings, etc. or arrays
of any of those. A key can also be a directory or a symbolic link (like on Unix).

The Midas library provides a complete set of functions to manage and operate on these
keys. Furthermore any ODB client can register a Hot Link between a local C-structure
and a element of the ODB. Whenever a client (program) changes a value in this sub-
tree, the C-structure automatically receives an update of the changed data. Addition-
ally, a client can register a callback function which will be executed as soon as the
hot-link’s update has been received. For more information see ODB Structure.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 404

6.8.4 Midas Server

For remote access to a MIDAS experiment a remote procedure call (RPC) server is
available. It uses an optimized MIDAS RPC scheme for improved access speed. The
server can be started manually or via inetd (UNIX) or as a service under Windows NT.
For each incoming connection it creates a new sub-process which serves this connec-
tion over a TCP link. The Midas server not only serves client connection to a given
experiment, but takes the experiment’s name as a parameter meaning that only one
Midas server is necessary to manage several experiments on the same node.

6.8.5 Frontend

The frontend program refers to a task running on a particular computer which has ac-
cess to hardware equipment. Several frontends can be attached simultaneously to a
given experiment. Each frontend can be composed of multiple Equipment. Equip-
ment is a single or a collection of sub-task(s) meant to collect and regroup logically or
physically data under a single and uniquely identified event.

This program is composed of a general framework which is experiment independent,
and a set of template routines for the user to fill. This program will:

Register the given Equipment(s) list to the Midas system.

Provide the mean of collecting data from hardware source defined in each equip-
ment.

* Gather these data in a known format (Fixed, Midas, Ybos) for each equipment.
* Sendsthese data to the buffer manager.
* Collect periodically statistic of the acquisition task and send it to the Online

Database.

The frontend framework takes care of sending events to the buffer manager and option-
ally a copy to the ODB. A "Data cache " in the frontend and on the server side reduces
the amount of network operations pushing the transfer speed closer to the physical limit
of the network configuration.

The data collection in the frontend framework can be triggered by several mechanisms.

Currently the frontend supports four different kind of event trigger:

* Periodic events: Scheduled event based on a fixed time interval. They can be
used to read information such as scaler values, temperatures etc.

* Polled events: Hardware trigger information read continuously which in turns if
the signal is asserted it will trigger the equipment readout.

— LAM events: Generated only when pre-defined LAM is asserted:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 405

o Interrupt events: Generated by particular hardware device supporting interrupt
mode.

» Slow Control events: Special class of events that are used in the slow control
system.

Each of these types of triggering can be enabled/activated for a particular experiment
state, Transition State or a combination of any of them. Examples such as "read scaler
event only when running" or "read periodic event if a state is not paused and on all
transitions" are possible.

Dedicated header and library files for hardware access to CAMAC, VME, Fast-
bus, GPIB and RS232 are part of Midas distribution set. For more information see
Frontend code.

6.8.6 Data Logger

The data logger is a client usually running on the backend computer (can be running
remotely but performance may suffer) receiving events from the buffer manager and
saving them onto disk, tape or via FTP to a remote computer. It supports several parallel
logging channels with individual event selection criteria. Data can currently be written
in five different formats: MIDAS binary, YBOS binary, ASCII, ROOT and DUMP (see
Midas format, YBOS format).

Basic functionality of the logger includes:

¢ Run Control based on:

— event limit
— recorded byte limit

— logging device full.

* Logging selection of particular events based on Event Identifier.

Auto restart feature allowing logging of several runs of a given size without user
intervention.

Recording of ODB values to a so called History system

Recording of the ODB to all or individual logging channel at the beginning and
end of run state as well as to a separate disk file in a ASCII format. For more
information see ODB /Logger Tree.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 406

6.8.7 Analyzer

As in the front-end section, the analyzer provided by Midas is a framework on which
the user can develop his/her own application. This framework can be built for private
analysis (no external analyzer hooks) or specific analysis packages such as HBOOK,
ROOT from the CERN (none of those libraries are included in the MIDAS distribu-
tion). The analyzer takes care of receiving events (a few lines of code are necessary to
receive events from the buffer manager), initializes the HBOOK or ROOT system and
automatically books N-tuples/TTree for all events. Interface to user routines for event
analysis is provided.

The analyzer is structured into "stages", where each stage analyzes a subset of the event
data. Low level stages can perform ADC and TDC calibration,while high level stages
can calculate "physics" results. The same analyzer executable can be used to run online
(receive events from the buffer manager) and off-line (read events from file). When
running online, generated N-tuples/TTree are stored in a ring-buffer in shared memory.
They can by analyzed with PAW without stopping the run. For ROOT please refer to
the documentation ...

When running off-line, the analyzer can read MIDAS binary files, analyze the events,
add calculated data for each event and produce a HBOOK RZ output file which can
be read in by PAW later. The analyzer framework also supports analyzer parameters.
It automatically maps C-structures used in the analyzer to ODB records via Hot Link.
To control the analyzer, only the values in the ODB have to be changed which get
automatically propagated to the analyzer parameters. If analysis software has been
already developed, Midas provides the functionality necessary to interface the analyzer
code to the Midas data channel. Support for languages such as C, FORTRAN, PASCAL
is available.

6.8.8 Run Control

As mentioned earlier, the Online Database (ODB) contains all the pertinent informa-
tion regarding an experiment. For that reason a run control program requires only to
access the ODB. A basic program supplied in the package called ODBEdit provides a
simple and safe mean for interacting with ODB. Through that program essentially all
the flexibility of the ODB is available to the user’s fingertips.

Three "Run State" define the state of Midas Stopped, Paused, Running. In order to
change from one state to another, Midas provides four basic "Transition" function 77 -
Start, Tr_pause, Tr_resume, Tr_Stop. During these transition periods, any Midas client
register to receive notification of such message will be able to perform its task within
the overall run control of the experiment.

In Order to provide more flexibility to the transition sequence of all the midas clients
connected to a given experiment, each transition function has a transition sequence
number attached to it. This transition sequence is used to establish within a given
transition the order of the invocation of the Midas clients (from the lower seq.# to the

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 407

largest).
Transitions
Hunning
Resume Fause
Start Faused Stop
otopped

Figure 11: Transitions

6.8.9 Slow Control

The Slow control system is a special front-end equipment or program dedicated to the
control of hardware module based on user parameters. It takes advantage of the Online
Database and its Hot Link capability. Demand and measured values from slow control
system equipment like high voltage power supplies or beam line magnets are stored
directly in the ODB.

To control a device it is then enough to modify the demand values in the database. The
modified value gets automatically propagated to the slow control system, which in turn
uses specific device driver to control the particular hardware. Measured values from
the hardware are periodically send back to the ODB to reflect the current status of the
sub-system.

The Slow control system is organized in "Classes Driver ". Each Class driver refers to
a particular set of functionality of that class i.e. High-Voltage, Temperature, General
I/0, Magnet etc. The implementation of the device specific is done in a second stage
"Device Driver" while the actual hardware implementation is done in a third layer "Bus

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.8 Components 408

Driver". The current MIDAS distribution already has some device driver for general
I/0 and commercial High Voltage power supply system (see Supported hardware). The
necessary code composing the hardware device driver is kept simple by only requiring
a "set channel value" and "read channel value". For the High Voltage class driver, a
graphical user interface under Windows or Qt is already available. It can set, load and
print high voltages for any devices of that class.

6.8.10 History system

The MIDAS history system is a recording function embedded in the mlogger task.
Parallel to its main data logging function of defined channels, the Midas logger can
store slow control data and/or periodic events on disk file. Each history entry consists
of the time stamp at which the event has occurred and the value[s] of the parameter to
be recorded.

The activation of a recording is not controlled by the history function but by the actual
equipment (see Frontend code). This permits a higher flexibility of the history system
such as dynamic modification of the event structure without restarting the Midas logger.
At any given time, data-over-time relation can be queried from the disk file through a
Midas utility mhist task or displayed through the mhttpd task.

The history data extraction from the disk file is done using low level file function giv-
ing similar result as a standard database mechanism but with faster access time. For
instance, a query of a value, which was written once every minute over a period of
one week, is performed in a few seconds. For more information see History system,
ODB /History Tree.

6.8.11 Alarm System

The Midas alarm mechanism is a built-in feature of the Midas server. It acts upon the
description of the required alarm set defined in the Online Database (ODB). Currently
the internal alarms supports the following mechanism:

* ODB value over fixed threshold at regular time interval, a pre-defined ODB value
will be compared to a fixed value.

* Midas client control During Run state transition, pre-defined Midas client name
will be checked if currently present.

* General C-code alarm setting Alarm C function permitting to issue user defined
alarm.

The action triggered by the alarm is left to the user through the mean of running a
detached script. But basic aalrm report is available such as:

* Logging the alarm message to the experiment log file.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.9 Event Builder Functions 409

* Sending a "Electronic Log message" (see Electronic Logbook).

* Interrupt data acquisition. For more information see Alarm System,
ODB /Alarms Tree.

6.8.12 Electronic Logbook

The Electronic logbook is a feature which provides the experimenter an alternative way
of logging his/her own information related to the current experiment. This electronic
logbook may supplement or complement the standard paper logbook and in the mean
time allow "web publishing" of this information. Indeed the electronic logbook infor-
mation is accessible from any web browser as long as the mhttpd task is running in the
background of the system. For more information see Electronic Logbook, mhttpd task.

Introduction - Top - Quick Start

6.9 Event Builder Functions

Midas supports event building operation through a dedicated mevb task application.
Similar to the Midas Frontend application, the mevb task application requires the def-
inition of an equipment structure which describes its mode of operation. The set of
parameter for this equipment is limited to:

* Equipment name (appears in the Equipment list).

* Equipment type (should be 0).

* Destination buffer name (SYSTEM if destination event goes to logger).
* Event ID and Trigger mask for the build event (destination event ID).

e Data format (should match the source data format).

Based on the given buffer name provided at the startup time through the -b buffer -
name argument, the mevb task will scan all the equipments and handle the building of
an event based on the identical buffer name found in the equipment list if the frontend
equipment type includes the EQ_EB flag .

6.9.1 Principle of the Event Builder and related frontend fragment

Possibly in case of multiple frontend, the same "fragment" code may run in the different
hardware frontend. In order to prevent to build nFragment different frontend task, the -i
index provided at the start of the frontend will replicate the same application image with

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.9 Event Builder Functions

410

the necessary dynamic modification required for the proper Event Building operation.
The "-i index" argument will provide the index to be appended to the minimal set of
parameter to distinguish the different frontends. These parameters are:

* frontend_name : Name of the frontend application.

* equipment name : Name of the equipment (from the Equipment structure).

* event buffer: Name of the destination buffer (from the Equipment structure).

Frontend code:

/* The frontend name (client name) as seen by other MIDAS clients */

char *frontend name = "ebfe";
EQUIPMENT equipment[] = {
{"Trigger", /* equipment name */

1, TRIGGER_ALL,

"BUF", /* event buffer */

EQ POLLED | EQ EB,

LAM SOURCE (0, OxFFFFFF), /* event source crate 0,
"MIDAS", /* format */

/* event ID, trigger mask */

/* equipment type + EQ EB flag <<<<<< */

all stations */

Once the frontend is started with -i / , the Midas client name, equipment name and

buffer name will be modified.

> ebfe -i 1 -D

odbedit

[local:midas:S] /Equipment>1ls

Trigger01l

[local:midas:S]Trigger0l>1ls -1r

Key name Type

Trigger01l DIR

Common DIR

Event ID WORD
Trigger mask WORD
Buffer STRING
Type INT
Source INT
Format STRING
Enabled BOOL
Read on INT
Period INT
Event limit DOUBLE
Num subevents DWORD
Log history INT
Frontend host STRING
Frontend name STRING
Frontend file name STRING

FRRRRPRPRRRRRRRPR R

N

18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h
18h

O OO O 000000 oo o oo

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

65535
BUFO01

66
16777215
MIDAS

Y

257

500

0

0

0
hostname
ebfell
.../eventbuilder/ebfe.c

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.9 Event Builder Functions 411

Independently of the event ID, each fragment frontend will send its data to the com-
posed event buffer (BUFxx). The event builder task will make up a list of all the
equipment belonging to the same event buffer name (BUFxx). If multiple equipments
exists in the same frontend, the equipment type (EQ_EB) and the event buffer name
will distinguish them.

The Event Builder flowchart below shows a general picture of the event process cycle of
the task. The Event Builder runs in polling mode over all the source buffers collected
at the begin of run procedure. Once a fragment has been received from all enabled
source ("../Settings/Fragment Required y"), an internal event serial number check is
performed prior passing all the fragment to the user code. Content of each fragment
can be done within the user code for further consistency check.

Event Builder Flowchart.

Midas Evant Bulkder ——
— ((FED -
EEIN = i
e
Hecehn Foagomny
T

rm st - Mo S i s

T TR T T
g e e

i nky b a1 T Gmbasdnlme

e Lagmrnhil
sh_avky b
= = e per=i]
e ek o 1
| 1 B D T I
b _and_d_rad
ol
Hiep Bupewn s T

e | Migias System cals
S = Semppd|

Figure 12: Event Builder Flowchart.

6.9.2 Event builder Tree

The Event builder tree will be created under the Equipment list and will appear as a
standard equipment. The sub tree /Common will contains the specific setting of the
equipment while the /Variables will remain empty. /Settings will have particular pa-
rameter for the Event Builder itself. The User Field is an ASCII string passed from
the ODB to the eb_begin_of_run() which can be used for steering the event builder.

[local:midas:S]EB>1ls -1r
Key name Type #Val Size Last Opn Mode Value

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.9 Event Builder Functions 412

EB DIR
Common DIR
Event ID WORD 1 2 5m 0 RWD 1
Trigger mask WORD 1 2 5m 0 RWD O
Buffer STRING 1 32 5m 0 RWD SYSTEM
Type INT 1 4 5m 0 RWD O
Source INT 1 4 5m 0 RWD O
Format STRING 1 8 5m 0 RWD MIDAS
Enabled BOOL 1 4 5m 0 RWD vy
Read on INT 1 4 5m 0 RWD O
Period INT 1 4 5m 0 RWD O
Event limit DOUBLE 1 8 5m 0 RWD O
Num subevents DWORD 1 4 5m 0 RWD O
Log history INT 1 4 5m 0 RWD O
Frontend host STRING 1 32 5m 0 RWD hostname
Frontend name STRING 1 32 5m 0 RWD Ebuilder
Frontend file name STRING 1 256 5m 0 RWD c:\...\ebuser.c
Variables DIR
Statistics DIR
Events sent DOUBLE 1 8 3s 0 RWDE 944
Events per sec. DOUBLE 1 8 3s 0 RWDE 0
kBytes per sec. DOUBLE 1 8 3s 0 RWDE 0
Settings DIR
Number of Fragment INT 1 4 9s 0 RWD 2
User build BOOL 1 4 9s 0 RWD n
User Field STRING 1 64 9s 0 RWD 100
Fragment Required BOOL 2 4 9s 0 RWD
[0l y
[1] y

6.9.3 EB Operation

Using the "eb>" as the cwd for the example, the test procedure is the following: cwd :
midas/examples/eventbuilder -> refered as eb>

¢ Build the mevb task:

eb> setenv MIDASSYS /home/midas/midas-1.9.5
eb> make
cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -c ebuser.c
cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -o mevb mevb.c \
ebuser.o /usr/local/lib/libmidas.a -1m -1z -lutil -1nsl
cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname \
-c¢ ../../drivers/bus/camacnul.c
cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -o ebfe \
ebfe.c camacnul.o /usr/local/lib/mfe.o /usr/local/lib/libmidas.a \
-lm -1z -lutil -1lnsl
eb>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10

Internal features 413

Start the following 4 applications in 4 differents windows connecting to a de-
fined experiment. — If no experiment defined yet, set the environment variable
MIDAS_DIR to your current directory before spawning the windows.

xterml: eb> ebfe -1 1
xterm2: eb> ebfe -1 2
xterm3: eb> mevb -b BUF
xterm4: eb> odbedit

[local:Default:8]/>1s
System
Programs
Experiment
Logger
Runinfo
Alarms
Equipment
[local:Default:8]/>scl
N([local:midas:S]EB>scl

Name Host

ebfell hostname
ebfel2 hostname
ODBEdit hostname
Ebuilder hostname

[local:Default:8]/>
[local:Default:S]/>start now
Starting run #2

The xterm3 (mevb) should display something equivalent to the following, as the
print statements are coming from the ebuser code.

The same procedure can be repeated with the fel and fe2 started on remote
nodes.

6.10 Internal features

Quick Start - Top - Utilities

This section refers to the Midas built-in capabilities. The following sections describe
in more details the essential aspect of each feature starting from the frontend to the
Electronic Logbook.

Run Transition Sequence : Transition Sequence

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 414

¢ Frontend code

— The Equipment structure : Frontend acquisition characteristics

+ MIDAS event construction : Midas event description
% YBOS event construction : YBOS event description
% FIXED event construction :FIXED event description

— Deferred Transition : Transition postpawning operation
— Super Event : Short event compaction operation

— Event Builder Functions : Event Builder operation

ODB Structure : Online Database Trees

* Hot Link : Notification mechanism

* Alarm System : Alarm scheme

* Slow Control System : Specific Slow Control mechanism
* Electronic Logbook : Essential utility

* Log file : Message, error, report

6.10.1 Run Transition Sequence

The run transition sequence has been modified since Midas version 1.9.5. The new
scheme utilize transition sequence level which provides the user a full control of the
sequencing of any Midas client.

Midas defines 3 states of Data acquistion: STOPPED, PAUSED, RUNNING

These 3 states require 4 transitions : TR _START, TR _PAUSE , TR_RESUME, TR -
STOP

Any Midas client can request notification for run transition. This notification is done by
registering to the system for a given transition (cm_register_transition()) by specifying
the transition type and the sequencing number (1 to 1000). Multiple registration to a
given transition can be requested. This last option permits for example to invoke two
callback functions prior and after a given transition such as the start of the logger.

my application.c
// Callback
INT before logger (INT run_number, char *error)

{

printf ("Initialize ... before the logger gets the Start Transition") ;

return CM_SUCCESS;

}

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 415

// Callback
INT after_logger (INT run_number, char *error)
{

printf ("Log initial info to file... after logger gets the Start Transition") ;

return CM_SUCCESS;

}

INT main()

{

cm_register transition(TR_START, before logger, 100);
cm_register transition(TR_START, after logger, 300);

By Default the following sequence numbers are used:

* Frontend : TR_START: 500, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
500

* Analyzer : TR_START: 500, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
500

* Logger : TR_START: 200, TR_PAUSE: 500, TR_RESUME: 500,TR_STOP:
800

* EventBuilder : TR_START: 300, TR_PAUSE: 500, TR_RESUME: 500,TR_-
STOP: 700

The sequence number appears into the ODBedit under /System/Clients/

[local:midas:S]Clients>1ls -1r

Key name Type #Val Size Last Opn Mode Value
Clients DIR
1832 DIR <——-mm---—--- Frontend 1
Name STRING 1 32 21h 0 R ebfell
Host STRING 1 256 21h 0 R pierre2
Hardware type INT 1 4 21h 0 R 42
Server Port INT 1 4 21h O R 2582
Transition START INT 1 4 21h 0 R 500
Transition STOP INT 1 4 21h 0 R 500
Transition PAUSE INT 1 4 21h 0 R 500
Transition RESUME INT 1 4 21h 0 R 500
RPC DIR
17000 BOOL 1 4 21h 0 R y
3872 DIR <——-mm---—--- Frontend 2
Name STRING 1 32 21h O R ebfel2
Host STRING 1 256 21h 0 R pierre2
Hardware type INT 1 4 21h O R 42
Server Port INT 1 4 21h 0 R 2585
Transition START INT 1 4 21h 0 R 500

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 416

Transition STOP INT 1 4 21h 0 R 500
Transition PAUSE INT 1 4 21h 0 R 500
Transition RESUME INT 1 4 21h 0 R 500
RPC DIR
17000 BOOL 1 4 21h O R Y
2220 DIR <---mmmm-- - ODBedit doesn’t need transition
Name STRING 1 32 42s 0 R ODBEdit
Host STRING 1 256 42s 0 R pierre2
Hardware type INT 1 4 42s 0 R 42
Server Port INT 1 4 42s 0 R 3429
568 DIR <---mmmm-- - Event Builder
Name STRING 1 32 26s 0 R Ebuilder
Host STRING 1 256 26s 0 R pierre2
Hardware type INT 1 4 26s 0 R 42
Server Port INT 1 4 26s O R 3432
Transition START INT 1 4 26s 0 R 300
Transition STOP INT 1 4 26s 0 R 700
2848 DIR Cmmmmmmm—— - Logger
Name STRING 1 32 5s 0 R Logger
Host STRING 1 256 5s 0 R pierre2
Hardware type INT 1 4 5s 0 R 42
Server Port INT 1 4 5s 0 R 3436
Transition START INT 1 4 5s 0 R 200
Transition STOP INT 1 4 5s 0 R 800
Transition PAUSE INT 1 4 5s 0 R 500
Transition RESUME INT 1 4 5s 0 R 500
RPC DIR
14000 BOOL 1 4 5s 0 R Y

The /System/Clients/ ... tree reflects the system at a given time. If a permanent change
of a client sequence number is required, the system call cm_set_transition_sequence()
can be used.

6.10.2 Frontend code

Under MIDAS, experiment hardware is structured into "equipment" which refers to a
collection of hardware devices such as: a set of high voltage supplies, one or more
crates of digitizing electronics like ADCs and TDCs or a set of scaler. On a software
point of view, we keep that same equipment term to refer to the mean of collecting
the data related to this "hardware equipment”. The data from this equipment is then
gathered into an "event" and send to the back-end computer for logging and/or analysis.

The frontend program (image) consists of a system framework contained in mfe.c (hid-
den from the user) and a user part contained in frontend.c . The hardware access is only
apparent in the user code.

Several libraries and drivers exist for various bus systems like CAMAC, VME or
RS232. They are located in the drivers directory of the MIDAS distribution. Some
libraries consist only of a header file, others of a C file plus a header file. The file
names usually refer to the manufacturer abbreviation followed by the model number of

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 417

the device. The libraries are continuously expanding to widen Midas support.

ESONE standard routines for CAMAC are supplied and permit to re-use the frontend
code among different platforms as well as different CAMAC hardware interface with-
out the need of modification of the code.

The user frontend code consists of several sections described in order below. Example
of frontend code can be found under the ../examples/experiment directory:

* [Global declaration] Up to the User global section the declarations are system
wide and should not be removed.

frontend_name This value can be modified to reflect the purpose of the
code.

— frontend_call_loop() Enables the function frontend_loop() to run after ev-
ery equipment loop.

— display_period defined in millisecond the time interval between refresh of
a frontend status display. The value of zero disable the display. If the
frontend is started in a background with the display enabled, the stdout
should be redirected to the null device to prevent process to hang.

— max_event_size specify the maximum size of the expected event in byte.

— event_buffer_size specify the maximum size of the buffer in byte to be
allocated by the system. After these system parameters, the user may add
his or her own declarations.

// The frontend name (client name) as seen by other MIDAS clients
char *frontend name = "Sample Frontend";

// The frontend file name, don’t change it
char *frontend file name = _ FILE ;

// frontend_ loop is called periodically if this variable is TRUE
BOOL frontend call loop = FALSE;

//a frontend status page is displayed with this frequency in ms
INT display period = 3000;

//maximum event size produced by this frontend
INT max_event_size = 10000;

//buffer size to hold events
INT event buffer size = 10*10000;

// Global user section
// number of channels
#define N_ADC 8
#define N_TDC 8
#define N_SCLR 8

CAMAC crate and slots
#define CRATE 0
#define SLOT_C212 23

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 418

#define SLOT_ADC 1
#define SLOT_TDC 2
#define SLOT_SCLR 3

* [Prototype functions] The first group of prototype(7) declare the pre-defined
system functions which should be present. The second group defines the user
functions associated to the declared equipments. All the fields are described in
detailed in the following section.

INT
INT
INT
INT
INT
INT
INT

INT
INT

frontend_init () ;

frontend_exit () ;

begin of run(INT run_number, char *error);
end_of_ run(INT run_number, char *error);
pause_run (INT run_number, char *error);
resume_run (INT run_number, char *error);
frontend_loop() ;

read_trigger_ event (char *pevent, INT off);
read_scaler event (char *pevent, INT off);

— [Remark] Each equipment has the option to force itself to run at individ-

ual transition time see ro_mode . At transition time the system functions
begin_of_run(), end_of_run(), pause_run(), resume_run() runs prior to the
equipment functions. This gives the system the chance to take basic action
on the transition request (Enable/disable LAM) before the equipment runs.
The sequence of operation is the following:

% frontend_init() : Runs once after system initialization, before equip-
ment registration.

% begin_of_run() : Runs after systerm statistics reset, before any other
Equipments at each Begining of Run request.

% pause_run(): Runs before any other Equipments at each Run Pause
request.

% resume_run(): Runs before any other Equipments at each Run Resume
request.

% end_of_run(): Runs before any other Equipments at each End of Run
request.

% frontend_exit(): Runs once before Slow Control Equipment exit.

* [Bank definition] Since the introduction of ROOT , the frontend requires to

hav

e the definition of the banks in the case you desire to store the raw data

in ROOT format. This procedure is equivalent to the bank declaration in the
analyzer. In the case the format declared is MIDAS, the example below shows

the
trig

a structured bank and a standard variable length bank declaration for the
ger bank list. The trigger_bank_list[] is declared in the equipment structure

(see Eq_example).

ADCO_BANK_STR (adcO_bank_str) ;
BANK LIST trigger bank list[] = {

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features

419

{"ADCO", TID STRUCT, sizeof (ADCO_BANK), adcO_bank_str},

{"TDCO", TID WORD, N TDC, NULL},
{ nn } ,
}i

BANK_LIST scaler bank list[] = {
{"SCLR", TID DWORD, N ADC, NULL},
{ nn } ,

}i

* [Equipment definition] See The Equipment structure for further explanation.

#undef USE_INT
EQUIPMENT equipment[] = {

{ "Trigger",
{1, o,
"SYSTEM",
#ifdef USE_INT

EQ INTERRUPT,
#else

EQ_ POLLED,
#endif

LAM SOURCE (CRATE, LAM_ STATION (SLOT C212)),

"MIDAS",
TRUE,
RO_RUNNING |
RO_ODB,

500,

0,

0,

0,

weown |l|l}

read_trigger_event,
NULL, NULL,
trigger bank_list,

}

/!

equipment name

// event ID, trigger mask

/!
//
/!

//
/!
//
//
//
/!
//
//
//

//
//

event buffer
equipment type
equipment type

event source crate 0

format

enabled

read only when running

and update ODB

poll for 500ms

stop run after this event limit
number of sub events

don’t log history

readout routine

bank list

* [frontend_init()] This function run once only at the application startup. Allows
hardware checking, loading/setting of global variables, hot-link settings to the

ODB etc... In case of CAMAC the standard call can be:

cam_init () ;
cam_crate_clear (CRATE) ;
cam_crate_zinit (CRATE) ;
cam_inhibit_ set (CRATE) ;
return SUCCESS;

/!
/!
/!
/!

Init CAMAC access
Clear Crate

Z crate

Set I crate

* [begin_of_run()] This function is called for every run start transition. Allows to
update user parameter, load/setup/clear hardware. At the exit of this function

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 420

the acquisition should be armed and ready to test the LAM. In case of CAMAC
frontend, the LAM has to be declared to the Crate Controller. The function
cam_lam_enable(CRATE, SLOT _IO) is then necessary in order to enable the
proper LAM source station. The LAM source station has to also be enabled
(F20).

The argument run_number provides the current run number being started. The
argument error can be used for returning a message to the system. This string
will be logged into the {b midas.log file.

// clear units
camc (CRATE, SLOT_C212, 0, 9)
camc (CRATE, SLOT 2249A, 0, 9

()
camc (CRATE, SLOT_SC2, 0, 9);
(

camc (CRATE, SLOT_SC3, 0, 9);

camc (CRATE, SLOT_C212, 0, 26); // Enable LAM generation

cam_inhibit_ clear (CRATE) ; // Remove I

cam_lam_enable (CRATE, SLOT_C212); // Declare Station to CC as LAM source

// set and clear OR1320 pattern bits
camo (CRATE, SLOT_OR1320, 0, 18, 0x0330);

camo (CRATE, SLOT_OR1320, 0, 21, 0x0663); // Open run gate, reset latch

return SUCCESS;

* [poll_event()] If the equipment definition is EQ_POLLED as an acquisition
type, the poll_event() will be called as often as possible over the corresponding
poll time (ex:500ms see The Equipment structure) given by each polling equip-
ment. The code below shows a typical CAMAC LAM polling loop. The source
corresponds to a bitwise LAM station susceptible to generate LAM for that par-
ticular equipement. If the LAM is ORed for several stations and is independent
of the equipment, the LAM test can be simplified (see example below)

// Trigger event routines ---------—--—---- -
INT poll_event (INT source, INT count, BOOL test)
// Polling routine for events. Returns TRUE if event
// is available. If test equals TRUE, don’t return. The test
// flag is used to time the polling.

{

int i;
DWORD lam;
for (i=0 ; i<count ; i++)

{

cam_lam read (LAM_SOURCE_CRATE (source), &lam);

if (lam & LAM SOURCE_STATION (source)) // Any of the equipment LAM

// *k*x Oy *kk*

if (lam) // Any LAM (independent of the

if (!test)
return lam;

return O;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

equipment)

6.10 Internal features 421

— [Remark] When multiple LAM sources are specified for a given equip-
ment like:

LAM_SOURCE (JW_C, LAM STATION (GE_N)
| LAM STATION(JW N)),

The polling function will pass to the readout function the actual LAM pat-
tern read during the last polling. This pattern is a bitwise LAM station.
The content of the pevent will be overwritten. This option allows you to
determine which of the stations has been the real source of the LAM.

INT read_trigger_ event (char *pevent, INT off)

{

DWORD lam;
lam = * ((DWORD *)pevent) ;

// check LAM versus MCS station
// The clear is performed at the end of the readout function
if (lam & LAM_STATION (JW_N))

{

* [read_trigger_event()] Event readout function defined in the equip-

ment list. Refer to further section for event composition ex-
planation FIXED event construction s MIDAS event construction s
YBOS event construction .

// Event readout ------------moo oo
INT read_trigger event (char *pevent, INT off)

{

WORD *pdata, a;

// init bank structure
bk_init (pevent) ;

// create ADC bank
bk_create(pevent, "ADCO", TID WORD, &pdata) ;

[pause_run() / resume_run()] These two functions are called respectively upon
"Pause” and "Resume" command. Any code relevant to the upcoming run
state can be included. Possible commands when CAMAC is involved can be
cam_inhibit_set(CRATE) and cam_inhibit_clear(CRATE). The argument run_-
number provides the current run number being paused/resumed. The argument
error can be used for returning a message to the system. This string will be
logged into the midas.log file.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features

422

* [end_of_run()] For every "stop run" transition this function is called and provides
the opportunity to disable the hardware. In case of CAMAC frontend the LAM

should be disabled.

The argument run_number provides the current run number being ended. The
argument error can be used for returning a message to the system. This string
will be logged into the midas.log file.

// set and clear OR1320 pattern bits or close run gate.
camo (CRATE, SLOT_OR1320, 0, 18, 0x0CC3);
camo (CRATE, SLOT_OR1320, 0, 21, 0x0990);

camc (CRATE, SLOT_C212, 0, 26); // Enable LAM generation
cam_lam disable (CRATE, SLOT C212); // disable LAM in crate controller
cam_inhibit_ set (CRATE) ; // set crate inhibit

* [frontend_exit()] This function runs when the frontend is requested to terminate.
Can be used for local statistic collection etc.

6.10.2.1 The Equipment structure To write a frontend program, the user section
(frontend.c) has to have an equipment list organized as a structure definition. Here is the
structure list for a trigger and scaler equipment from the sample experiment example

frontend.c.

#undef USE_INT

EQUIPMENT equipment[] = {
{ "Trigger", // equipment name
{1, o, // event ID, trigger mask
"SYSTEM", // event buffer
#ifdef USE_INT
EQ INTERRUPT, // equipment type
#else
EQ POLLED, // equipment type
#endif
LAM SOURCE (0, OxFFFFFF),// event source crate 0, all stations
"MIDAS", // format
TRUE, // enabled
RO_RUNNING | // read only when running
RO_ODB, // and update ODB
500, // poll for 500ms
0, // stop run after this event limit
0, // number of sub events
0, // don’'t log history
mawn o}
read_trigger event, // readout routine
NULL, NULL,
trigger bank list, // bank list

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10

Internal features 423

["trigger","scaler"]: Each equipment has to have a unique equipment name de-

fined under a given node. The name will be the reference name of the equipment
generating the event.

[1, 0]: Each equipment has to be associated to a unique event ID and a trigger
mask. Both the event ID and the trigger mask will be part of the event header of
that particular equipment. The trigger mask can be modified dynamically by the
readout routine to define a sub-event type on an event-by-event basis. This can
be used to mix "physics events" (from a physics trigger) and "calibration events"
(from a clock for example) in one run and identify them later. Both parameters
are declared as 16bit value. If the Trigger mask is used in a single bit-wise mode,
only up to 16 masks are possible.

["SYSTEM"] After composition of an "equipment”, the Midas frontend mfe.c
takes over the sending of this event to the "system buffer" on the back-end com-
puter. Dedicated buffer can be specified on those lines allowing a secondary
stage on the back-end (Event builder to collect and assemble these events coming
from different buffers in order to compose a larger event. In this case the events
coming from the frontend are called fragment). In this example both events are
placed in the same buffer called "SYSTEM" (default).

[Remark] If this field is left empty ("") the readout function associated to that
equipment will still be performed, but the actual event won’t be sent to the buffer.
The positive side-effect of that configuration is to allow that particular equipment
to be mirrored in the ODB if the RO_ODB is turned on.

[EQ_xxx] The field specify the type of equipment. It can be of a single type such
as EQ_POLLED, EQ_INTERRUPT, EQ_MULTITHREAD, and EQ_SLOW.
EQ_POLLED and EQ_MULTITHREAD are similar expect for the polling func-
tion which in the case of EQ_MULTITHREAD resides in a separate thread. This
new type has been added to take advantage of the multi-core processor and free
up CPU for other task than polling.

[EQ_POLLED] In this mode, the name of the routine performing the trigger
check function is defaulted to poll_event(). As polling consists of checking a
variable for a true condition, if the loop would be infinite, the frontend would
not be able to respond to any network commands. Therefore the loop count is
determined when the frontend starts so that it returns after a given time-out if no
event is available. This time-out is usually in the order of 500 milliseconds. This
flag is mainly used for data acquisition based on a "LAM".

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10

Internal features 424

EQUIPMENT equipment[] = {
{ "Trigger", // eguipment name
500, // poll for 500ms

[EQ_INTERRUPT] For this mode, Midas requires complete configuration and
control of the interrupt source. This is provided by an interrupt configuration
routine interrupt_configure() that has to be coded by the user in the user section
of the frontend code. A pointer to this routine is passed to the system instead of
the polling routine. The interrupt configuration routine has the following decla-
ration:

INT interrupt configure (INT cmd, INT source [], PTYPE adr)

{

switch (cmd)

{

case CMD_INTERRUPT ENABLE:
cam_interrupt_enable() ;
break;

case CMD_INTERRUPT DISABLE:
cam_interrupt_disable() ;
break;

case CMD_INTERRUPT ATTACH:
cam_interrupt_attach((void (*) ())adr);
break;

case CMD_INTERRUPT DETACH:
cam_interrupt_detach() ;
break;

return CM_SUCCESS;

[EQ_PERIODIC] In this mode the function associated to this equipment is called
periodically. No hardware requirements is necessary to trigger the readout func-
tion. The "poll" field in the equipment declaration is in this case used for period-
icity.

[EQ_MULTITHREAD] This new equipment type is valid since version 2.0. It
implements the multi-threading capability within the frontend code. The polling
is performed within a separate thread and uses the ring buffer functions rb_xxx
for inter-thread communication.

[EQ_SLOW] Declare the equipment as a Slow Control equipment. This will
enable the call to the idle function part of the class driver.

[EQ_MANUAL_TRIG] This flag enables the equipment to be triggered by re-
mote procedure call (RPC). If present, the web interface will provide a button for
that action.

[EQ_FRAGMENTED] This flag enables large events (beyond Midas configu-
ration limit) to be handled by the system. This flag requires to have a valid

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10

Internal features 425

max_event_size frag variable defined in the user frontend code (frontend.c).
The max_event_size variable is used as fragment size in this case. This option is
meant to be used in experiments where the event rate is not an issue but the size
of the data needs to be extremely large. In any selected case, when the equipment
is required to run, a declared function is called doing the actual user required op-
eration. Under the four commands listed above, the user has to implement the
adequate hardware operation performing the requested action. In drivers exam-
ples can be found on such an interrupt code. See source code such as hyt1331.c,
ces8210.c.

CMD_INTERRUPT_ENABLE: to enable an interrupt
CMD_INTERRUPT_DISABLE: to disable an interrupt

CMD_INTERRUPT_INSTALL: to install an interrupt callback routine at
address adr.

— CMD_INTERRUPT_DEINSTALL: to de-install an interrupt.

[EQ_EB] This flag identifies the equipment as a fragment event and should be
ored with the EQ_POLLED in order to be identified by the Event_Builder.

[LAM_SOURCE(0,0xFFFFFF)] This parameter is a bit-wise representation of
the 24 CAMAC slots which may raise the LAM. It defines which CAMAC slot
is allowed to trigger the call to the readout routine. (See read_trigger_event()).

["MIDAS"] This line specifies the data format used for generating the event.
The following options are possible: MIDAS, YBOS and FIXED. The format has
to agree with the way the event is composed in the user read-out routine. It tells
the system how to interpret an event when it is copied to the ODB or displayed
in a user-readable form.

MIDAS and YBOS or FIXED and YBOS data format can be mixed at the
frontend level, but the data logger (mlogger) is not able to handle this format
diversity on a event-by-event basis. In practice a given experiment should keep

the data format identical throughout the equipment definition.

[TRUE] "enable" switch for the equipment. Only when enable (TRUE) the re-
lated equipment is active.

[RO_RUNNING] Specify when the read-out of an event should be occurring
(transition state) or be enabled (state). Following options are possible:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features

426

RO_RUNNING Read on state "running"
RO_STOPPED Read on state "stopped"
RO_PAUSED Read on state "paused"”
RO_BOR Read after begin-of-run
RO_EOR Read before end-of-run
RO_PAUSE Read when run gets paused

RO_RESUME Read when run gets resumed
RO_TRANSITIONS Read on all transitions
RO_ALWAYS Read independently of the states and
force a read for all transitions.
RO_ODB Equipment event mirrored into ODB

under variables

These flags can be combined with the logical OR operator. Trigger events in the above
example are read out only when running while scaler events is read out when running
and additionally on all transitions. A special flag RO_ODB tells the system to copy the
event to the /Equipment/<equipment name>/Variables ODB tree once every ten sec-
onds for diagnostic. Later on, the event content can then be displayed with ODBEdit.

[500] Time interval for Periodic equipment (EQ_PERIODIC) or time out value
in case of EQ_POLLING (unit in millisecond).

[0 (stop after...)] Specify the number of events to be taken prior to forcing an
End-Of-Run transition. The value O disables this option.

[0 (Super Event)] Enable the Super event capability. Specify the maximum
number of events in the Super event.

[0 (History system)] Enable the MIDAS history system for that equipment. The
value (positive in seconds) indicates the time interval for generating the event to
be available for history logging by the mlogger task if running.

[nu neonn

,"",""] Reserved field for system. Should be present and remain empty.

[read_trigger_event()] User read-out routine declaration (could be any name).
Every time the frontend is initialized, it copies the equipment settings to the ODB
under /Equipment/<equipment name>/Common. A hot-link to that ODB tree is
created allowing some of the settings to be changed during run-time. Modifica-
tion of "Enabled" flag, RO_xxx flags, "period" and "event limit" from the ODB is
immediately reflected into the frontend which will act upon them. This function
has to be present in the frontend code and will be called for every trigger under
one of the two conditions:

— [In polling mode] The poll_event has detected a trigger request while
polling on a trigger source.

— [In interrupt mode] An interrupt source pre-defined through the interrupt_-
configuration has occurred.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 427

— [Remark 1] The first argument of the readout function provides the pointer
to the newly constructed event and points to the first valid location for stor-
ing the data.

— [Remark 2] The content of the memory location pointed by pevent prior to
its uses in the readout function contains the LAM source bitwise register.
This feature can be exploited in order to identify which slot has triggered
the readout when multiple LAM has been assigned to the same readout
function. Example:

in the equipment declaration

LAM_SOURCE(JW_C, LAM STATION(GE_N) | LAM STATION(JW N)), // event source

nn nn nn
' ’ '

event_dispatcher, // readout routine

INT event dispatcher (char *pevent)

{
DWORD lam, dword;
INT size=0;
EQUIPMENT *eq;

// the *pevent contains the LAM pattern returned from poll event
// The value can be used to dispatch to the proper LAM function

// 11l ONLY one of the LAM is processed in the loop !!!!
lam = * ((DWORD *)pevent) ;

// check LAM versus MCS station
if (lam & LAM_STATION (JW_N))

{

// read MCS event
size = read mcs_event (pevent) ;

else if (lam & LAM STATION(GE_N))

{

// read GE event
size = read_ge_event (pevent) ;

return size;

— [Remark 3] In the example above, the Midas Event Header contains the
same Event ID as the Trigger mask for both LAM. The event serial number
will be incremented by one for every call to event_dispatcher() as long as
the returned size is non-zero.

— [Remark 4] The return value should represent the number of bytes col-
lected in this function. If the returned value is set to zero, The event will be
dismissed and the serial number to that event will be decremented by one.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 428

6.10.2.2 FIXED event construction The FIXED format is the simplest event for-
mat. The event length is fixed and is mapped to a C structure that is filled by the
readout routine. Since the standard MIDAS analyzer cannot work with this format, it
is only recommended for experiment, which uses its own analyzer and wants to avoid
the overhead of a bank structure. For fixed events, the structure has to be defined twice:
Once for the compiler in form of a C structure and once for the ODB in form of an
ASCII representation. The ASCII string is supplied to the system as the "init string" in
the equipment list.

Following statements would define a fixed event with two ADC and TDC values:

typedef struct

int adcO;

int adcl;

int tdcoO;

int tdcl;

TRIGGER_EVENT;
char *trigger event str[] = {
"adcO = INT : O",
"adcl = INT : O",
"tdcO = INT : O",
"tdcl = INT : O",

ASUM_BANK;

The trigger_event_str has to be defined before the equipment list and a reference to it
has to be placed in the equipment list like:

{

read_trigger event, // readout routine
poll trigger event, // polling routine
trigger event str, // init string

’

The readout routine could then look like this, where the <...> statements have to be
filled with the appropriate code accessing the hardware:

INT read_trigger event (char *pevent)

{

TRIGGER_EVENT *ptrg;

ptrg = (TRIGGER_EVENT *) pevent;
ptrg->adc0 = <...>;
ptrg->adcl = <...>;
ptrg->tdc0 = <...>;
ptrg->tdcl = <...>;

return sizeof (TRIGGER_EVENT) ;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 429

6.10.3 MIDAS event construction

The MIDAS event format is a variable length event format. It uses "banks" as subsets of
an event. A bank is composed of a bank header followed by the data. The bank header
itself is made of 3 fields i.e: bank name (4 char max), bank type, bank length. Usually
a bank contains an array of values that logically belong together. For example, an ex-
periment can generate an ADC bank, a TDC bank and a bank with trigger information.
The length of a bank can vary from one event to another due to zero suppression from
the hardware. Besides the variable data length support of the bank structure, another
main advantage is the possibility for the analyzer to add more (calculated) banks during
the analysis process to the event in process. After the first analysis stage, the event can
contain additionally to the raw ADC bank a bank with calibrated ADC values called
CADC bank for example. In this CADC bank the raw ADC values could be offset or
gain corrected.

MIDAS banks are created in the frontend readout code with calls to the MIDAS library.
Following routines exist:

* bk_init() , bk_init32() Initializes a bank structure in an event.

» bk_create() Creates a bank with a given name (exactly four characters)

bk_close() Closes a bank previously opened with bk_create().

bk_locate() Locates a bank within an event by its name.

bk_iterate() Returns bank and data pointers to each bank in the event.

bk_list() Constructs a string with all the banks’ names in the event.

bk_size() Returns the size in bytes of all banks including the bank headers in an
event. The following code composes a event containing two ADC and two TDC
values, the <...> statements have to be filled with specific code accessing the
hardware:

INT read_trigger event (char *pevent)

{

INT *pdata;
bk _init (pevent) ;
*pdata++ <ADCO>

*pdata++ <ADC1>
bk _close (pevent, pdata);

bk create(pevent, "ADCO", TID_INT, &pdata);

*pdata++ <TDCO>
*pdata++ <TDC1>
bk close (pevent, pdata);

bk create(pevent, "TDCO", TID_INT, &pdata);

return bk_size (pevent) ;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 430

Upon normal completion, the readout routine returns the event size in bytes. If the
event is not valid, the routine can return zero. In this case no event is sent to the back-
end. This can be used to implement a software event filter (sometimes called "third
level trigger").

INT read_trigger_ event (char *pevent)

{

WORD *pdata, a;

// init bank structure
bk _init (pevent) ;

// create ADC bank
bk _create (pevent, "ADCO", TID WORD, &pdata) ;

// read ADC bank
for (a=0 ; a<8 ; a++)
cami(l, 1, a, 0, pdata++);

bk _close (pevent, pdata);

// create TDC bank
bk create(pevent, "TDCO", TID WORD, &pdata);

// read TDC bank
for (a=0 ; a<8 ; a++)
cami(l, 2, a, 0, pdata++);

bk close (pevent, pdata);

return bk_size(pevent) ;

6.10.4 YBOS event construction

The YBOS event format is also a bank format used in other DAQ systems. The advan-
tage of using this format is the fact that recorded data can be analyzed with pre-existing
analyzers understanding YBOS format. The disadvantage is that it has a slightly larger
overhead than the MIDAS format and it supports fewer bank types. An introduction to
YBOS can be found under:

YBOS

The scheme of bank creation is exactly the same as for MIDAS events, only the routines
are named differently. The YBOS format is double word oriented i.e. all incrementa-
tion are done in 4 bytes steps. Following routines exist:

 ybk_init() Initializes a bank structure in an event.

* ybk_create() Creates a bank with a given name (exactly four characters)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 431

» ybk_close() Closes a bank previously opened with ybk_create().

» ybk_size() Returns the size in bytes of all banks including the bank headers in
an event.

The following code creates an ADCO bank in YBOS format:

INT read_trigger event (char *pevent)

{

DWORD 1i;
DWORD *pbkdat ;

ybk_init ((DWORD *) pevent) ;

// collect user hardware data
ybk_create ((DWORD *)pevent, "ADCO", I4_ BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; i<8 ; i++)
*pbkdat++ = i & OxXFFF;
ybk_close ((DWORD *)pevent, pbkdat);

ybk_ create ((DWORD *)pevent, "TDCO", I2 BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; 1i<8 ; 1i++)

* ((WORD *)pbkdat)++ = (WORD) (0x10+i) & OxXFFF;
ybk_close ((DWORD *) pevent, pbkdat);

ybk_create ((DWORD *)pevent, "SIMU", I2 BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; 1i<9 ; i++)

* ((WORD *)pbkdat)++ = (WORD) (0x20+1i) & OXFFF;
ybk_close ((DWORD *) pevent, I2 BKTYPE, pbkdat);

return (ybk size ((DWORD *)pevent)) ;

6.10.5 Deferred Transition

This option permits the user to postpone any transition issued by any requester until
some condition are satisfied. As examples:

It may not be advised to pause or stop a run until let say some hardware has
turned off a particular valve.

* The start of the acquisition system is postponed until the beam rate has been
stable for a given period of time.

* While active, a particular acquisition system should not be interrupted until the
"cycle" is complete.

In these examples, any application having access to the state of the hardware can regis-
ter to be a "transition Deferred" client. It will then catch any transition request and post-
pone the trigger of such transition until condition is satisfied. The Deferred_Transition
requires 3 steps for setup:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 432

* Register the deferred transition.

//-- Frontend Init

INT frontend init ()

{
INT status, index, size;
BOOL found=FALSE;

// register for deferred transition
cm_register deferred transition(TR_STOP, wait_end_cycle) ;
cm_register deferred transition(TR_PAUSE, wait_end cycle);

¢ Provide callback function to serve the deferred transition

//-- Deferred transition callback
BOOL wait_end cycle(int transition, BOOL first)
{
if (first)
transition PS_requested = TRUE;
return FALSE;

if (end of mcs_cycle)

{
transition PS_requested = FALSE;
end_of mcs_cycle = FALSE;
return TRUE;

else
return FALSE;

* Implement the condition code

In this case at the end of the readout function...

INT read mcs_event (char *pevent, INT offset)

{

if (transition_ PS_ requested)
{
// Prevent to get new MCS by skipping re arm cycle and GE by GE DISABLE LAM
cam_lam disable (JW_C,JW_N) ;
cam_lam disable (GE_C,GE_N) ;
cam_lam clear (JW_C,JW _N) ;
cam_lam clear(GE_C,GE_N) ;
camc (GE_C,GE_N, 0,GE_DISABLE) ;
end_of mcs_cycle = TRUE;

re_arm cycle();
return bk_size (pevent) ;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 433

In the example above the frontend code register for PAUSE and STOP. The sec-
ond argument of the cm_register wait_end cycle is the declaration of the call-
back function. The callback function will be called as soon as the transition
is requested and will provide the Boolean flag first to be TRUE. By setting the
transition_PS_requested , the user will have the acknowledgment of the tran-
sition request. By returning FALSE from the callback you will prevent the
transition to occur. As soon as the user condition is satisfied (end_of mecs_-
cycle = TRUE), the return code in the callback will be set to TRUE and the
requested transition will be issued. The Deferred transition shows up in the
ODB under /runinfo/Requested transition and will contain the transition code
(see State Codes & Transition Codes). When the system is in deferred state,
an ODBedit override command can be issued to force the transition to happen.
eg: odbedit> stop now, odbedit> start now . This overide will do the transition
function regarless of the state of the hardware involved.

6.10.6 Super Event

The Super Event is an option implemented in the frontend code in order to reduce
the amount of data to be transfered to the backend by removing the bank header for
each event constructed. In other words, when an equipment readout in either MIDAS
or YBOS format (bank format) is complete, the event is composed of the bank header
followed by the data section. The overhead in bytes of the bank structure is 16 bytes
for bk_init(), 20 bytes for bk_init32() and ybk_init(). If the data section size is close
to the number above, the data transfer as well as the data storage has an non-negligible
overhead. To address this problem, the equipment can be setup to generate a so called
Super Event which is an event composed of the initial standard bank header for the
first event of the super event and up to number of sub event maximum successive
data section before the closing of the bank.

To demonstrate the use of it, let’s see the following example:

* Define equipment to be able to generate Super Event

{ "ce", // equipment name
2, 0x0002, // event ID, trigger mask
"SYSTEM", // event buffer

#ifdef USE_INT
EQ INTERRUPT, // equipment type

#else
EQ POLLED, // equipment type

#endif
LAM_ SOURCE (GE_C, LAM STATION(GE_N)), // event source
"MIDAS", // format
TRUE, // enabled
RO_RUNNING, // read only when running
200, // poll for 200ms

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 434

0, // stop run after this event limit

1000, /] ----- > number of sub event <----- enable Super event
0, // don’t log history

TS

read _ge event, // readout routine

i

* Setup the readout function for Super Event collection.

//-- Event readout
// Global and fixed -- Expect NWORDS 16bits data readout per sub-event
#define NWORDS 3

INT read_ge_event (char *pevent, INT offset)

{

static WORD *pdata;

// Super event structure
if (offset == 0)
{
// FIRST event of the Super event
bk_init (pevent) ;
bk create(pevent, "GERM", TID_WORD, &pdata) ;

else if (offset == -1)

{
// close the Super event if offset is -1
bk _close (pevent, pdata);

// End of Super Event
return bk_size(pevent) ;

// read GE sub event (ADC)

caml6i(GE_C, GE_N, 0, GE READ, pdata++);
caml6i(GE_C, GE_N, 1, GE READ, pdata++);
caml6éi (GE_C, GE_N, 2, GE_READ, pdata++);

// clear hardware
re_arm _ge() ;

if (offset == 0)
{
// Compute the proper event length on the FIRST event in the Super Event
// NWORDS correspond to the !! NWORDS WORD above !!
// sizeof (BANK HEADER) + sizeof (BANK) will make the 16 bytes header
// sizeof (WORD) is defined by the TID WORD in bk create()

return NWORDS * sizeof (WORD) + sizeof (BANK HEADER) + sizeof (BANK) ;
else
// Return the data section size only

// sizeof (WORD) is defined by the TID WORD in bk create()

return NWORDS * sizeof (WORD) ;

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 435

The encoded description of the data section is left to the user. If the number of
words per sub-event is fixed (NWORD), the sub-event extraction is simple. In the
case of variable sub-event length, it is necessary to tag the first or the last word
of each sub-event. The content of the sub-event is essentially the responsibility
of the user.

— [Remark 1] The backend analyzer will have to be informed by the user on
the content structure of the data section of the event as no particular tagging
is applied to the Super Event by the Midas transfer mechanism.

— [Remark 2] If the Super Event is composed in a remote equipment run-
ning a different Endian mode than the backend processor, it would be nec-
essary to insure the data type consistency throughout the Super Event in
order to guarantee the proper byte swapping of the data content.

— [Remark 3] The event rate in the equipment statistic will indicates the rate
of sub-events.

6.10.7 Slow Control System

Instead of talking directly to each other, frontend and control programs exchange infor-
mation through the ODB. Each slow control equipment gets a corresponding ODB tree
under /Equipment. This tree contains variables needed to control the equipment as well
as variables measured by the equipment. In case of a high voltage equipment this is a
Demand array which contains voltages to be set, a Measured array which contains read
back voltages and a Current array which contains the current drawn from each channel.
To change the voltage of a channel, a control program writes to the Demand array the
desired value. This array is connected to the high voltage frontend via a ODB hot-link.
Each time it gets modified, the frontend receives a notification and sets the new value.
In the other direction the frontend continuously reads the voltage and current values
from all channels and updates the according ODB arrays if there has been a significant
change. This design has a possible inconvenience due to the fact that ODB is the key
element of that control. Any failure or corruption of the database can result in wrong
driver control. Therefore it is not recommended to use this system to control systems
that need redundancy for safety purposes. On the other hand this system has several
advantages:

* The control program does not need any knowledge of the frontend, it only talks
to the ODB.

* The control variables only exist at one place that guarantees consistency among
all clients.

* Basic control can be done through ODBEdit without the need of a special control
program.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 436

* A special control program can be tested without having a frontend running.

* In case of n frontend and m control programs, only n+m network connections
are needed instead of nxm connection for point-to-point connections. Since all
slow control values are contained in the ODB, they get automatically dumped
to the logging channels. The slow control frontend uses the same framework
as the normal frontend and behaves similar in many respects. They also create
periodic events that contain the slow control variables and are logged together
with trigger and scaler events. The only difference is that a routine is called
periodically from the framework that has the task to read channels and to update
the ODB. To access slow control hardware, a two-layer driver concept is used.
The upper layer is a "class driver", which establishes the connection to the ODB
variables and contains high level functionality like channel limits, ramping etc.
It uses a "device driver" to access the channels. These drivers implement only
very simple commands like "set channel" and "read channel". The device drivers
themselves can use bus drivers like RS232 or GPIB to control the actual device.

Class driver, Device and Bus driver in the slow control system

. i T
L Bos Debver S

-

sz {
GPIE {
i Rawping / PP = i
i S Dviee Dedver !
e [t Chomme | Limnits P ,-),-;; CAMAL ;
£ i Trip Hesed . s VYME |
- i e " J
g - 1 Set Cnsenl
$ —— Rond Chamed
z ;
=
/ op S
=
4 L
Bl iy Yaloes
Nrmand Valnes
Measured vVoiues .

Figure 13: Class driver, Device and Bus driver in the slow control system

The separation into class and device drivers has the advantage that it is very easy to
add new devices, because only the simple device driver needs to be written. All higher

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features 437

functionality is inherited from the class driver. The device driver can implement richer
functionality, depending on the hardware. For some high voltage devices there is a
current read-back for example. This is usually reflected by additional variables in the
ODB, i.e. a Current array. Frontend equipment uses exactly one class driver, but a class
driver can use more than one device driver. This makes it possible to control several
high voltage devices for example with one frontend in one equipment. The number
of channels for each device driver is defined in the slow control frontend. Several
equipment with different class drivers can be defined in a single frontend.

Key name Type #Val Size Last Opn Mode Value
Epics DIR
Settings DIR
Channels DIR
Epics INT 1 4 25h 0 RWD 3
Devices DIR
Epics DIR
Channel name STRING 10 32 25h 0 RWD
[0] GPS:VAR1
[1] GPS:VAR2
[2] GPS:VAR3
Names STRING 10 32 17h 1 RWD
[0] Current
[1] Voltage
[2] Watchdog
Update Threshold MeasureFLOAT 10 4 17h 0 RWD
[0] 2
[1] 2
[2] 2
Common DIR
Event ID WORD 1 2 17h 0 RWD 3
Trigger mask WORD 1 2 17h 0 RWD O
Buffer STRING 1 32 17h 0 RWD SYSTEM
Type INT 1 4 17h 0 RWD 4
Source INT 1 4 17h 0 RWD O
Format STRING 1 8 17h 0 RWD FIXED
Enabled BOOL 1 4 17h 0 RWD vy
Read on INT 1 4 17h 0 RWD 121
Period INT 1 4 17h 0 RWD 60000
Event limit DOUBLE 1 8 17h 0 RWD O
Num subevents DWORD 1 4 17h 0 RWD O
Log history INT 1 4 17h 0 RWD 1
Frontend host STRING 1 32 17h 0 RWD hostname
Frontend name STRING 1 32 17h 0 RWD Epics
Frontend file name STRING 1 256 17h 0 RWD feepic.c
Variables DIR
Demand FLOAT 10 4 Os 1 RWD
(o] 1.56
[1] 120
[2] 87
Measured FLOAT 10 4 2s 0 RWD
[0] 1.56
[1] 120
[2] 87
Statistics DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.10 Internal features

438

6.10.8 Electronic Logbook

Events sent
Events per sec.
kBytes per sec.

DOUBLE 1 8 17h 0
DOUBLE 1 8 17h 0
DOUBLE 1 8 17h 0

RWDE 26
RWDE 0
RWDE 0

The Electronic logbook is an alternative way of recording experiment information.
This is implemented through the Midas web server mhttpd task (see Elog page). The
definition of the options can be found in the ODB data base under ODB /Elog Tree.

6.10.9 Log file

Midas provides a general log file midas.log for recording system and user messages
across the different components of the data acquisition clients. The location of this file
is dependent on the mode of installation of the system.

L.

[without ODB /Logger Tree] In this case the location is defined by either the
MIDAS_DIR environment (see Environment variables) or the definition of the
experiment in the exptab file (see Experiment_Definition). In both cases the log
file will be in the experiment specific directory.

2. [with /Logger Tree] The midas.log will be sitting into the defined directory spec-
ified by Data Dir .

midas.log file contains system and user messages generated by any application con-
nected to the given experiment.

The MIDAS Macros definition provides a list of possible type of messages.

Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

10
10

10:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:

:48:
:48:
55:
24:
24:
27:
27:
27:
27:
27:
27:
27:
27:
147
:35
:40

33
42
42

40
40
04
03
03
02
03
03
03
13
14
14
14

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

[CHAOS] Run 8362 started
[Logger] Run #8362 started

[Lazy_ Tapel

cni-043[10] (cp:383.6s)

/dev/nst0/run08360.ybs 849.896MB file N

[MStatus] Program MStatus on host umelba started
[MStatus] Program MStatus on host umelba stopped
[Logger] stopping run after having received 1200000 events
[CHAOS] Run 8362 stopped

[SUSIYBOS]

saving info in run log

[Logger] Run #8362 stopped
[Logger] starting new run
[CHAOS] Run 8363 started

[CHAOS] odb_access_file -I- /Equipment/kos_trigger/Dump not found
[Logger] Run #8363 started

[Lazy Tapel

cni-043[11] (cp:391.8s)

[CHAOS] Run 8363 stopped

[SUSIYBOS]

saving info in run log

/dev/nst0/run08361.ybs 850.209MB file N

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.11 Introduction 439

Fri Mar 24 11:42:41 2000 [ODBEdit] Run #8363 stopped
Fri Mar 24 12:19:57 2000 [MChart] client [umelba.Triumf.CA]JMChart failed watchdog test after 10 sec
Fri Mar 24 12:19:57 2000 [MChart] Program MChart on host koslx0 stopped

Quick Start - Top - Utilities

6.11 Introduction

New Documented Features - Top - Components
... A few words...

Acquiring, collecting and analyzing data is the essence of mankind to satisfy his urge
for understanding natural phenomena by comparing "real" events to his own symbolic
representation. These fundamental steps paved human evolution and in the world of
science they have been the keys to major steps forward in our understanding of nature.
Until the last couple of decade’s -when "Silicium" was still underground, the PPP pro-
tocol (Paper, Pencil and Patience) was the basic tool for this "unique" task. With the
development of the "Central Processing Unit", data acquisition using computers wired
to dedicated hardware instrumentation became available. This has allowed scientists to
sit back and turn their minds towards finding solutions to problems such as "How do I
analyze all these data?" Since the last decade or so when "connectivity" appeared to be
a powerful word, the data acquisition system had to adapt itself to that new vocabulary.

Based on this sudden new technology, several successful systems using de-
centralization of information have been developed. But the task is not simple! If the
hardware is available, implementing a true distributed intelligence environment for a
particular application requires that each node have full knowledge of the capability of
all the other nodes. Complexity rises quickly and generalization of such systems is
tough. Recently more pragmatic approaches emerged from all this, suggesting that
central database information on a system may be more adequate, especially since pro-
cessing and networking speed are not a "real" concern these days. MIDAS and its
predecessor HIX may be counted part of the precursor packages in the field.

The old question: "How do we analyze all these data?" still remains and may have been
the driving force behind this evolution :-).

6.11.1 What is Midas?

The Maximum Integrated Data Acquisition System (MIDAS) is a general-purpose sys-
tem for event based data acquisition in small and medium scale physics experiments.
It has been developed at the Paul Scherrer Institute (Switzerland) and at TRIUMF
(Canada) between 1993 and 2000 (Release of Version 1.8.0). Presently ongoing devel-
opment are more focused on the interfacing capability of the Midas package to external
applications such as ROOT for data analysis (see MIDAS Analyzer).

Midas is based on a modular networking capability and a central database system.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 440

MIDAS consists of a C library and several applications. They run on many different
operating systems such as UNIX like, Windows NT, VxWorks, VMS and MS-DOS.
While the system is already in use in several laboratories, the development continues
with addition of new features and tools. Current development involves RTLinux for
either dedicated frontend or composite frontend and backend system.

For the newest status, check the MIDAS home page: Switzerland , Canada

6.11.2 What can MIDAS do for you?

MIDAS has been designed for small and medium experiments. It can be used in dis-
tributed environments where one or more frontends are connected to the backend via
Ethernet. The frontend might be an embedded system like a VME CPU running Vx-
Works or a PC running Windows NT or Linux. Data rates around 1MB/sec through
standard Ethernet and 6.1MB/sec over Fast Ethernet can be achieved.

For small experiments and test setups the front-end program can run on the back-end
computer thus eliminating the need of network transfer, presuming that the back-end
computer has direct access to the hardware. Device drivers for common PC-CAMAC
interfaces have been written for Windows NT and Linux. Drivers for PC-VME inter-
faces are commercially available for Windows NT.

For data analysis, users can write a complete analyzer or use the standard MIDAS ana-
lyzer which uses HBOOK routines for histogramming and PAW for histogram display.

The MIDAS package contains also a slow control system which can be used to control
high voltage supplies, temperature control units etc. The slow control system is fully
integrated in the main data acquisition and act as a front-end with particular built-in
control mechanism. Slow control values can be written together with event data to
tape.

New Documented Features - Top - Components

6.12 mhttpd task

Utilities - Top - Data format

mhttpd is the Midas Web Server. It provides Midas DAQ control through the web
using any web browser.

This daemon application has to run in order to allow the user to access from a Web
browser any Midas experiment running on a given host. Full monitoring and "Almost"
full control of a particular experiment can be achieved through this Midas Web server.
The color coding is green for present/enabled, red for missing/disabled, yellow for
inactive. It is important to note the refresh of the page is not "event driven" but is
controlled by a timer (see Config- button). This mean the information at any given
time may reflect the experiment state of up to n second in the paste, where n is the
timer setting of the refresh parameter. Its basic functionality are:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12

mhttpd task 441

Run control (start/stop).

Frontend up-to-date status and statistics display.
Logger up-to-date status and statistics display.
Lazylogger up-to-date status and statistics display.
Current connected client listing.

Slow control data display.

Basic access to ODB.

Graphical history data display.

Electronic LogBook recording/retrival messages
Alarm monitoring/control

... and more ...

Each section is further described below:

Start page - Run control page

ODB page - Online Database manipulation (equivalent to ODBedit)
Equipment page (Frontend info)

CNAF page (CAMAC access page)

Message page (Message Log)

Elog page (Electronic Log)

— Internal Elog (Internal)
— External Elog (External)

Program page (Program control)
History page (History display)
Alarm page (Alarm control)

Custom page (User defined Web page)

mhttpd requires as argument the TCP/IP port number in order to listen to the web
based request.

Arguments

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12

mhttpd task 442

— [-h]: help
— [-p port] : port number, no default, should be 8081 for Example .

— [-D] : start program as a daemon

Usage

>mhttpd -p 8081 -D

Description Once the connection to a given experiment is established, the main
Midas status page is displayed with the current ODB information related to this
experiment. The page is sub-divised in several sections:

-[Experiment/Date] Current Experiment, current date.

-[Action/Pages buttons] Run control button, Page switch button. At any web page level
within the Midas Web page the main status page can be invoked with the <status>
button.

[Start... button] Depending on the run state, a single or the two first buttons will
be showing the possible action (Start/Pause/Resume/Stop) (see Start page).

[ODB button] Online DataBase access. Depending on the security, R/'W access
can be granted to operated on any ODB field (see ODB page).

[CNAF button] If one of the equipment is a CAMAC frontend, it is possible to
issue CAMAC command through this button. In this case the frontend is acting
as a RPC CAMAC server for the request (see CNAF page).

[Messages button] Shows the n last entries of the Midas system message log. The
last entry is always present in the status page (see below) (see Message page).

[Elog button] Electronic Log book. Permit to record permanently (file) com-
ments/messages composed by the user (see Elog page).

[Alarms button] Display current Alarm setting for the entire experiment. The
activation of an alarm has to be done through ODB under the /Alarms tree (See
Alarm System)

[Program button] Display current program (midas application) status. Each pro-
gram has a specific information record associated to it. This record is tagged as
a hyperlink in the listing (see Program page).

[History button] Display History graphs of pre-defined variables. The history
setting has to be done through ODB under the /History (see History system ,
History page).

[Config button] Allows to change the page refresh rate.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 443

* [Help button] Help and link to the main Midas web pages.

* [User button(s)] If the user define a new tree in ODB named Script than any sub-
tree name will appear as a button of that name. Each sub-tree (/Script/<button
name>/) should contain at least one string key being the script command to be
executed. Further keys will be passed as

— Arguments to the script. Midas Symbolic link are permitted.

— Example : The Example below defines a script names doit with 2 Ar-
guments (run# device) which will be invoked when the button <doit> is
pressed.

odbedit

mkdir Script

cd Script

mkdir doit

cd doit

create string cmd

1n "/runinfo/run number" run
create string dest

set dest /dev/hda

[Version >= 1.8.3 Alias Hyperlink] This line will be present on the status page only
if the ODB tree /Alias. The distinction for spawning a secondary frame with the link
request is done by default. For forcing the link in the current frame, add the terminal
charater "&" at the end of the link name.

* Example : The Example will create a shortcut to the defined location in the
ODB.

odbedit

1s

create key Alias

cd Alias

ln /Equipment/Trigger/Common "Trig Setting"
1n /Analyzer/Output "Analyzer"

create key "Alias new window" <-- Version < 1.8.3
cd "Alias new window"
1n /equipment/Scalers/Variables "Scalers Var"

or
cd Alias
1n /Equipment/Trigger/Common "Trig Setting&" <-- Version >= 1.8.3

* [General info] Current run number, state, General Enable flag for Alarm, Auto
restart flag Condition of mlogger.

* [Equipment listing] Equipment name (see Equipment page), host on which its
running, Statistics for that current run, analyzed percentage by the "analyzer"
(The numbers are valid only if the name of the analyser is "Analyzer").

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 444

e [Logger listing] Logger list. Multiple logger channel can be active (sin-
gle application). The hyperlink "0" will bring you to the odb tree /Log-
ger/channels/0/Settings. This section is present only when the Midas application
mlogger task is running.

* [Lazylogger listing] Lazylogger list. Multiple lazy application can be active.
This section is present only when the Midas application lazylogger task is run-
ning.

» [Last system message] Display a single line containing the last system message
received at the time of the last display refresh.

¢ [Current client listing] List of the current active Midas application with the host-
name on which their running.

Midas Web server
ActonToger |E‘15rt|_| EM-'«FI WA gEs | ELc-]| Hnrrna| Progrms | I-Imur!| Dﬂﬂm’_!
Unhmﬂsl+ '.__I.E..!ij
Trigger humni) _, | TrEer Scabir evan) I
el Al vl o I'EBE;EM st
coseuns [| Fndct [S RN | Iosou dirobled
1 toat: Wed Fow 22 104037 2000 [Shap: Wed Mo 22 100148 2000
Eqpmest = FENudw | Eveats | Evestratels] | DetarstolkBEf] | Ansbyzed
E«*WI'NJ- Towe: (R 7117 04 w ([N
| oo . % o
Chasnel Aurive Evemts KIH writes GH tatal
,#,,3,_,,,,,[0 ran 0043 | Dimbled | 0 [wo [ome
1 1 03 Thisahlad a . o i
Toxy Lakel Progress | File Name & Filus Total
[[Dk 0] 1% ' 0 0%
"'"""1 Tape 01 % 0 0%
Lastsysimmemge " (Bos Dec 18 14:4006 *I:Il]lrdnp-llh-nm ﬂm]:d an hoet pddsapedd started
P { _ fﬂuhlndrﬂ.ﬂdj I'.Dﬂ,er[n'ldmul]l-] Lary_Disk: [micmes04]
| I_l.l.'j Tape [nIch'nuI]-'I] m]mpd [rrud.m::ﬂd]

Figure 14: Midas Web server

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 445

6.12.1 Start page

Once the Start button is pressed, you will be prompt for experiment specific parameters
before starting the run. The minimum set of parameter is the run number, it will be
incremented by one relative to the last value from the status page. In the case you have
defined the ODB tree /Experiment/Edit on Start all the parameters sitting in this
directory will be displayed for possible modification. The Ok button will proceed to
the start of the run. The Cancel will abort the start procedure and return you to the
status page.

Start run request page. In this case the user has multiple run parameters defined under
"/Experiment/Edit on Start"

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 446

Eun number
Zomment ITestF —-150 mv th
“Write Diata |1=‘
Exp type |3 mod test
Operators |SCW RP
Sc 1 HV (volts) [2300
Sc 2 HV fvolts) |1800
GAS type [ar 25 Iso 75
U1 HV (volts) |-2000
V1 HV (volts) |-2000
72 HV (volts) |-2000
V2 HV (volts) |-1750
U3 HV (volts) |-2000
V3 HV (volts) |-2000
Preamp (mV) |4200
Stant | Cancel

Figure 15: Start run request page.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 447

The title of each field is taken from the ODB key name it self. In the case this label
has a poor meaning and extra explanation is required, you can do so by creating a new
ODB tree under experiment Parameter Comments/ . Then by creating a string entry
named as the one in Edit on Start- you can place the extra information relative to that
key (html tags accepted).

This "parameter comment" option is available and visible ONLY under the midas web
page, the odbedit start command will not display this extra information.

[local:midas:S] /Experiment>ls -1r

Key name Type #Val Size Last Opn Mode Value
Experiment DIR
Name STRING 1 32 17s O RWD midas
Edit on Start DIR
Write data BOOL 1 4 lém O RWD vy
enable BOOL 1 4 lém O RWD n
nchannels INT 1 4 lém O RWD O
dwelling time (ns) INT 1 4 lém O RWD O
Parameter Comments DIR
Write Data STRING 1 64 44m O RWD Enable logging
enable STRING 1 64 7m 0 RWD Scaler for expt Bl only
nchannels STRING 1 64 14m O RWD <is>maximum 1024</i>
dwelling time (ns) STRING 1 64 8m 0 RWD Check hardware now
[local:midas:S]Edit on Start>ls -1
Key name Type #Val Size Last Opn Mode Value
Write Data LINK 1 19 50m O RWD /logger/Write data
enable LINK 1 12 22m 0 RWD /sis/enable
number of channels LINK 1 15 22m 0 RWD /sis/nchannels
dwelling time (ns) LINK 1 24 12m 0 RWD /sis/dwelling time (ns)

Start run request page. Extra comment on the run condition is displayed below each
entry.

Fri e 13 103315 2001
e Ty

Fam murnker H

Wik Duta

Bnable loggng

anintle

Scaler Bor expt B ooly
mihaer of chanoet |
meazimens 004

e lireg bme [ns)
Check hartware s

[

[o

Bt | Canied

Figure 16: Start run request page.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 448

6.12.2 ODB page

The ODB page shows the ODB root tree at first. Clicking on the hyperlink will walk
you to the requested ODB field. The Example below show the sequence for chang-
ing the variable "PA" under the /equipment/PA/Settings/Channels ODB directory. A
possible shortcut

If the ODB is Write protected, a first window will request the web password.

ODB page access.

Figure 17: ODB page access.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task

449

6.12.3 Equipment page

The equipment names are linked to their respective /Variables sub-tree. This permit
to access as a shortcut the current values of the equipment. In the case the equipment
is a slow control equipment, the parameters list may be hyperlinked for parameter
modification. This option is possible only if the parameter names have a particular
name syntax (see History system).

Slow control page.

'MIDAS experiment "e614" | 'Mon Dec 18 14:21:54 2000
oo [s | nen
Eguipment: PA
Groyps: All Crated Cratel
Names D_VTp M VTp D Thres M ThresA M ThresB D TP M TP Temp [Voltage+ Voltage—
SLO 0 0 1] 0 D o | n [|-0018 | -0006
1 | 1ss0 | 1ss2 | 1011 | -1o02 -998 n | n [313] 5081 | -5108
Si2 | 1798 | 1793 | 017 | -1002 | 999 n | n [338 | 5089 | -5112
sl | 1775 | 1774 | 1023 -1001 | -1000 n n | 335 | 5067 | -5098
sL4 | 1852 | 1852 | 1017 | -1003 -999 n | n [342 | 5076 | -5104
S5 | 100 | 1800 | 1014 | -1004 ~1000 n | n [385 | 5055 | -5.108
slé | 1786 | 1785 | ioli [-1o01 -1000 n | n [404 | 5066 | -5098
SL7 | 1798 | 1798 | 1011 | -1004 | -1000 | n | n |373 | 5083 | —5097
|sls | 17es | 1795 | 1018 | -1om2 | -1002 n | n [32 [5078 |-5092
sl9 | isoi | 1801 | 1016 | -1001 —1002. n | n [351] 509 | -5104
sLio | 17e7 | 17e8 | 1033 | -1001 —1000 n | n [347 | 5085 | -5.104
sL11 | 17es | 1796 | 1pie | -1000 ~1002 n | n [313][5057 | -5102
sLiz || 1797 | © 1013 o 0 n | n | 0 |-0D@022 |-0006
s113 | 1798 | 1798 | 1018 | -1002 -1000 n | n [343 | 5067 | -5102
Slid4 | 17e3 | 1793 | 1016 -1000 =000 [n [n [324 [507 | -50%5
SL15s | i7ee | 1800 | 1015 | -1o0 | -1001 [n | n [282 | 5088 | -5ps2
sl16 | 1782 | 1783 | 1007 | -1poz | -1o00i n | n [377 | 5088 | -50%9
Sl17 | 1798 | 1798 | 1011 | -1o01 -999 n | n [333] 5104 | -5094
s118 | 1796 | 1796 | 1017 | -1001 —1002 n | n [308 | 5078 | -5103
sLis | i7es | 177 | 1009 | -1000 1001 [o | n [347 | 507 | -5108
s120 | 1803 | 1803 | 1014 | -1002 -1000 | n | n |376 | 5088 | 511
sLal [i7ee | 17eg | 103 ~1000 -1002 [n [n [387 [5088 | —5ii
[s122 | 1808 | 1805 | foi5 [-1000 | -1001 [n | n [331 | 5088 | -5114
sL23 | 1793 | 793 | 10 ~1000 -1001 n | n [312 | 5055 | -509
gl24 | 17 1768 | 1018 | -1ooo | -1002 | o | n [381 | 5047 | -5105

Figure 18: Slow control page.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 450

6.12.4 CNAF page
If one of the active equipment is a CAMAC based data collector, it will be possible

to remotely access CAMAC through this web based CAMAC page. The status of the
connection is displayed in the top right hand side corner of the window.

CAMAC command pages.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 451

Figure 19: CAMAC command pages.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 452

6.12.5 Message page
This page display by block of 100 lines the content of the Midas System log file starting
with the most recent messages. The Midas log file resides in the directory defined by

the experiment.

Message page.

| MIDAS experiment "brum2" | Tue Dec 19 12:02:54 2000
I ODEI' Status | Canfig | Helpl

Iiorel00 |

Tue Dec 12 11:52:35 2000 [Mdarc] run saved m file thome/bnmrfonline/bnmr2/dlog/ 040638 msr v39
Tue Dec 1% 11:53:06 2000 [MWMdarc] run saved in file fhome/bumrfonlinefbnmr 2/ dlog/ 040638 msr_ w40
Tue Dec 19 11:53:37 2000 [Mdarc] run saved m file thome/bnmrfonline/bnmr2/dlog/ 040638 mer w4 1
Tue Dec 1% 11:54:08 2000 [Idarc] run saved in file fhome/bamrfonline/bnmr 2/ dlog/ 040638 msr_ w42
Tue Dec 19 11:54:38 2000 [MMdarc] run saved in file fhome/bnmefonline/bar 2/ dlog/ 040638 mer w43
Tue Dec 19 11:55:10 2000 [IWdarc] run saved in file fhome/bamrfonline/bnmr 2/ dlog/ 040638 msr_wdd
Tue Dec 19 11:55:41 2000 [Mdarc] run saved m file thome/bnmrfonline/bnmr2/dlog/ 040638 msr w45
Tue Dec 12 11:56:12 2000 [Mdarc] run saved in file thome/bnmrfonline/bnmr2/dlog/040638 msr w46
Tue Dec 19 11:56:43 2000 [MMdarc] run saved in file home/bnmefonline/bntr2fdlog/ 040638 mer w47
{Tue Dec 12 11:57:14 2000 [Mdare] run saved m Hle /home/bnmrfonline/bnmr 2/dlog/040638 mer_v43
ITue Dec 15 11:57:45 2000 Mdarc] run saved in file thomefbnm/onlinebnmr2/dloe/040638 msr w49

Figure 20: Message page.

6.12.6 Elog page

The ELOG page provides access to an electronic logbook. This tool can replace the ex-
perimental logbook for daily entries. The main advantage of Elog over paper logbook
is the possiblity to access it remotely and provide a general knowledge of the experi-
ment. In the other hand, Elog is not limited strictly to experiments and worldwide Elog
implementation can be found on the internet.

Since version 2.0.0, Elog comes in two flavors, i.e Internal Elog where the Elog is built
in the mhttpd Midas web interface, or External Elog where the Elog runs independently
from the experiment and mhttpd as well. While the internal doesn’t requires any setup,
the latter requires a proper Elog installation which is fully described on the Elog
web site. The External Elog implementation requires to have a dedicated entry in the
ODB following the code below. It requires also to have the package Elog previously
installed and properly configured. Once the ODB entry is existant, the internal ELOG
is disabled.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task

6.12.6.1 Internal Elog By default the mhttpd provides the internal Elog. The entry
destination directory is established by the logger key in ODB (see Elog_Dir) The Elec-
tronic Log page shows the most recent Log message recorded in the system. The top

buttons allows you to either Create/Edit/Reply/Query/Show a message

main Elog page.

| VT4 Flermane Teghsak |
Huw| Edi] Fugh| Gaay | Lot t0wiinn | S Chnen | Punday | Sraan
Hl-rl Fesinnn :l ll“l'.“.lu.-.l::.-n:gw;u: Ao oafr rlnar frea dia! calapon

Erery Savr Sam Mo 13 00 bl 20 2008 En ramter LY

|7 Al e T Tyer 56N Chad
T Swder Cemernl T

1 Zog bech chammnel [, adjuskted B1 0.6 Saucoh

© Target T-T QKT @ IR1 MY cunnizg

{ all Thanhsre W-T akT @ [¥]

S owy s

I-\. Toalarrums. chznonl@ GET: |5

e

Figure 21: main Elog page.

The format of the message log can be written in HTML format.

HTML Elog message.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 454

_EIEI_JMJ “I.:r.al-l:lm _-.Huti: &I

| Baabl] “Pwmass | ad] iack ot comageanets beruane cotts ev e frosk AT 2o
[Erdry de Thia Sop 14 1422534 3080 e
|7 Eyuns Generad I Sulio DAD

Hello TUDA folks,

+ The e cwapas <fle DAG [spronamag e, bamadk®as ded

Tha VIUE crabse cormiar b ST and tha CES CETE 210 CARELT braazy dower.
= Thas ODD ir eontected o two 2 CAWAC Crae Dorclas

® Angrienfor 10628 ATeCE +4532 T2CE

CBATE © Mok
(Gt J1-16 AN 3403 Siera
|5t 1920 F=C 33T LaiTragr o Cocrarard bt
Bt 21 (s Begrter SER0ET ST
W&o 22 Wt Tl 7212
(St 23-25 Crab Tocazche A2 Jorran T 1E Spec
FaTE: Wela
For 1L J TEER) R SN IE i Y -]
For 2 I LT RN BE TETFERIE Sy T iy o
ta g1l P L IPERPN CUF LR LN E
Sysiewn Statns bog:
e e SR

EES o L] Ertcal T Bl bk 1=t Zhack

Figure 22: HTML Elog message.

* A feature of the Elog entry page is the Shift Check button, this permit for the
experimenter in shift to go through a check list and record his findings in the
Elog system. The check list is user defined and can be found in the ODB under
/Elog

HTML Elog message.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 455

Hew | Edn | Fapw | Quere f GosHending) Punbs | Sas |

Lt Bl | Loeat 2 | Lst 7l]

Meed I Prarvious | Lagi |Ghr:i:n calrpary fo b [ewlrnes frome Ll satrgone
Entry date: Bat Jal 33 17:00:46 20086

r S:.sbtm Elsetionics

BT ared A2 fixed at <1400, Preamps vere mlive, it Ums pissing concact in

presamp lnput. — — — e T T TR T
ALL BV bark g <1800 m eviromic Loghosk Form "zas
uapiiinr s) e Rt ghuct st
Wow cunnitg 1193 CHI=E.5KV, Submit | Feszt Fom |

Entry date: Toe Ang | 0845352 2006 R mimber |1 310

Author: |F1t:rr(-
Tismm

Checked |
1 M2 pressure ¥ l|afterfiiing
1 Vessel Temperature ¥ |emg
Attachmentl:]Gasl(-g_hd

Figure 23: HTML Elog message.

* The code below generates the above screen. The key Gas Handling contains all
the information for a given form. There is no limit to the number of entries.
By specifying an entry with the name Attachment0,Attachmentl,... and filling it
with a fix file name, its content will be attached to the Elog entry for every shift
report.

[local:myexpt:Running] />cd /Elog/

[local :myexpt :Running] /Elog>mkdir Forms

[local:myexpt :Running] /Elog>cd Forms/

[local:myexpt :Running] Forms>mkdir "Gas Handling"

[local :myexpt :Running] Forms>cd "Gas Handling"
[local:myexpt:Running] Gas Handling>create string "N2 Pressure"
String length [32]:

[local:myexpt:Running] Gas Handling>create string "Vessel Temperature"
String length [32]:

[local:myexpt :Running] Gas Handlings>ls

N2 pressure

Vessel Temperature

[local:myexpt :Running] Gas Handlings>

[local:xenon:Running] Gas Handling>create string AttachmentoO
String length [32]: 64

[local:xenon:Running] Gas Handling>set AttachmentO Gaslog.txt

* The runlog button display the content of the file runlog.txt which is expected to
be in the data directory specified by the ODB key /Logger/Data Dir. Regardless
of its content, it will be displayed in the web page. Its common uses is to append

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 456

lines after every run. The task appending this run information can be any of the
midas application. Example is available in the examples/experiment/analyzer.c
which at each end-of-run (EOR) will write to the runlog.txt some statistical in-
formations.

Elog page, Runlog display.

JATDAE File THaploy Esperinaw k"

e
SHE S
B 1 LIV

rag
L He
o =7
e 111} Hiw

BT | LR ¥
ST ne T T
o Hiw a UL S
1) e 11 1) a, PLUB-HRIES
T el 11 25 S I.OCEL0:
L Hiw ' SHE sy
Z.00I200y Bt COCELE
LRz I00 - I LOCGLTE
BRIl Hiw 1 1 T
SO ZI00 Tr OCEEe
] a0 x Lol el R
o0 2 OCSL0:
.0 S il
LOZI00, o SOCGIZE
m - HI -1 ay
E. QCEIEe
L COCSIZE
S
w_ooo_oan o, LIS LIS
gt | Wedel | bueliap | c.ocslie

Figure 24: Elog page, Runlog display.

When composing a new entry into the Elog, several fields are available to spec-
ify the nature of the message i.e: Author, Type, System, Subject. Under Type
and System a pulldown menu provides multiple category. These categories are
user definable through the odb under the tree /Elog/Types, /Elog/Systems. The
number of category is fixed to 20 maximum but any remaining field can be left
empty.

Elog page, New Elog entry form.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 457

MDA Ederrode Loghosk Expurtmost """
Bubimit
Eray shate: T Tiee 16 12 09133000 Tinmicker [133%7 |
Aathar I-i {Type |Pouiinea

I S au mmar
Syetaryy | Gonerd 8] b [ekl ety

=
S W
o [Y] B

I7rgen
Lo

[Rhrias THT b

Tt Atk e fecac S ar OO reelE L nem T 22 a0 DT i ey seaarata -

Zattazhe =l | Hroese...
P Browse..
Al e i | Erowse...

Figure 25: Elog page, New Elog entry form.

6.12.6.2 External Elog The advantage of using the external Elog over the built-in
version is its felxibility. This package is used worldwide and impovement is constantly
added. A full features documentations and standalone installation can be found at the

Elog web site.

It’s installation requires requires several steps described below.

* Download the Elog package from the mentioned web site.

— Windows, Linux, Mac version can be found there. Simple installation pro-
cedures are also described. Its installation can be done at the system level
or at the user level. The Elog can service multiple Electronic logbooks in
parallel and therefore an extra entry in its configuration file can provide
specific experimental elog in a similar fashion as the internal one.

— You need to take note of several consideration for its installation. You need
to determine several locations for the different files that elog deals with.

x elog resource directory (ex: /elog_installation_dir where elog is in-
stalled)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 458

% logbook directory (ex: /myexpt/logbook where the pwd and elog en-
tries are stored). The pwd file uses encryption for the user password.

— As this Elog installation is tailored towards an experiment, a restriction
applies i.e: Ensure that the mhttpd and elog applications shares at least the
same file system. This means that either both applications runs on the same
machine or a nsf mount provides file sharing.

% You need to now the node and ports for both application. As mhttpd,
elogd requires a port number for communication through the web (ex:
NodeA:mhttpd -p 8080, NodeB:elogd -p 8081.

1. copy the default midas/src/elogd.cfg from the midas distrbution to
your operating directory.

2. modify the elogd.cfg to reflect your configuration

This is a simple elogd configuration file to work with Midas
$Id: mhttpd.dox 3317 2006-09-06 04:01:31Z amaudruz $

[globall]

; port under which elogd should run

port = 8081

; password file, created under ’'logbook dir’

password file = elog.pwd

; directory under which elog was installed (themes etc.)

resource dir = /elog installation dir

; directory where the password file will end up

logbook dir = /myexpt/logbook

; anyone can create it’s own account

self register = 1

; URL under which elogd is accessible

url = http://1add00.triumf.ca:8081

; the "main" tab will bring you back to mhttpd

main tab = Xenon

; this is the URL of mhttpd which must run on a different port

main tab url = http://NodeA:8080

; only needed for email notifications

smtp host = your.smtp.host

; Define one logbook for online use. Severl logbooks can be defined here
[MyOnline]

; directory where the logfiles will be written to

Data dir = /myexpt/logbook

Comment = My MIDAS Experiment Electronic Logbook

; mimic old mhttpd behaviour

Attributes = Run number, Author, Type, System, Subject

Options Type = Routine, Shift Summary, Minor Error, Severe Error, Fix, Question, Infc
Options System = General, DAQ, Detector, Electronics, Target, Beamline
Extendable Options = Type, System

; This substitution will enter the current run number

Preset Run number = $shell (odbedit -e myexpt -h NodeA -d Runinfo -c ’ls -v \"run numi
Preset Author = $long name

Required Attributes = Type, Subject

; Run number and Author cannot be changed

Locked Attributes = Run number, Author

Page Title = ELOG - Ssubject

Reverse sort = 1

Quick filter = Date, Type, Author

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 459

; Don’t send any emails
Suppress email to users = 1
3. start the elog daemon. -x is for the shell substitution of the command

Preset Run number = $shell(... The argument invokes the odbedit re-
motely if needed to retrieve the current run number. You will have to
ensure the proper path to the odbedit and the proper -e, -h argments for
the experiment and host. You may want to verify this command from
the console.

NodeB:~>/installation elog dir/elogd -c elogd.cfg -x

4. start the mhttpd at its correct port and possibly in the daemon form.
NodeA:~>mhttpd -p 8080 -D

5. At this point the Elog from the Midas web page is accessing the inter-
nal Elog. To activate the external Elog, include in the ODB two entries
such as:

NodeX:> odbedit -e myexpt -h NodeA

[NodeX :myexpt : Running] />cd elog
[NodeX:myexpt : Running] /Elog>create string Url

String length [32]: 64

[NodeX:myexpt : Running] /Elog>set Url http://NodeB:8081/MyOnline
[NodeX:myexpt : Running]

[NodeX:myexpt : Running] /Elog>create string "Logbook Dir"

String length [32]: 64

[NodeX:myexpt : Running] /Elog>set "Logbook Dir" /myexpt/logbook

[NodeX:myexpt :Running] /Elog>1ls
Logbook Dir /home /myexpt /ElogBook
Url http://NodeB:8081/MyOnline
6. Confirm proper operation of the external Elog by creating an entry.
You will be prompt for a username and password. Click on New reg-
istration. Full control of these features are described in the Elog docu-
mentation.

7. Stop and restart the Elogd in the background.
NodeB:~>/installation elog dir/elogd -c elogd.cfg -x -D
8. In the event you had previous entry under the internal elog, you can
convert the internal to external using the elconv tool.

NodeB:~> cp internal/elog logbook/*.log /myexpt/logbook/.
NodeB:~> cd /myexpt/logbook
NodeB:~> /installation elog dir/elconv

6.12.7 Program page

This page present the current active list of the task attached to the given experiment. On
the right hand side a dedicated button allows to stop the program which is equivalent
to the ODBedit command odbedit> sh <task name> .

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 460

The task name hyperlink pops a new window pointing to the ODB section related to
that program. The ODB structure for each program permit to apply alarm on the task
presence condition and automatic spawning at either the begining or the end of a run.

Program page.

e

Pragram Running on bost Alars class Autorsstarc

————e

[Clecked last
| diaea e i L
Watchdog fimeaut [10000 (127100

Figure 26: Program page.

6.12.8 History page

This page reflects the History system settings (CVS r1.271). It lists on the top of the
page the possible group names containing a list of panels defined in the ODB. Next

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 461

a serie of buttons defines the time scale of the graph with predefined time window,
MM I L s s S buttons permit the shifting of the graph in the time
direction. Other buttons will allow graph resizing, Elog attachment creation, configu-
ration of the panel and custom time frame graph display. By default a single group is
created "Default” containing the trigger rate for the "Trigger" equipment.

The configuration options for a given panel consists in:

* Zooming capability, run markers, logarithmic scale.
* Data query in time.
» Time scale in date format.

* Web based page creation ("new" button) for up to 10 history channels per page.

History page.

Bk Daterrst |5 T
[
| |
v | tn 36 | ven | ow | 3a zaf | o] -] tevge | Sweb]|

Back DevectordTx

e

: il f "'\'_,lli b | e

B

. 15—

S T . P SN S | SESS— —, |- et

T T T T T T
Liz ik | HT] KL Jictd

Figure 27: History page.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task

462

History channel selection Page.

MID

|

<

2

i

S

Cancel | Refresh

| Delete Parel

| Panel "Bridge"

Time scale: |10

M Zero Ylow

[Loganighmic ¥ asis

T Show run merkers

| Col | Event | Variahle | Factor | Offset

ITempBridge j

|E|rid_gn_a_Ch 1 Measured j

|1

|TempElridg.e_ _j

[Bridge CWE&I

TempBridge

[Bridge Ch 4 Mea

heters
Cryostat

|E|ridge Ch 5 Mea

|f|'er'.anlridge. j

| Bridge Ch & Mea

|TempElridgp j

. TempBridge j
ol |

| Bridge Ch 7 Mea

[Bridge Ch 3 Mea|

Bridge Ch 2 Measured
Bridge Ch 3 Measured
Bridye Ch 4 Measured

Bridge Ch 7 Measured
Bridge Ch 1 Excitation
Bridge Ch 2 Excitation
Bridge Ch 3 Excitation
Bridge Ch 4 Excitation
Bridge Ch & Excitation
Bridge Ch & Excitation
Bridge Ch ¥ Excitation
Bridge Ch 1 BMES
Bridge Ch 2 BMES
Bridge Ch 3 BMES
Bridge Ch 4 BMES
Bridge Ch 5 BMES
Bridge Ch 6 BMES
Bridge Ch 7 BMES

Bridge Ch 6 Measured |

4]

g

6.12.9 Alarm page

Figure 28: History channel selection Page.

This page reflects the Alarm System settings. It presents the four type of alarms:

* [Evaluated alarms] Triggered by ODB value on given arithmetical condition.

* [Program alarms] Triggered on condition of the state of the defined task.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 463

* [Internal alarms] Trigger on internal (program) alarm setting through the use of
the a/_...() functions.

* [Periodic alarms] Triggered by timeout condition defined in the alarm setting.

6.12.10 Custom page

The Custom page is available since version 1.8.3. It has been improved during version
1.9.5 (mhttpd.c CVS-1.288).

This custom web page provides to the user a mean of creating a secondary personal web
page activated within the standard Midas web interface. This custom page can contain
specific links to the ODB and therefore present in a more compact way the essential
parameter of the controlled experiment. Two mode of operations are available:

* Internal HTML document. : The html code is fully stored in the Online Database
(ODB). This page is web editable.

¢ External referenced HTML document. : ODB contains a link to an external html
document.

» Custom Script usage. : External html code with custom script option.

6.12.10.1 Internal HTML document. This page reflects the html content of a
given ODB key under the /Custom/ key. If keys are defined in the ODB under the
/Custom/ the name of the key will appear in the main status page as the Alias keys. By
clicking on the Custom page name, the content of the /Custom/<page> is interpreted
as html content.

Custom web page with history graph.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12

mhttpd task 464

| PIBETA experiment | Custom display
ODEil ELDgl Alarmsl Programs | Histuryl
Run #42708 |MHC 178916 |Trigger rate 67.5 | BO/MEC ratio 12,6495 |BB: 1
PiBeta
iy el | 5
] “
37515—:
a?eaa—:
37598
3?58@—5
3?5?@—3
37568
_'|'
-24 =22 —Z8 -1a -1& -14 -1z -18 -8 —& -4 -2 =}

Figure 29: Custom web page with history graph.

The access to the ODB field is then possible using specific HTML tags:

<odb src="odb field" > Display ODB field.
<odb src="odb field" edit=1> Display and Editable ODB field.

<form method="GET" action="http://hostname.domain:port/CS/<Custom_-
page_key>"> Define method for key access.

<meta http-equiv="Refresh" content="60"> Standard page refresh in second.

<input type=submit name=cmd value=<Midas_page>> Define button for ac-
cessing Midas web pages. Valid values are the standard midas buttons (Start,
Pause, Resume, Stop, ODB, Elog, Alarms, History, Programs, etc).

Reference to an history page.

ODB /Custom/ html field.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task

465

: wat pie 3
[o i | s | o | s v Y
EREPIg = ===

Eay Vadean
Saknls
casmbrinetm acrp-scuive’RaXreah® conzemcs 20"
it lasFIDETA scaccesy/cieles o/ s

et vawn el TROET el e Ma dee[) D I L N T T

T A B I L LA SN e T L T)

LLRTRRENE N TT

Lonaa ool volae Eloooon

wieen
[cir mligneceatacs
czdrkin feodh arcstfrumniofoon morcsc s

- U-dbe zaoa. wdl o =

el voiopas LA o mis toBgeopamn.lowmilo U ownionelomd Il T ol L
wteer

lan A volszuk xl

vl aZa "ELLY L emme L plL CISESSTLZ00yg gllv Ll s T0IT

P TR [
Syl At

Ex
aknls

Clsmns<nETa ot pe-scuivekaSreah® conzesce 0T
1 ERE RN S o R B R A

Figure 30: ODB /Custom/ html field.

The insertion of a new Custom page requires the following steps:

* Create an initial html file using your favorite HTML editor.

¢ Insert the ODB HTML tags at your wish.

* Invoke ODBedit, create the Custom directory, import the html file.

* Example of loading the file mcustom.html into odb.

Tue> odbedit
[local:midas:Stopped] />1s

System

Programs

Experiment

Logger

Runinfo

Alarms

Equipment
[local:midas:Stopped] />mkdir Custom
[local:midas:Stopped] />cd Custom/
[local:midas:Stopped] /Custom>import mcustom.html
Key name: Testé&
[local:midas:Stopped] /Custom>

AL 2IDZAE~) iTeler a0 ACPTN TITIT, ermzmdns ot otk selzpras o bresloa=bAILITF Tonen fiziley

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 466

* Once the file is load into ODB, you can ONLY edit it through the web (as
long as the mhttpd is active). Clicking on the ODB(button) ... Custom(Key)
... Edit(Hyperlink at the bottom of the key). The Custom page can also be ex-
ported back to a ASCII file using the ODBedit command "export"

Tue> odbedit

[local:midas:Stopped] />cd Custom/
[local:midas:Stopped] /Custom>export testé&
File name: mcustom.html
[local:midas:Stopped] /Custom>

 The character "&" at the end of the custom key name forces the page to be open
within the current frame. If this character is omitted, the page will be spawned
into a new frame (default).

o If the custom page name is set to Status (no "&") it will become the default
midas Web page!

* html code Example mcustom.html

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.76 [en] (Windows NT 5.0; U) [Netscape]">
<meta name="Author" content="Pierre-André Amaudruz">
<title>Set value</title>
</head>
<body text="#000000" bgcolor="#FFFFCC" 1link="#FF0000" vl1ink="#800080" alink="#0000FF">
<form method="GET" action="http://host.domain:port/CS/WebLtno&">
<input type=hidden name=exp value="ltno">
<center><table CELLSPACING=0 CELLPADDING=0 COLS=3 WIDTH="100%" BGCOLOR="#99FF99" >
<caption>LTNO
Custom Web Page</fonts></captions>
<tr BGCOLOR="#FFCC99">
<td>Actions: </fonts>
<input type=submit name=cmd value=Status>
<input type=submit name=cmd value=Starts>
<input type=submit name=cmd value=Stop>
<td>
<input type=submit name=cmd value=0ODB>
<input type=submit name=cmd value=History>
<input type=submit name=cmd value=Elog></td>
<td><div align=right>LTNO experiment </div>
</tds></tr>
<tr><td>Cryostat section:

LN2 Bath Level : <odb src="/equipment/cryostat/variables/measured[12]">

Run# : <odb src="/runinfo/run number" edit=1>

Run#: <odb src="/runinfo/run number"s></tds>
<td WIDTH="100%" BGCOLOR="#009900">RF source section:

Run#f: <odb src="/runinfo/run number"s></tds>
<td WIDTH="50%" BGCOLOR="#FF6600">Run section:

Start Time: <odb src="/runinfo/start time">

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 467

Stop Time: <odb src="/runinfo/stop time">

Run#: <odb src="/runinfo/run number"s></td>
</tr>

<tr>

<td BGCOLOR="#CC6600">Sucon magnet section:

Run#f: <odb src="/runinfo/run number"s></tds>

<td BGCOLOR="#FFCC33">Scalers section:

Beam Current: <odb src="/equipment/epics/variables/measured[10]">

Run#: <odb src="/runinfo/run number"s></td>

<td BGCOLOR="#66FFFF">Polarity section:

Run#f: <odb src="/runinfo/run number"s></tds>
</tr>

</table></centers>

<i>

 LTNO help</i>
</body>

</htmls>

6.12.10.2 External referenced HTML document. The new
External referenced HTML document. feature remove the html code size restric-
tion and support multiple custom web page. In addition, to each html document, a
dynamic ODB linked image extend the display presentation capability of the controlled
experiment.

In the case the custom web page is rather large and complex, it becomes easier to han-
dle such file through normal html editor and skip the reloading of the file in the ODB.
(import/export). This is now possible by providing an external reference of the web
page in the /Custom directory of the ODB. In addition special ODB settings are avail-
able to allow GIF image insertion and ODB fields bars and fillup area superimposed
on the image. This powerful new extention brings the mhttpd capability closer to other
experiment web control similar to EPICS.

The HTML examples below should operate in conjunction of the standard demo mi-
das example found in midas/examples/experiment. myexpt.html, xcumstom.odb and
myexpt.gif can be found in the midas/examples/custom directory.

Using your favorite html editor, you can create a custom page including any of the
options described in the Internal HTML document.. Once the mhttpd application is
started and connected to a valid Midas experiment, you can activate this page as follow:

[local:Default:Stopped] />pwd

/

[local:Default:Stopped] />mkdir Custom
[local:Default:Stopped] />cd Custom
[local:Default:Stopped] /Custom>create string Dewpointé&

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 468

String length [32]: 256
[local:Default:Stopped] /Customs>set Dewpoint& \doc\cooling\dewpoint.html

Note: This link refers to a local html document. In the case an external HTML is
requires, the definition should be placed under /Alias (see also ODB /Alias Tree).

[local:Default:Stopped] />mkdir Alias

[local:Default:Stopped] />cd alias

[local:Default:Stopped] /alias>create string WebDewpointé&

String length [32]: 256

[local:Default:Stopped] /alias>set WebDewpointé& "http://www.decatur.de/javascript/dew/index.html"

After refreshing the Midas status web page, the link Dewpoint should be visible in
the top area of the page. The "&" is to prevent a new frame to be displayed (see
ODB /Alias Tree). Clicking on it will bring you to your custom html documentation.
In the case you want to extend the flexibility of your page by including features such
as:

* "live" ODB values position in a particular location of the page.
* "bar level" showing graphically levels or rate etc.

* "color level" where color is used as level indicator. you need to setup specific
ODB tree related to a particular page. This overlay of the requested features is
done on a GIF file representing you background experimental layout for exam-
ple. myexpt.html can be found in the examples/custom directory. For the full
operation of this custom demo, you’ll need to have the frontend "sample fron-
tend" (midas/example/experiment/frontend.c), mlogger, mhttpd running.

Html document myexpt.html

<html>
<head>
<titles>MyExperiment Demo Status</titles>
<meta http-equiv="Refresh" content="30">
</head>
<body>
<form name="forml" method="Get" action="/CS/MyExpté&">
<table border=3 cellpadding=2>
<tr><th bgcolor="#A0AOFF">Demo Experiment<th bgcolor="#AOAOFF">Custom Monitor/Control</tr>
<tr><td> Actions: <input
value="Status" name="cmd" type="submit"> <input type="submit"
name="cmd" value="Start"><input type="submit" name="cmd" value="Stop">
</td><td>
<center> Help </centers>
</td></tr>
<td>Current run #: <bs><odb src="/Runinfo/run number"s></td>
<td>#events: <odb src="/Equipment/Trigger/Statistics/Events sent"></td>
</tr><tr>
<td>Event Rate [/sec]: <odb src="/Equipment/Trigger/Statistics/Events per sec."></td>
<td>Data Rate [kB/s]: <odb src="/Equipment/Trigger/Statistics/kBytes per sec."></td>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 469

</tr><tr>

<td>Cell Pressure: <odb src="/Equipment/NewEpics/Variables/CellPressure"></td>
<td>FaradayCup : <odb src="/Equipment/NewEpics/Variables/ChargeFaradayCup"></td>
</tr><tr>

<td>Q1 Setpoint: <odb src="/Equipment/NewEpics/Variables/EpicsVars[17]" edit=1></td>
<td>Q2 Setpoint: <odb src="/Equipment/NewEpics/Variables/EpicsVars[19]" edit=1></td>
</tr><tr>
<th> <img src="http://localhost:8080/HS/Default/Trigger%20rate.gif?
exp=default&scale=12h&width=250">
</th>
<th> <img src="http://localhost:8080/HS/Default/Scaler%20rate.gif?
exp=defaulté&scale=10m&width=250"></th>
</tr>
<tr><td colspan=2>
<map name="myexpt.map">
<area shape=rect coords="140,70, 420,170"
href="http://midas.triumf.ca/doc/html/index.html" title="Midas Doc">
<area shape=rect coords="200,200,400,400"
href="http://localhost:8080" title="Switch pump">
<area shape=rect coords="230,515,325,600"
href="http://localhost:8080" title="Logger in color level (using Fill)">

</map>
</tds></tr>
</table></form>
</body>
</html>

To activate this HTML document, it has to be defined in the ODB as follow:

[local:Default:Stopped] />cd /Custom

[local:Default:Stopped] /Custom>create string Myexpté&

String length [32]: 256

[local:Default:Stopped] /Custom>set Myexpt& \midas\examples\custom\myexpt.html

After refresh, the ODB values will be displayed, the mapping is still not active. as no
reference to the gif location has been given yet.

[local:Default:Stopped] /Customs>mkdir Images

[local:Default:Stopped] /Custom>cd Images/

[local:Default:Stopped] Images>mkdir myexpt.gif

[local:Default:Stopped] Images>cd myexpt.gif/
[local:Default:Stopped]lmyexpt.gif>create string Background

String length [32]: 256

[local:Default:Stopped]lmyexpt.gif>set Background \midas\examples\custom\myexpt.gif

After refresh, the file myexpt.gif should by visible. The mapping based on myexpt.map
is active, hovering the mouse over the boxes will display the associated titles (Midas
Doc, Switch pump, etc), By clicking on either box the browser will go to the defined
html page specified by the map.

Custom web page with external reference to html document.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 470

ot | e | _Sip |

st STEE
Cuaa Frite [REUD): DR LT1SEY
FraradayCap - ILBEPERIL
ik Sutpoind: 1397

Carwerd num B 36

Evtit Rate (] MR
Cell Presears: LESEERE]

1 Setpoint 3148

e Expernen

hidas Do

L

Swil_] purer

Figure 31: Custom web external to html document.

In addition of these initial features, multiple ODB values can be superimposed at define

location on the image. Each entry will have a ODB tree associated to it defining the
ODB variable, X/Y position, color, etc...

[local:Default:Stopped]lmyexpt.gif>mkdir Labels
[local:Default:Stopped]lmyexpt.gif>cd labels
[local:Default:Stopped] Labels>mkdir Rate

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 471

>>>>>>>> Refresh web page <<<<<<<<

12:32:38 [mhttpd] [mhttpd.c:5508:show _custom gif] Empty Src key for label "Rate"

Creating "Labels/<label name>" sub-directory under the gif file name, will automati-
cally at the next web page refresh complete its filling with default value for the structure
for that label.

[local:Default:Stopped] Labels>cd Rate/
[local:Default:Stopped] Rate>1ls -1

Key name Type #Val Size Last Opn Mode Value
Src STRING 1 256 2m 0 RWD

Format STRING 1 32 2m 0 RWD %1.1f
Font STRING 1 32 2m 0 RWD Medium
X INT 1 4 2m 0 RWD O

Y INT 1 4 2m 0 RWD O
Align INT 1 4 2m 0 RWD O
FGColor STRING 1 8 2m 0 RWD 000000
BGColor STRING 1 8 2m 0 RWD FFFFFF

The Sre should point to a valid ODB Key variable. The X,Y fields position the top left
corner of the label. The other fields associated to this label are self-explanatory.

[local:Default :Stopped
[local:Default :Stopped
[local:Default :Stopped
[local:Default:Stopped

Rates>set src "/Equipment/Trigger/statistics/kbytes per sec."
Rate>set x 330

Rate>set y 250

Rates>set format "Rate:%1.1f kB/s"

Once the initial label is created, the simplest way to extent to multiple labels is to copy
the existing label sub-tree and modify the label parameters.

[local:Default :Stopped] Labels>cd

[local:Default:Stopped] Labels>copy Rate Event

[local:Default:Stopped] Labels>cd Events/

[local:Default:Stopped] Event>set src "/Equipment/Trigger/statistics/events per sec."
[local:Default:Stopped] Event>set Format "Rate:%1.1f evt/s"

[local:Default:Stopped] Event>set y 170

[local:Default:Stopped] Event>set x 250

In the same manner, you can create bars used for level representation. This code will
setup two ODB values defined by the fields src.

[local:Default :Stopped] myexpt .gif>pwd
/Custom/Images/myexpt.gif
[local:Default:Stopped]lmyexpt.gif>mkdir Bars
[local:Default:Stopped]lmyexpt.gif>cd bars/
[local:Default:Stopped] Labels>mkdir Rate

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 472

>>>>>>>> Refresh web page <<<<<<<<

14:05:58 [mhttpd] [mhttpd.c:5508:show_custom gif] Empty Src key for bars "Rate"
[local:Default:Stopped] Labels>cd Rate/

[local:Default:Stopped]Rate>set src "/Equipment/Trigger/statistics/kbytes per sec."
[local:Default:Stopped] Rate>set x 4640

[local:Default:Stopped] Rate>set y 210

[local:Default:Stopped] Rate>set max 1leé6

[local:Default :Stopped] Labels>cd

[local:Default:Stopped] Labels>copy Rate Events

[local:Default:Stopped] Labels>cd Events/

[local:Default:Stopped] Event>set src "/logger/channles/0/statistics/events written"
[local:Default:Stopped] Event>set direction 1
[local:Default:Stopped] Event>set y 240
[local:Default:Stopped] Event>set x 450
[local:Default:Stopped] Rate>set max 1leé6

Following the same principle as for the labels, by creating Bars/<bar name>>, the struc-
ture for the rate will be filled with a default setting after refreshing the custom midas
page. The different parameters are self-explanatory.

The last option available is the Fills where an area can be filled with different colors
depending on the given ODB value (src parameter). The color selection is mapped
by correspondance of the index of the Limit array to the Fillcolor array. Presently the
structure is not pre-defined and need to be entered by hand.

[/Custom/Images/myexpt.gif/Fills/Level]

Src = STRING : [256] /equipment/Trigger/statistics/events sent
X = INT : 250

Y = INT : 550

Limits = DOUBLE [4]

[0] ©O

[1] 10

[2] 10000

[3] 100000

Fillcolors = STRINGI[4]
[8] OOFFO0O0

[8] AAFFO00

[8] AAO000O

[8] FF0000

Custom web page with external reference to html document.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 473

Actiest | Saha | S | Sm |
= Gl

I Do Expesmmens il e :

Cormen uaw: 10 mpvemn 15200

Bt Fiss [oit]: PREPLE Dvild Bt (KB} $20070
Cull Praviers 00535831 FamdsaCug U0NER1L
(1 Setpaint- 3345 |02 Getpomt- |3.07

Midas Experiment

K E

",

[Fae 96,3 wviss | [Fate:5.3 WBiz |

Color changes based onevents weller' wales
{Customimagesmye:plLgbfils

Lim] 0, M0, (0000, 100000
Filcooes] D0FFD0, ARFEDO, BADDOO, FFODOD

Figure 32: Custom web external to html document.

6.12.10.3 Custom Script usage. From 1.9.5, a new feature has been implemented
for the creation of secondary web page activated by an internal or external custom page.
This permit to have truly custom page for specific scripts or data display. Use of a new

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 474

odb key is required CustomScript following the same Script syntax.
To be noted that <script> language within the .html source file is possible.

In order to provide a new frame holding input parameters with start script button using
the inputs parameters as arguments the setup is the following:

* Create the mybutton.html code as described in the Internal HTML document..
* Create a new custom (internal or External) in ODB under /Custom/mybutton&

 Create a new custom script (with argument as described in the myscript.html) in
ODB under /CustomScript/myscript&

These operations will implement a new button <mybutton> in the main Status Midas
web page (same Ine as alias). By clicking <mybutton> a new frame will be created
as described in the mybutton.html. By clicking on the <myscript> of tht new frame,
execution of the script using all the argument above will be performed.

* mybutton.html code

<!--Custom web page for runall.

This webpage displays some experiment data,

allows the user to enter some experiment parameters,

and then uses these parameters to run a custom script.-->

<html>
<head>
<meta http-equiv="Refresh" content="10">
<title>RUNALL</title>
</head>
<body>
<form method="GET" action="http://<host>:<port>/CS/mybutton&">
<input type=hidden name=exp value="default">
<table border ="3" cellpadding ="5" width ="40%">
<tr align ="center"<th bgcolor =#AO0AOFF>
MIDAS experiment "default"</th>
<th bgcolor =#A0AOFF>

<script>

var mydate=new Date ()
var year=mydate.getYear ()
if (year < 1000)

year+=1900
var day=mydate.getDay ()
var month=mydate.getMonth ()
var daym=mydate.getDate ()
var hour=mydate.getHours ()
var min=mydate.getMinutes ()
var sec=mydate.getSeconds ()
if (daym<10)

daym="0"+daym

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.12 mhttpd task 475

</th>
</tr>

</html>

if (hour<10)

hour="0"+hour
if (min<10)

min="0"+min
if (sec<10)

sec="0"+sec
var dayarray=new Array ("Sun", "Mon","Tue", "Wed", "Thur","Fri", "Sat")
var montharray=new Array("Jan","Feb","Mar", "Apr", "May", "June", "July",
"Aug", "Sept","Oct", "Nov", "Dec")

document .writeln(dayarray([day], " ", montharray[month], " ", daym," ",
hour, ":", min, ":", sec," ", year);
</scripts>

<tr align ="center'"<th colspan ="2" bgcolor=#A0A0A0>

<input type=submit name=cmd value=Status>

<input type=submit name=cmd value=0DB></th></tr>

<tr align ="center"><th colspan = "2" bgcolor=#CCCCFF>

End of Run Parameters</th></tr>

<tr align ="center"s<th> Key </th> <th>Value </th></tr>

<tr align ="center"s><td>Run number</td>

<td><odb src="/runinfo/run number"s></td></tr>

<tr align ="center"s><td>Number of Runs</td>

<td><odb src="/customscript/myscript/Number of Runs" edit=1></td></tr>
<tr align ="center"s<tds>Duration in Hours</td>

<td><odb src="/customscript/myscript/Duration in Hours" edit=1></td></tr>
<tr align ="center"<th colspan ="2" bgcolor=#D0D0D0>

<input type=submit name=customscript value="myscript'"s>

</th></tr>

</table>

</form>

</body>

CustomScript usage.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.13 New Documented Features 476

G te-Tmmiem weh pagr Fom mamalls
This srhpage diplars s s i dabe,

BllaEn Lhe nery Gm svwew s sy i v,

SRl CEAE RBSN LM AIMMSSSE SO0 CRE 8 SRACES BOT L3

Sl

hmnir
e s e CE PP EPELS L

= (2T bydew baiad
o
harabiato e v sca: bad

Figure 33: CustomScript usage.

Utilities - Top - Data format

6.13 New Documented Features

Top - Top - Introduction

Some of the midas features are not yet fully documented or even referenced anywhere
in the documentation.

This section will maintain an up-to-date information with a log of the latest documen-
tation on past and current features. It will also mention the wish list documentation on
current developments.

¢ Current doc revision: 2.0.0-1

¢ Software version: 2.0.0

e [2.0.0]
— Update the whole midas package for support of 64 bits machine, OSLFAGS
should have -m32 for 32bit (Building Options).
— Implementation of the external standalone Elog package (External Elog).
— ODB Buffer size parameter (ODB /Experiment Tree).
— Fix buffer level handling.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.13 New Documented Features 477

— Improve midas.log, ODB Dump file directory destination (Data_Dir).
— Multiple minor buf fixes

+ Buffer level handling.

+ mdump single bank display.

+ mhttpd (multiple buggies).
— EQ_MULTITHREAD frontend type (see EQ_xxx).

— Ring Buffer fonctions (rb_create(),...) for multi-threading and cascading
data transfer.

. [1.9.6]

— Latest tarball : 1.9.5-x You can retrieve the daily tarball directly from
the SVN web interface by clicking on the "tarball" link at the bottom of the
main SVN-midas page.

— LatestRPM :1.9.2-1

* [Before 1.9.6]
— Switch from CVS to Subversion for Version control, this change affects
Quick Start. Check the new checkout/update commands.
— New Midas VME standard functions implementation in mvmestd.h.

— MIDASSYS environment variable now required for building /exam-
ples/experiment and /examples/hbookexpt

— New /drivers tree structure includes camac , vime , fastbus.

— New make option for minimal installation. This permits root installation of
mserver, mcleanup, dio and mhttpd only.

> make minimal_install

. [1.9.5-2]

— XML ODB format

— Separate xml SVN path for building Midas required. This package can
be extracted the same way as Midas. It has to reside at the same level as
Midas.

. [1.9.5-1]

— Custom page improvement. Implementation of external file.html and dy-
namic linked graphic to ODB values.

* [1.9.5]

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.13 New Documented Features 478

— When upgrading to 1.9.5 , ALL midas applications including user applica-
tions needs to be rebuild AND the ODB.SHM (.ODB.SHM) shared mem-
ory need to be removed. Prior the removal of the ODB.SHM, the ODB
database can be saved in ASCII format for later restoration.

— Run Transition Sequence changed to multiple level scheme.
— odbedit_task support of XML format for ODB dump.

— Large File support (>2GB) from mlogger task application.
— Folder Root Histogram support within mana.

— mevb task application.

— New Midas Frontend application argument for Event Builder option (-i in-
dex).

% Documentation on "Tests" results from analyzer.
— mySQL support from mlogger task.
— Increase system wide parameters values (see midas.h).
— Fix numerous small annoying bugs...

— Improve debugging messages in mserver -d (/tmp/mserver.log).

. [<1.9.5]

— In writing

% Epics Slow Control documentation

* Introduce MIDASSYS environment variable
* Analyzer documention revision MIDAS Analyzer

* Watchdog bug fix (RH9.0)

¢ Restructured Midas distribution

— In the same effort as the documentation, the midas tree and CVS have been
modified. The download area now contains separate directories for
doc, add-ons, publications etc.

[DOCUMENTATION in progress]

* Alarge effort has been put on the documentation for switching from the DOC++
to Doxygen We feel the cross-referencing to the source code is excellent and
hopefully will server better its purpose. Currently the MIDAS Analyzer is not
complete as well as the Quick Start. This Doxygen related files will be made
accessible for better update.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.13 New Documented Features 479

* [Midas Short Course]

During the RealTime Conference 2003 held in Montreal, a short course
was offered to introduce the Midas DAQ to the audience. This course
(.ppt, .pdf) is now part of the Midas distribution and can be found under
the doc/course/ directory as 2 files (partl, part2). The Part 1 describes the
basic of the system and its implementation, while part 2 lists specific fea-
tures. Partl.pdf, Part2.pdf .

. [1.9.3]

Support for ROOT files.

mlogger task : New Data format ROOT and corresponding file extension
root

rmidas task : Initial Root/Midas GUI for Histogram and Run control.

MIDAS Analyzer : New framework for Online/Offline Root analysis using
socket connection.

Makefile for ROOT, remove MANA _LITE, create HAVE_ROOT,
HAVE_HBOOK.

New Analyzer mana, hmana, rmana depending on the type of package.

. [1.9.2]

odbedit: <tab> completion is working with flags too, "Load" protect the
data dir if changed.

lazylogger task : This task has been improved for tape manilupation as well
as messages display. It has also now extra fiilds for shell scripts when the
tape rewinds. It supports also split run capability when running multiple
instance of the task. Please refer to the documentation for explanation of
the new fields.

mlxspeaker: Added possible system call to wav file for "beeping" user be-
fore message.

mhist: Add index range for -i with -v.

eventbuilder: Revised version with user code scheme. Still in a develop-
ment stage.

cm_cleanup() if you were using this call, you need now to provide an empty
char arg to make it compatible.

. [1.9.1]

This version addresses several bugs reported in the web interface, history,
logger, odbedit and implements new features in particular for the history
pages on web interface. The detail list of the modifications can be found in
CHANGELOG .

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 480

[EQ_FRAGMENTED] Possibility to send extremely large event
through the system without modification of the system configuration
(see The Equipment structure)
[logger subdir option] Allows to redirect the data files to a sub-
directory based on the time of the creation of the data file (see
ODB /Logger Tree).
Option for building an analyzer without the CERN library (HBOOK)
(see Midas build options and operation considerations).
[MOD. REQ.] This release requires several modifications in the user
code in order to compile the 1.9.1.
1. [db_get _value() function] Requires an extra parameter see
Midas Code and Libraries.
2. [max_event_size_frag] Required in all the frontend code as fol-
low:

// maximum event size produced by this frontend
INT max event size = 10000;

// maximum event size for fragmented events (EQ FRAGMENTED)

INT max_event_ size frag = 5%1024*1024;

— [/Logger tree] As this tree includes new field, you will need to recreate this

tree.

— [general] It is wise to create a fresh ODB when switching to 1.9.1 version.
This can be done by:

1.
. saving the current ODB to a file

AN L AW

. [<1.9.1]

removing all attached midas client to your experiment

. removing all shared memory files (hidden files .x.SHM)

. creating new ODB (odbedit -s size)

. trimming the odb save file to keep user specific structures (if any).
. restoring the trimmed odb file.

— Hopefully nobody is still running an older version.

Top - Top - Introduction

6.14 ODB Structure

Internal features - Top - Data format

The Online Database contains information that system and user wants to share. Ba-
sically all transactions for experiment setup and monitoring go through the ODB. It
also contains some specific system information related to the "Midas client" currently
involved in an experiment (/system).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 481

Each ODB field or so called KEY is accessible by the user through either an in-
teractive way (see odbedit task) or by C-programming (see functions db_xxx in
Midas Code and Libraries).

The ODB information is stored in a "tree/branch" structure where each branch refers to
a specific set of data. On the first invocation of the database (first Midas application) a
minimal system record will be created. Later on each application will add its own set
of parameters to the database depending on its requirement. For instance, starting the
ODB for the first time, the tree /Runfinfo, /Experiment, /System will be created. The
application mlogger task will add its own tree /Logger/...

As mentioned earlier, ODB is the main communication platform between any Midas
application. As such, the content of the ODB is application dependent. Several "dor-
mant" trees can be awaken by the user in order to provide extra flexibility of the system.
Such "dormant" tree are Alias, Script, Edit on Start , Security, Run parameters .

* ODB /System Tree

* ODB /Runlnfo Tree

* ODB /Equipment Tree

* ODB /Logger Tree

* ODB /Experiment Tree

* ODB /History Tree

* ODB /Alarms Tree

* ODB /Script Tree

* ODB /Alias Tree

* ODB /Elog Tree

* ODB /Programs Tree

* ODB /Lazy Tree

* ODB /EBuilder Tree

* ODB /Custom Tree

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 482

6.14.1 ODB /System Tree
The system tree contains information specific to each "Midas client" currenltly con-
nected to the experiment. This information is not primarly for the user but may be

informative in some respect to the reader.

[host :expt:Stopped] />1s -r -1 /system

Key name Type #Val Size Last Opn Mode Value
System DIR
Clients DIR
29580 DIR
Name STRING 1 32 17h 0 R decay
Host STRING 1 256 17h 0 R hostl
Hardware type INT 1 4 17h 0 R 42
Server Port INT 1 4 17h 0 R 1227
Transition Mask DWORD 1 4 17h 0 R 329
Deferred Transition DWORD 1 4 17h 0 R 6
RPC DIR
16000 BOOL 1 4 17h R Y
16001 BOOL 1 4 17h 0 R Y
29638 DIR
Name STRING 1 32 17h 0 R MStatus
Host STRING 1 256 17h 0 R host1l
Hardware type INT 1 4 17h 0 R 42
Server Port INT 1 4 17h 0 R 1228
Transition Mask DWORD 1 4 17h O R 0
Deferred Transition DWORD 1 4 17h O R 0
29810 DIR
Name STRING 1 32 17h 0 R Nova_ 029810
Host STRING 1 256 17h 0 R host
Hardware type INT 1 4 17h 0 R 42
Server Port INT 1 4 17h 0 R 1235
Transition Mask DWORD 1 4 17h 0 R 0
29919 DIR
Name STRING 1 32 17h 0 R Epics
Host STRING 1 256 17h 0 R host
Hardware type INT 1 4 17h 0 R 42
Server Port INT 1 4 17h 0 R 1237
Transition Mask DWORD 1 4 17h 0 R 329
Deferred Transition DWORD 1 4 17h O R 0
RPC DIR
16000 BOOL 1 4 17h R Y
16001 BOOL 1 4 17h R Y
12164 DIR
Name STRING 1 32 68 0 R ODBEdit
Host STRING 1 256 68 0 R host2
Hardware type INT 1 4 6s 0 R 42
Server Port INT 1 4 6s 0 R 4893
Transition Mask DWORD 1 4 6s 0 R 0
Deferred Transition DWORD 1 4 6s 0 R 0
Link timeout INT 1 4 68 0 R 10000
Client Notify INT 1 4 68 0 RWD O
Prompt STRING 1 256 >99d 0 RWD [$h:%e:%S]%
Tmp DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 483

* [Remark 1] The key Prompt sets up the prompt of the ODBEdit program.

odbedit

[local:midas:Stopped] />cd /System/
[local:midas:Stopped] /System>1ls
Clients

Tmp

Client Notify 0
Prompt [$h:%e:%S] %p>

[local:midas:Stopped] /System>set Prompt my prompts>

my prompt>set Prompt [Host:%h-Expt:%e:State:%s]Path:%p>
[Host:local-Expt:midas-State:S]Path:/System>set Prompt [Host:%h-Expt:%e-State:%S]Path:%p>
[Host:local-Expt:midas-State:Stopped] Path:/System>

6.14.2 ODB /Runlnfo Tree

This branch contains system information related to the run information. Several time
fields are available for run time statistics.

odb -e expt -h host
[host:expt:Running] />1s -r -1 /runinfo

Key name Type #Val Size Last Opn Mode Value
Runinfo DIR
State INT 1 4 2h 0 RWD 3
Online Mode INT 1 4 2h 0 RWD 1
Run number INT 1 4 2h 0 RWD 8521
Transition in progress INT 1 4 2h 0 RWD O
Requested transition INT 1 4 2h 0 RWD O
Start time STRING 1 32 2h 0 RWD Thu Mar 23 10:03:44 2000
Start time binary DWORD 1 4 2h 0 RWD 953834624
Stop time STRING 1 32 2h 0 RWD Thu Mar 23 10:03:33 2000
Stop time binary DWORD 1 4 2h 0 RWD O

[State] Specifies in which state the current run is. The possible states are 1:
STOPPED, 2: RUNNING, 3: PAUSED.

[Online Mode] Specifies the expected acquisition mode. This parameter allows
the user to detect if the data are coming from a "real-time" hardware source or
from a data save-set. Note that for analysis replay using "analyzer" this flag will
be switched off.

* [Run number] Specifies the current run number. This number is automatically
incremented by a successful run start procedure.

* [Transition in progress] Specifies the current internal state of the system. This
parameter is used for multiple source of "run start" synchronization.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 484

[Requested transition] Specifies the current internal of the Deferred Transition
state of the system.

* [Start Time] Specifies in an ASCII format the time at which the last run has
been started.

* [Start Time binary] Specifies in a binary format at the time at which the last
run has been started This field is useful for time interval computation.

* [Stop Time] Specifies in an ASCII format the time at which the last run has been
stopped.

* [Stop Time binary] Specifies in a binary format the time at which the last run
has been stopped. This field is useful for time interval computation.

6.14.3 ODB /Equipment Tree

Every frontend create a entry under the /Equipment tree. The name of the sub-tree is
taken from the frontend source code in the equipment declaration (frontend.c). More
detailed explanation of the composition of that tree will be found throughout this doc-
ument.

{

"DspecCheck", // equipment name

"Scaler", // equipment name
Example:
Key name Type #Val Size Last Opn Mode Value
HistoCheck DIR
DSpecCheck DIR
HistoPoll DIR
HistoEOR DIR
DSpecEOR DIR
Scaler DIR
SuconMagnet DIR
TempBridge DIR
Cryostat DIR
Meters DIR
RFSource DIR
DSPec DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 485

The equipment tree is then split in several sections which by default the system creates.

* Common : Contains the system information. Should not be overwritten by the
user.

Variables : Contains the equipment data if enabled (see below).

Settings : Contains the equipment specific information that the user may want
to maintain. In the case of a Slow Control System equipment, extended tree
structure is created by the system.

Statistics : Contains equipment statistics information such as event taken, event
rate, data rate.

[local:S]ls -1 -r /equipment/scaler

Key name Type #Val Size Last Opn Mode Value
Scaler DIR
Common DIR
Event ID WORD 1 2 léh 0 RWD 1
Trigger mask WORD 1 2 léh 0 RWD 256
Buffer STRING 1 32 l6h 0 RWD SYSTEM
Type INT 1 4 16h 0 RWD 1
Source INT 1 4 l6h 0 RWD O
Format STRING 1 8 léh 0 RWD MIDAS
Enabled BOOL 1 4 léh 0 RWD vy
Read on INT 1 4 léh 0 RWD 377
Period INT 1 4 léh 0 RWD 1000
Event limit DOUBLE 1 8 l6h 0 RWD O
Num subevents DWORD 1 4 l6h 0 RWD O
Log history INT 1 4 l6h 0 RWD O
Frontend host STRING 1 32 léh 0 RWD midtis03
Frontend name STRING 1 32 léh 0 RWD feLTNO
Frontend file name STRING 1 256 16h 0 RWD C:\online\sc ltno.c
Variables DIR
SCLR DWORD 6 4 1s 0 RWD
(o] 0
[1] 0
[2] 0
[3] 0
[4] 0
[5] 0
RATE FLOAT 6 4 1s 0 RWD
[0] 0
[1] 0
[2] 0
[3] 0
[4] 0
[5] 0
Statistics DIR
Events sent DOUBLE 1 8 1s 0 RWDE 370
Events per sec. DOUBLE 1 8 1s 0 RWDE 0.789578
kBytes per sec. DOUBLE 1 8 1s 0 RWDE 0.0678543

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

486

6.14.4 ODB /Logger Tree

The /Logger ODB tree contains all the relevant information for the Midas logger utility
(mlogger task) to run properly. This utility provides the mean of storing the physical
data retrieved by the frontend to a storage media. The user has no code to write in
order for the system to operate correctly. Its general behavior can be customized and
multiple logging channels can be defined. The application supports so far three type of

storage devices i.e.: Disk, Tape and FTP channel.

Default settings are created automatically when the logger starts the first time:

Key name

#vVal

Siz

e

Last Opn Mode

Value

Logger

Data dir

Message file

Write data

ODB Dump

ODB Dump File

Auto restart

Tape message

Channels

0
Settings

Active
Type
Filename
Format
ODB Dump
Log messages
Buffer
Event ID
Trigger Mask
Event limit
Byte limit
Tape capacity

Subdir format STRING 1

Current filenameSTRING 1

Statistics DIR

Events written

Bytes written

DIR
STRING
STRING
BOOL
BOOL
STRING
BOOL
BOOL
DIR
DIR
DIR
BOOL
STRING
STRING
STRING
BOOL
DWORD
STRING
INT
INT
DWORD
DOUBLE
DOUBLE
32
256

DOUBLE
DOUBLE

Bytes written toDOUBLE

Files written

INT

PR R RR PR

PR R RRPRPRR R RPR R

[S

vl
(&)}

0 0 BB W D0 N ©
N

B 00 00

4h
22h
2h
22h
22h
22h

1h
1h
1h
1h
1h
1h
1h
1h
1h
1h
1h
1h

1h
1h
1h
1h

O O O O o o o

o O O o

RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD
RWD

/scr0/spring2000
midas.log

n

Y

run%05d. odb

Y

Y

Y
Disk
run%05d.ybs
YBOS

Yy

0
SYSTEM
-1

-1

0

0

0

0

0
3.24316e+11
334

From Midas version 1.9.5, the logger has the possibility to store information to a my-
SQL database. This option is an alternative to the runlog.txt update hanled by the

analyzer. The two main advantages using the SQL are:

* The recording is done by the logger and therfore independent of the user ana-

lyzer.

* The definition of the parameters to be recorded in the database is entirely setup
in the ODB under /logger/SQL. This SQL option is enabled by defining at build

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 487

time the preprocessor flag HAVE_MYSQL. This option when enabled will cre-
ate a sub tree SOL under /Logger in the ODB. This tree contains information for
mySQL access with predefined mySQL database name Midas and table Runlog.
Under 2 dedicated sub directories i.e: Link_ BOR and Link_EOR, predefined
links exists which will be used respectively at BOR and EOR for storing into the
database. These elements are ODB links allowing the user to extend the list with
any parameter of the ODB database. This logger mySQL option is to replace or
complement the runlog.txt functionality of the ana_end_of_run() function from
the analyzer.c.

[local:midas:S]/Logger>ls -lr SQL

Key name Type #Val Size Last Opn Mode Value
SQL DIR
Create database BOOL 1 4 27s 0 RWD n
Write data BOOL 1 4 27s 0 RWD n
Hostname STRING 1 80 27s 0 RWD localhost
Username STRING 1 80 27s 0 RWD root
Password STRING 1 80 27s 0 RWD
Database STRING 1 32 27s 0 RWD midas
Table STRING 1 80 27s 0 RWD Runlog
Links BOR DIR
Run number LINK 1 20 58s 0 RWD /Runinfo/Run number
Start time LINK 1 20 58s 0 RWD /Runinfo/Start time
Links EOR DIR
Stop time LINK 1 19 4m 0 RWD /Runinfo/Stop time

* [Data dir] Specifies in which directory files produced by the logger should be
written. Once the Logger in running, this Data_Dir will be pointing to the loca-
tion of the midas.log , ODB dump files, history files, message files. In the case
of multiple logging channels, the data path for all the channels is defaulted to the
same location. In the case where specific directory has to be assigned to each
individual logging channel, the field /logger/channel/<x>/Settings/Filename
can contain the full path of the location of the .mid, .ybs, .asc file. By finding the
OS specific SEPARATOR_DIR ("/", "\"). The field Filename will overwite the
global Data_Dir setting for that particular channel.

— [History Dir] This field is optional and doesn’t appear by default in the
logger. If present the location of the History system files is reassigned to
the defined path instead of the default Data_Dir .

— [Elog Dir] This ficld is optional and doesn’t appear by default in the logger.
If present the location of the Electronic Logbook files is reassigned to the
defined path instead of the default Data_Dir.

— [Message file] Specifies the file name for the log file which contains all
messages from the MIDAS message system. The message log file is a
simple ASCII file, which can be viewed at any time to see a history of what
happened in an experiment.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 488

% 2.0.0 The location of the ODB dump files can now be specified in
this field. If the string contains a DIRECTORY_SEPARATOR, is it
considered as an absolute path.

— [Write data] Global flag which turns data logging on and off for all chan-
nels. It can be set to zero temporarily to make a short test run without data
logging. The key "Write data?" is predefined logger key for enabling data
logging. This action can be overridden by setting the active key to 1.

— [ODB Dump] Specifies if a dump of the complete ODB should be written
to the file specified by ODB Dump File.

— [ODB Dump File] At the end of each run. If the file name contains a
"%", this gets replaced by the current run number similar to the printf() C
function. The format specifier 05d from above would be evaluated to a five
digit run number with leading zeros like run00002.0odb. The ODB dump
file is in ASCII format and can be used for off-line analysis to check run
parameters etc. For a description of the ASCII format see db_copy().

% 2.0.0 The location of the ODB dump files can now be specified in
this field. If the string contains a DIRECTORY_SEPARATOR, is it

considered as an absolute path
[local:Default:S]/Logger>ls

Data dir \online\
Message file midas.log
Auto restart n

Write data y

ODB Dump n

ODB Dump File run%05d.odb
Tape message y

Channels

[local:Default:S]/Logger>set OD

ODB Dump

ODB Dump File
[local:Default:S]/Logger>set "ODB Dump File" "/mypath/run%06d.odb"
[local:Default:S]/Loggers>ls

Data dir \online\

Message file midas.log

Auto restart n

Write data v

ODB Dump n

ODB Dump File /mypath/run%06d.odb
Tape message y

Channels

— [Auto restart] When this flag is one, a new run gets automatically restarted
when the previous run has been stopped by the logger due to an event or
byte limit.

— [Tape message] Specifies if tape messages during mounting and writing of
EOF marks are generated. This can be useful for slow tapes to inform all
users in a counting house about the tape status.

— [channels] Sub-directory which contains settings for individual channels.
By default, only channel "0" is created. To define other channels, an exist-
ing channel can be copied:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 489

[loca]]Logger>cd channels
[local] Channels>ls

0

[local] Channels>copy 0 1
[local]l Channels>ls

0

1

The Settings part of the channel tree has the following meaning:

— [active] turns a channel on (1) or off (0). Data is only logged to channels
that are active.

— [Type] Specity the type of media on which the logging should take place.
It can be Disk, Tape or FTP to write directly to a remote computer via FTP.

— [Filename] Specify the name of a file in case of a disk logging, where 05d
is replaced by the current run number the same way as for the ODB dump
files. In the case of a tape logging, the filename specifies a tape device like
/dev/nrmt0 or /dev/nstO under UNIX or \\.\tapeO under Windows NT.

% In FTP mode, the filename specifies the access information for the FTP
server. It has the following format:

<host name>, <port number>, <user name>, <password>, <directory>, <file name>

The normal FTP port number is 21 and 1021 for a Unitree Archive like
the one used at the Paul Scherrer Institute. By using the FTP mode, a
back-end computer can directly write to the archive.

myhost .my.domain, 21, john, password, /usr/users/data, run%05d.mid

— [Format] Specifies the format to be used for writing the data to the log-
ging channel. It can one of the five value: MIDAS, YBOS, ROOT, ASCII
and DUMP. The MIDAS and YBOS binary formats Midas format and
YBOS format, respectively. The extention for the file name has to match
one of the following.

% .mid for MIDAS
% .ybs for YBOS

% .root for ROOT
% .asc for ASCII

% .txt for DUMP

» The ASCII format converts events into readable text format which can be eas-
ily analyzed by programs which have problems reading binary data. While the
ASCII format tries to minimize the file size by printing one event per line, the
DUMP format gives a very detailed ASCII representation of the event including
bank information, serial numbers etc, it should be used for diagnostics. Consis-
tency of this type of format has to be maintained between the frontend declara-
tion and the logger.

* [ODB Dump] Specifies the complete dump of the ODB to the logging channel
before and after every run. The ODB content is dumped in one long ASCII

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 490

string reflecting the status at begin-of-run event and at end-of-run event. These
special events have an ID of EVENT_ID_BOR and EVENTID_EOR and a serial
number equals to the current run number. An analyzer in the off-line analysis
stage can restore the ODB to its online state.

* [Log messages] This is a bit-field for logging system messages. If a bit in this
field is set, the according system message is written to the logging channel as a
message event with an ID of EVENT_ID_MESSAGE (0x8002). The bits are 1
for error, 2 for info, 4 for debug, 8 for user, 16 for log, 32 for talk, 64 for call
messages and 255 to log all messages. For an explanation of these messages
refer to Buffer Manager, Event ID and Trigger .

» [Mask] Specify which events to log. See Frontend code to learn how events are
selected by their ID and trigger mask. To receive all events, -1 is used for the
event ID and the trigger mask. By using a buffer other than the "SYSTEM"
buffer, event filters can be realized. An analyzer can request all events from
the "SYSTEM" buffer, but only write acceptable events to a new buffer called
"FILTERED". When the logger request now only events from the new buffer
instead of the "SYSTEM" buffer, only filtered events get logged.

* [Event limit, Byte limit and Tape capacity] These fields can be used to stop a run
when set to a non-zero value. The statistics values Events written, Bytes written
and Bytes written total are checked respectively against these limits. When one
of these condition is reached, the run is stopped automatically by the logger.
Updates of the statistics branch is performed automatically every so often. This
branch contains the number of events and bytes written. These two keys are
cleared at the beginning of each run. The Bytes written total and Files written
keys are only reset when a tape is rewound with the ODBEdit command rewind.
The Bytes written total entry can therefore be used as an indicator if a tape is
full. The Files written entry can be used off-line to determine how many files on
tape have to be skipped in order to reach a specific run.

* [Subdir format, Current filename] In the case the Subdir format is not empty,
this ficld will enable the placement of the data log file into a sub directory. The
name of this subdirectory is composed by the given Subdir format string. Its
format follows the definition of the system call strftime() . Ordinary characters
placed in the format string are copied to s without conversion. Conversion spec-
ifiers are introduced by a ‘%’ character, and are replaced in s as follows for the
most used one:

— Y : Year (ex: 2002)
— y: Year (range:00..99)
— m : Month (range: 01..12)

— d: Day (range: 00..31) The other characters are: a, A, b, B, c,C,d, D, e,
E’ G’ g’ h’ H’ I’ j7 k7 17 m? M? n7 07 p7 P7 r? R? S7 S? t’ T’ u’ U’ V’ W’ W’ X’ X’
Y, Y, z, Z, +, %. (See man strftime() for explanations).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

491

* [Current filename] will reflect the full path of the saved data file.

6.14.5 ODB /Experiment Tree

Under this tree, the Midas system stores special features for the user in order to facili-
tate his job on controlling a run. Initially only one empty key is defined labeled Name
for the experiment name. The user can create four system keys in order to provide
extra run control flexibility i.e.: "Run Parameter/", "Edit on Start/", "Lock when
running/" and "Security/".

* 2.0.0, this directory can specify the event buffer size for each buffer involved in
the experiment. By default the event buffer is named SYSTEM. Its default size
is 2MB. This new parameter may be required to optimize the memory usage at
the frontend level in case large data transfer is needed. This method work for all
MIDAS buffers, except for ODB, where the size has to be specified at creation
time using the odbedit command "-s" argument. There is no need to increase the
SYSMSG.SHM buffer as it is used only for messages.

1. Shutdown all MIDAS programs, delete the old .SYSTEM.SHM files sitting
in the directory specified by either the exptab or SMIDAS_DIR, use ipcrm

for share memory segment removal.

2. Run odbedit, go to experiment, create a directory key "Buffer Sizes", create
a DWORD key of the buffer name to be increased.

C:\onl

[local:
[local:
[local:
[local:
[local:

ine>odbedit

Default:
Default:
Default:

S
S
S
Default:S

Default:S]/>cd Experiment/

] /Experiment>mkdir "Buffer Sizes"
] /Experiment>cd "Buffer Sizes/
]
1

Buffer Sizes>create DWORD SYSTEM
Buffer Sizes>set SYSTEM 4000000

3. Starts the rest of the MIDAS programs. Check that the buffer has the correct
size by looking at the size of .SYSTEM.SHM (unix, ipcs), SYSTEM.SHM
(windows).

Key name

#Val

Size

Last Opn Mode Value

Experime

Name

Run

nt

Parameter

Beam Polarity

Beam Momentum

2LT: log file name?
1LT: file name?
Comment

Target Angle

DIR
STRING
DIR
STRING
FLOAT
STRING
STRING
STRING
FLOAT

32

256

256

256
256

2h
2h
2h
2h
2h
2h

RWD

o™ ™ o™

Generated on Thu Mar 8 23:

04:47 2007 for Midas by Doxygen

chaos

negative

91

cnios
files.cni.zero
ch2 target

0

6.14 ODB Structure 492
Target Material STRING 1 256 2h 0 R
Edit on start DIR
Beam Momentum FLOAT 1 4 2h 0 R
Beam Polarity STRING 1 256 2h 0 R
Target Material STRING 1 256 2h 0 R
Target Angle FLOAT 1 4 2h 0 R
1LT: file name? STRING 1 256 2h 0 R
Trigger 2 BOOL 1 4 2h 0 RWD
2LT: log file name? STRING 1 256 2h 0 R
Comment STRING 1 256 2h 0 R
Write data BOOL 1 4 2h 0 RWD
Lock when running DIR
Run Parameter DIR
Beam Polarity STRING 1 256 2h 0 R
Beam Momentum FLOAT 1 4 2h 0 R
2LT: log file name? STRING 1 256 2h 0 R
1LT: file name? STRING 1 256 2h 0 R
Comment STRING 1 256 2h 0 R
Target Angle FLOAT 1 4 2h 0 R
Target Material STRING 1 256 2h 0 R
Security DIR
Password STRING 1 32 leh 0 RWD
Allowed hosts DIR
host .sample.domain INT 1 4 >99d 0 RWD
pierre.triumf.ca INT 1 4 >99d 0 RWD
pcch02. triumf.ca INT 1 4 >99d 0 RWD
koslxl.triumf.ca INT 1 4 >99d 0 RWD
koslx2.triumf.ca INT 1 4 >99d 0 RWD
vwchaos. triumf.ca INT 1 4 >99d 0 RWD
koslx0.triumf.ca INT 1 4 >99d 0 RWD
Allowed programs DIR
mstat INT 1 4 >99d 0 RWD
mhttpd INT 1 4 >99d 0 RWD
Web Password STRING 1 32 l6h 0 RWD
Name STRING 1 32 4m 0 RWD
Buffer Sizes DIR
SYSTEM DWORD 1 4 4m 0 RWD

* [Name] Specifies the name of the experiment.

* [Run Parameters] Specifies a fix directory name where you can create and define
keys which can be presented at Run start for run condition selection. The actual
activation of any of those line is done via a "logical link key" defined in the Edit
on Start/ sub-tree. The links don’t have to point to run parameters necessarily.
They can point to any ODB key including the logger settings. It can make sense
to create a link to the logger setting which enables/disables writing of data. A

quick test run can then be made without data logging for example:

[locall />create key "/Experiment/Run parameters"

Then one or more run parameters can be created in that directory,

[local]lRun parameters>create int

"Run mode"
[locallRun parameters>create string Comment

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

ch2

91

negative

ch2

0
files.cni.zero
n

cnios

ch2 target

Y

negative

91

cnios
files.cni.zero
ch2 target

0

ch2

#@D&SF56

o O O O o o o

0

0
pon4@#@%SSDF2
Default

4000000

6.14 ODB Structure 493

» [Edit on Start] Specifies a (ix directory name where you can define an ODB
link (similar to a symbolic link in UNIX) key to the pre-defined directory Run
Parameters. Any link key present in this directory pointing to a valid ODB key
will be requested for input during the run start procedure.

A new feature has been added to this section for the possibility of preventing the
user to change the run number from the web interface during the start sequence.
By defining the key /Experiment/Edit on Start/Edit run number as a boolean
variable the ability of editing the run number is enabled or disabled. By default
if this key is not present the run number is editable.

[locall />create key "Experiment/Edit on start"
[locall />cd "Experiment/Edit on start"
[locall />1n "/Experiment/Run parameters/Run mode" "Run mode"

When a run is started from ODBEdit, all links in /Experiment/Edit on start are
scanned and read in:

[local]l />start

Run mode [0]:1

Run number [3]:<return to accepts>
Are the above parameters correct?
([yl/n/qg): <return to accept "y">
Starting run #2

Run #2 started

[locall />cd "Experiment/Edit on start"
[locall />create BOOL "Edit run number"

[Lock when running] Specifies a fix directory for defining logical link keys to be
set in Read only access mode while the run is in progress. The lock when running
can contains logical link to key(s) for setting these keys protection to "read only"
while running. In the example below, all the parameters under the declared tree
will be switched to read only preventing any parameters modification during the
run.

[locall />create key "Experiment/Lock when running"
[locall />cd "Experiment/Lock when running"

[locall />1n "/Experiment/Run parameters" "Run parameter"
[locall />1n "/Logger/Write Data" "Write Data?"

[Security] Specifies a fix directory name where information regarding security
can be setup. By default, there is no restriction for user to connect locally or
remotely to a given experiment. If an access restriction has to be setup in order
to protect the experiment from unwilling access, a password mechanism has to
be defined. This directory is automatically created when the command passwd
is issued in ODB (see below).

 [Password] Specifies the encrypted password for accessing current experiment.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14

ODB Structure 494

[locall />passwd
Password : <XXXX>
Retype password:<xXxxX>

To remove the full password checking mechanism, the ODB security sub-tree
has to be entirely deleted using the following command:

[locall />rm /Experiment/Security
Are you sure to delete the key

" /Experiment/Security"

and all its subkeys? (y/I[n]) y

After running the odb command passwd, four new sub-fields will be present
under the Security tree.

— Password

— Allowed hosts

— Allowed programs
— Web Password

[Allowed hosts] Specifies a fix directory name where allowed remote hostname
can be defined for free access to the current experiment. While the access re-
striction can make sense to deny access to outsider to a given experiment, it can
be annoying for the people working directly at the back-end computer or for the
automatic frontend reloading mechanism (MS-DOS, VxWorks configuration).
To address this problem specific hosts can be exempt from having to supply a
password and being granted of full access.

[locall />cd "/Experiment/Security/Allowed hosts"
[locall rhosts>create int myhost.domain
[locallrhosts>

Where <myhost>.<domain> has to be replaces by the full IP address of the
host requesting full clearance.

[Allowed programs] Specifies a list of programs having full access to the ODB
independently of the node they running from.

[locall />cd "/Experiment/Security/Allowed programs"
[locall :S>create int mstat
[local] :S>

[Web Password] Specifies a separate password for the Web server access
(mhttpd task). If this field is active, the user will be requested to provide the
"Web Password" when accessing the requested experiment in a "Write Access".
In all condition the Read Only Access" is available.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 495

6.14.6 ODB /History Tree

This tree is automatically created when the logger is started. The logger will create a
default sub-tree containing the following structure:

[local:midas:S] /History>ls -1 -r

Key name Type #Val Size Last Opn Mode Value
History DIR
Links DIR
System DIR
Trigger per sec. /Equipment /Trigger/Statistics/Events per sec.

Trigger kB per sec. /Equipment/Trigger/Statistics/kBytes per sec.

[local:midas:S]/>cd /History/Links/System/
[local:midas:S]System>1ls -1

Key name Type #Val Size Last Opn Mode Value
Trigger per sec. LINK 1 46 >99d 0 RWD /Equipment/Trigger/Statistics/Events per sec.
Trigger kB per sec. LINK 1 46 >99d 0 RWD /Equipment/Trigger/Statistics/kBytes per sec.

A second sub-tree is added to the /History by the mhttpd task Midas web server when
the button "History" on the main status page is pressed.

[local:midas:S] /History>ls -1 -r Display

Key name Type #Val Size Last Opn Mode Value
Display DIR
Default DIR
Trigger rate DIR
Variables STRING 2 32 36h 0 RWD
[0] System:Trigger per sec.
[1] System:Trigger kB per sec.
Factor FLOAT 2 4 36h 0 RWD
[0] 1
[1] 1
Timescale INT 1 4 36h 0 RWD 3600
Zero ylow BOOL 1 4 36h 0 RWD vy

This define a default history display under the Midas web server as long as the reference
to "System" is correct. See History system for more information regarding explanation
on these fields.

Where the 2 trigger fields are symbolic links to the given path. The sub-tree System
defines a "virtual" equipment and get by the system assigned a particular "History
Event ID".

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

496

6.14.7 ODB /Alarms Tree

This branch contains system information related to alarms. Currently the overall alarm
is checked once every minute. Once the alarm has been triggered, the message associ-
ated to the alarm can be repeated at a different rate. The structure is split in 2 sections.
The "Alarms" itself which define the condition to be tested and the "Classes" which
defines the action to be taken when the alarm occurs. In order to make the system flexi-
ble, beside some default message logging (Classes/Write system message), each action
may have a particular "detached script" spawned by it (Classes/Execute command).

odb -e expt -h host
[host :expt :Stopped] /Alarms>1ls -1r

Opn Mode

Value

Key name Type
Alarms DIR
Alarm system active BOOL
Alarms DIR
Test DIR
Active BOOL
Triggered INT
Type INT
Check interval INT
Checked last DWORD

Time triggered firstSTRING
Time triggered last STRING

Condition STRING
Alarm Class STRING
Alarm Message STRING
wc3_anode DIR
Active BOOL
Triggered INT
Type INT
Check interval INT
Checked last DWORD

Time triggered firstSTRING
Time triggered last STRING

Condition STRING
Alarm Class STRING
Alarm Message STRING
chaos DIR
Active BOOL
Triggered INT
Type INT
Check interval INT
Checked last DWORD

Time triggered firstSTRING
Time triggered last STRING

Condition STRING

Alarm Class STRING

Alarm Message STRING
Classes DIR
Alarm DIR

Write system messageBOOL
Write Elog message BOOL
System message interINT

PR R RRRRPRR PR R R R R RPR R R

PR R RR R RP R R

31lh
31lh
31lh
31lh
31h
31h
31h
31lh
31lh
31lh

31h
31h
31h
31lh
31lh
31lh
31h
31h
31h
31h

31lh
31lh
31h
31h
31h
31h
31lh
31lh
31lh
31lh

31h
31lh
31lh

O O O OO O oo o o O O O OO0 o000 O o o

O O O OO0 0o oo o

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWD
RWD
RWD

/Runinfo/Run number > 10
Alarm
Run number became too large

n

0

3

10
958070825

/equipment/chv/variables/chvv [6]
Alarm
WC3 Anode voltage is too low

/Equipment /B12Y/Variables/B12Y[2]
Alarm
CHAOS magnet has tripped.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

<

6.14 ODB Structure 497

System message last DWORD 1 4 31h 0 RWD O
Execute command STRING 1 256 31h 0 RWD
Execute interval INT 1 4 31h 0 RWD 0
Execute last DWORD 1 4 31h 0 RWD O
Stop run BOOL 1 4 31h 0 RWD
Warning DIR
Write system messageBOOL 1 4 31lh 0 RWD vy
Write Elog message BOOL 1 4 31h 0 RWD n
System message interINT 1 4 31h 0 RWD 60
System message last DWORD 1 4 31h 0 RWD O
Execute command STRING 1 256 31lh 0 RWD
Execute interval INT 1 4 31h O RWD O
Execute last DWORD 1 4 31h O RWD O
Stop run BOOL 1 4 31h 0 RWD

* [Alarm system active] Overall Alarm enable flag.
* [Alarms] Sub-tree defining each individual alarm condition.

* [Classes] Sub-tree defining each individual action to be performed by a pre-
defined and requested alarm.

6.14.8 ODB /Script Tree

This branch permits to invoke scripts from the web page. By creating the ODB tree
/Script every entry in that tree will be available on the Web status page with the name
of the key. Each key entry is then composed with a list of ODB field (or links). The
first ODB field should be the executable command followed by as many arguments as
you wish to be passed to the script.

[host: :expt:Stopped] /Script>ls

BNMR Hold

Continue

Real

Test

Kill

[host :expt:Stopped] /Script>ls -1lr Continue

Key name Type #Val Size Last Opn Mode Value

Continue DIR
cmd STRING 1 128 39h O RWD /home/bnmr/perl/continue.pl
Name STRING 1 32 28s O RWD bnmrl
hold BOOL 1 4 31lh O RWD n

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 498

6.14.9 ODB /Alias Tree

This branch is not present until the user creates it. It is meant to contain symbolic
links list to any ODB location. It is used for the Midas web interface where all the
sub-trees will appear in the main window. By default the clicking of the button in the
web interface will spawn a new frame. To force the display of the alias link in the same
frame, a "&" has to be added to the name of the alias.

odbedit

1s

create key Alias

cd Alias

1n /Equipment/Trigger/Common "Trig Setting" <-- New frame

1n /Equipment/Trigger/Common "Trig Setting&" <-- Same frame

6.14.10 ODB /Elog Tree

This branch describes the Elog settings used through the Midas web server. See
mhttpd task for setting up the different Elog page display.

[local:midas:S]/Elog>ls -1lr

Key name Type #Val Size Last Opn Mode Value
Elog DIR
Email STRING 1 64 25h 0 RWD midas@triumf.ca
Display run number BOOL 1 4 25h 0 RWD vy
Allow delete BOOL 1 4 25h 0 RWD n
Types STRING 20 32 25h 0 RWD
[0] Routine
[1] Shift summary
[2] Minor error
[3] Severe error
[4] Fix
[51] Question
[6] Info
[7] Modification
[8] Reply
[91] Alarm
[10] Test
[11] Other
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
Systems STRING 20 32 25h 0 RWD
[0] General

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 499

] DAQ
] Detector
] Electronics
] Target
[5] Beamline
1
1
]
]

Buttons
8h
24h
3d
7d
Host name myhost.triumf.ca
SMTP host STRING 1 64 25h 0 RWD trmail.triumf.ca

* [Email] Defines the Email address for Elog reply.

* [Display run number] Allows to disable the run number display in the Elog en-
tries.

[Allow delete] Flag for permiting the deletion of Elog entry.

[Types] Pre-defined types displayed when composing an Elog entry. A maximum
of 20 types are available. The list will be terminated by the encounter of the first
blank type.

[Systems] Pre-defined categories displayed when composing an Elog entry. A
maximum of 20 types are available. The list will be terminated by the encounter
of the first blank type.

* [SMTP host] Mail server address for routing the composed Elog message to the
destination.

[Buttons] Permits to recall up to four possible time span for the Elog command.
¢ [Host name] Host name.

* [Email <...>] Email address to where the message should be sent when com-
posing it under "Systems" of the type <...>,

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODBS

tructure

500

6.14.11 ODB /Programs Tree

System created tree containing task specific characteristics such as the watchdog and

alarm condition. See Alarm System .

Key name

Programs
EBuilder

Required

Watc
Chec
Star
Auto
Auto
Auto

hdog timeout

k interval

t command
start
stop
restart

Alarm class

Firs

t failed

6.14.12 ODB /Lazy Tree

Backup facility Tree.

Key name

INT
DWORD
STRING
BOOL
BOOL
BOOL
STRING
DWORD

i

#Val

Size

Last Opn Mode

Os
0s
0s
0s
0s
0s
0s
0s
0s

O O O O O O o o o

Created with default parameters on the first

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

Value

activation of
lazylogger task. This task connects to a defined channel (i.e: Tape). when started.
Multiple instance of the program can run contemporary.

Value

Sett

Stat

ings

DIR

Maintain free space (INT

Stay behind
Alarm Class
Running condition
Data dir

Data format
Filename format
Backup type

INT

STRING
STRING
STRING
STRING
STRING
STRING

Execute after rewindSTRING

Path
Capacity (Bytes)
List label

STRING
FLOAT
STRING

Execute before writiSTRING
Execute after writinSTRING

istics

Backup file

File size [Bytes]
KBytes copied
Total Bytes copied
Copy progress [%]

DIR
STRING
FLOAT
FLOAT
FLOAT
FLOAT

FRRPRRRPRRPRRRRRPRP R

[Y

32
128
256

128

64
128

128
64
64

128

L N S

23h
23h
23h
23h
23h
23h
23h
23h
23h
23h
23h
3h

23h
23h

3h
3h
3h
3h
3h

O OO OO0 00000 o o oo

o O O O o

RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD
RWD

RWDE
RWDE
RWDE
RWDE
RWDE

15
-1

ALWAYS
/data_onl/current
YBOS

run%05d.ybs

Tape

ask for tape.sh
/dev/nst0

4.8e+10

tw0078

lazy prewrite.csh
rundb_addrun.pl

run05627.ybs
2.00176e+09
2.00176e+09
2.00176e+09
100

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure

501

Copy Rate [bytes perFLOAT

Backup status [%]

Number of Files

Current Lazy run
List

TWO0076

6.14.13 ODB /EBuilder Tree

FLOAT
INT
INT
DIR
INT

.

[0]
[1]
[2]

BB

3h 0 RWDE 6.21462e+06
3h 0 RWDE 4.17034

3h 0 RWDE 1

3h 0 RWDE 5627

3h 0 RWD
5575
5576
5577

The Event Builder tree is created by mevb task and is placed in the Equipment list.

Key name

#val

Size

Last Opn Mode Value

EBuilder
Settings
Event ID
Trigger mask
Buffer
Format
Event mask
hostname
Statistics
Events sent
Events per sec.
kBytes per sec.
Channels
Fragl
Settings
Event ID
Trigger mask
Buffer
Format
Event mask
Statistics
Events sent

Events per sec.
kBytes per sec.

Frag2

Settings
Event ID
Trigger mask
Buffer
Format
Event mask

Statistics
Events sent

Events per sec.
kBytes per sec.

WORD
WORD
STRING
STRING
DWORD
STRING
DIR
DOUBLE
DOUBLE
DOUBLE
DIR
DIR
DIR
WORD
WORD
STRING
STRING
DWORD
DIR
DOUBLE
DOUBLE
DOUBLE
DIR
DIR
WORD
WORD
STRING
STRING
DWORD
DIR
DOUBLE
DOUBLE
DOUBLE

e Y

fay

[Y

fay

=

i

32
32

64

32
32

@

32
32

@

65h 0 RWD 1

65h 0 RWD 1

65h 0 RWD SYSTEM
65h 0 RWD YBOS
65h 0 RWD 3

3h 0 RWD myhost
3h 0 RWD 653423

3h 0 RWD 1779.17
3h 0 RWD 0

65h 0 RWD 1

65h 0 RWD 65535
65h 0 RWD YBUF1
65h 0 RWD YBOS
65h 0 RWD 1

3h 0 RWD 653423
3h 0 RWD 1779.17

3h 0 RWD 0

65h 0 RWD 5
65h 0 RWD 65535
65h 0 RWD YBUF2
65h 0 RWD YBOS
65h 0 RWD 2

3h 0 RWD 653423
3h 0 RWD 1779.17
3h 0 RWD O

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 502

6.14.14 ODB /Custom Tree

Web string for custom web page. Editable ONLY from your Web browser through
Custom page .

Key name Type #Val Size Last Opn Mode Value
WebLtno& STRING 1 2976 25h 0 RWD <multi-lines>
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.76 [en] (Windows NT 5.0; U) [Netscapel">
<meta name="Author" content="Pierre-Andr?Amaudruz">
<titlesSet value</title>
</head>
<body text="#000000" bgcolor="#FFFFCC" link="#FF0000" v1ink="#800080" alink="#0000FF">
<form method="GET" action="http://myhost.triumf.ca:8081/CS/WebLtno&">
<input type=hidden name=exp value="ltno">
<center><table CELLSPACING=1 CELLPADDING=1 COLS=3 WIDTH="100%" BGCOLOR="#99FF99" >
<caption>LTNO
Custom Web Page</fonts></caption>

<tr BGCOLOR="#FFCC99">

<td>Actions: </fonts>
<input type=submit name=cmd value=Status>

<input type=submit name=cmd value=Starts>

<input type=submit name=cmd value=Stop>

<td BGCOLOR="#66FFFF">Polarity section:

Run#: <odb src="/runinfo/run number"s

Run#: <odb src="/runinfo/run number"s

Run#: <odb src="/runinfo/run number"s

Run#: <odb src="/runinfo/run number" edit=1s></td>
</tr>

</table></centers>

<i>

LTNO help</i>

</body>

</html>

6.14.15 Hot Link

It is often desirable to modify hardware parameters like discriminator levels or trigger
logic connected to the frontend computer. Given the according hardware is accessible
from the frontend code, theses parameters are easily controllable when a hot-link ODB
is established between the frontend and the ODB itself.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 503

HotLink process

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 504

Control Program

oh_set_wvalue™EquipmentTrigger/Setingslevel1”, 3217,

Cnline Database

Equipment/Trigger/settings/
Lewell 321 e B

Level?2 123
hot-
link: Front-end
struct 4
int levell;
int level?;

L trigoer settings;

Callback routine T{Irigger_update(j -
ropagates
g Eﬁﬁagﬂges set(trigger_settings.level1);
to hardware set(trigger_settings.level2),
}
db_open_record("Equiprment/
Create hot-link Trngoer/settings”,
in maing} routine &frigger_settings,

trigger_updatey;

Figure 34: HotLink process

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 505

First the parameters have to be defined in the ODB under the Settings tree for the given
equipment. Let’s assume we have two discriminator levels belonging to the trigger
electronics, which should be controllable. Following commands define these levels in
the ODB:

[locall />cd /Equipment/Trigger/
[locall Trigger>create key Settings
[locall Trigger>cd Settings

[locall Settings>create int levell
[locall Settings>create int level2
[locall Settings>1ls

The frontend can now map a C structure to these settings. In order to simplify this
process, ODBEdit can be requested to generate a header file containing this C struc-
ture. This file is usually called event.h. It can be generated in the current directory
with the ODB command make which generates in the current directory the header file
experim.h :

[locall Settings>make

Now this file can be copied to the frontend directory and included in the frontend
source code. It contains a section with a C structure of the trigger settings and an
ASCII representation:

typedef struct
INT levell;
INT level2;
TRIGGER_SETTINGS;

#define TRIGGER SETTINGS STR(name) char * namel[] = {\
u[.]n'\

"levell = INT : 0",\

"level2 = INT : 0",\

nn,\

NULL

This definition can be used to define a C structure containing the parameters in
frontend.c:

#include <experim.h>

TRIGGER_SETTINGS trigger settings;

A hot-link between the ODB values and the C structure is established in the
frontend_init() routine:

INT frontend init ()

{

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 506

HNDLE hDB, hkey;
TRIGGER_SETTINGS_STR(trigger settings_str);

cm_get_ experiment database (&hDB, NULL) ;

db_create_ record (hDB, 0,
"/Equipment/Trigger/Settings",
strcomb (trigger settings_str));

db_find key (hDB, 0,
"/Equipment/Trigger/Settings", &hkey) ;

if (db_open record(hDB, hkey,
&trigger_settings,
sizeof (trigger_settings), MODE_READ,
trigger_update) != DB_SUCCESS)

cm_msg (MERROR, "frontend init",
"Cannot open Trigger Settings in ODB") ;
return -1;

return SUCCESS;

The db_create_record() function re-creates the settings sub-tree in the ODB from the
ASCII representation in case it has been corrupted or deleted. The db_open_record()
now establishes the hot-link between the settings in the ODB and the trigger_settings
structure. Each time the ODB settings are modified, the changes are written to the
trigger_settings structure and the callback routine trigger_update() is executed after-
wards. This routine has the task to set the hardware according to the settings in the
trigger_settings structure.

It may look like:

void trigger update (INT hDB, INT hkey)

{
printf ("New levels: %d %d",
trigger settings.levell,
trigger settings.level2);

Of course the printf() function should be replaced by a function which accesses the
hardware properly. Modifying the trigger values with ODBEdit can test the whole
scheme:

[locall />cd /Equipment/Trigger/Settings
[locall Settings>set levell 123
[locall Settings>set level2 456

Immediately after each modification the frontend should display the new values. The
settings can be saved to a file and loaded back later:

[locall />cd /Equipment/Trigger/Settings

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 507

[local]l Settings>save settings.odb
[local]l Settings>set levell 789
[local]l Settings>load settings.odb

The settings can also be modified from any application just by accessing the ODB.
Following listing is a complete user application that modifies the trigger level:

#include <midas.h>

main ()

{

HNDLE hDB;
INT level;

cm_connect_experiment ("", "Sample", "Test",
NULL) ;
cm_get_experiment_ database (&hDB, NULL) ;

level = 321;

db_set_value (hDB, O,
"/Equipment /Trigger/Settings/Levell",
&level, sizeof (INT), 1, TID_INT);

cm_disconnect_experiment () ;

The following figure summarizes the involved components:

To make sure a hot-link exists, one can use the ODBEdit command sor (show open
records):

[local]l Settings>cd /
[locall />sor
/Equipment /Trigger/Settings open 1 times by ...

6.14.16 History system

The history system is an add-on capability build in the data logger (see mlogger task)
to record information in parallel to the data logging. This information is recorded with
a time stamp and saved into "data base file" like for later retrieval. One set of file is
created per day containing all the requested history events.

The history is working only if the logger is running, but it is not necessary to have any
channel enabled.

The definition of the history event is done through two different means:
* frontend history event: Each equipment has the capability to generate "history

data" if the particular history field value is different then zero. The value will
reflect the periodicity of the history logging (see The Equipment structure).

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 508

* "Virtual History event': Composed within the Online Database under the spe-
cific tree "/History/Links" (see ODB /History Tree)

Both definition mode takes effects when the data logger gets a "start run" transition.
Any modification during the run is not applied until the next run is started.

* [frontend history event] As mentioned earlier, each equipment can be enabled to
generate history event based on the periodicity of the history value (in second!).
The content if the event will be completely copied into the history files using the
definition of the event as tag names for every element of the event.

The history variable name for each element of the event is composed following one of
the rules below:

* [bank event] /equipment/<...>>/Variables/<bank name>[] is the only reference
of the event, the history name is composed of the bank name follwed by the
corresponding index of the element.

* [bank event] /equipment/<...>/Settings/Names <bank_name>[] is present, the
history name is composed of the corresponding name found in the "Names
<bank_name>" array. The size of this array should match the size of the
/equipment/<...>/Variables/<bank name[]> .

[host:chaos:Running] Target>1ls -1 -r

Key name Type #Val Size Last Opn Mode Value
Target DIR
settings DIR
Names TGT_ STRING 7 32 10h O RWD
[0 Time
[1 Cryostat vacuum

]

]

] Heat Pipe pressure
[3] Target pressure

]

]

]

[4 Target temperature
[5 Shield temperature
[6 Diode temperature
Common DIR
Variables DIR
TGT_ FLOAT 7 4 10s O RWD
[0] 114059
[1] 4.661
[2] 23.16
[3] -0.498
[4] 22.888
[5] 82.099
[6] 40
Statistics DIR

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 509

e [fixed event] The names of the individual element under
/equipment/<...>/variables/ will be used for the history name composi-
tion.

* [fixed event with array] If the /equipment/<...>/Settings/Names[] exists, each
element of the array will be referenced using the corresponding name of the
/Settings/Names[] array.

» [ODB history event]

6.14.17 Alarm System

The alarm system is built in and part of the main experiment scheduler. This means
no separate task is necessary to beneficate from it, but this feature is active during
ONLINE mode ONLY . Alarm setup and activation is done through the Online Data-
Base. Alarm system includes several other features such as: sequencing control of the
experiment. The alarm capabilities are:

* Alarm setting on any ODB variables against threshold parameter.
* Alarm check frequency
* Alarm trigger frequency

* Customizable alarm scheme, under this scheme multiple choice of alarm type
can be selected.

* Program control on run transition.

Beside the setup through ODBEdit, the Alarm can also be setup through the Midas web
page..

Midas Web Alarm setting display

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.14 ODB Structure 510

| Pesstalalnvs | slwmeocon | Stes |

| Evndusted alsrms

| Alam Seate First trigzered | Class | Conditin et value

m” Dilahled - g.&lafm i Fun senber = 100 | e

BEtdp Tisabled 5 [Panse equpmsestfintn cdhivarinhlesRF snte = 1 [n

m— - EP'au_;e 'equnpuw.tlﬁ:! cdbvvariohles Flooe menitor cowrts < Elli
TI'rogram alarms

[Alam Seate First triggered | Class | Condlidoa

e e e e T bt e

Alarm State [First tripgered | Class | ConditionMesvage

Figure 35: Midas Web Alarm setting display

Midas Web Alarm setting display

| / Programs / Nova 014019 /

‘ Key | Value
!Auto start n

Auto stop n

Auto restart n

Required n

Start command (empty)

Alarm Class (empty)

Checked last 965499475 {0x398C5A53)
Alarm count 0 (0x0)

‘Watchdog timeout 110000 (0x2710)

Figure 36: Midas Web Alarm setting display

Midas Web Alarm Program status display

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 511

i.ﬁlm‘rs Status

Program Bwsning on hest Alarm class Autore stait
oppedin [IUmEGEOETN - No __SwpoDeER |
IRINAT FE | codaqil : No Stop TRMAT_FE |
Mstatus [T No | [Swphste |
Neva o1do1s | midesil - No Stop Nova_014018 |

Figure 37: Midas Web Alarm Program status display

Internal features - Top - Data format

6.15 Quick Start

Components - Top - Internal features

This section is under revision to better reflect the latest installation and basic op-
eration of the Midas package.

... This section will... describes step-by-step the installation procedure of the Midas
package on several platform as well as the procedure to run a demo sample experiment.
In a second stage, the frontend or the analyzer can be moved to another computer to
test the remote connection capability.

The Midas Package source and binaries can be found at : PST or at TRIUMF . An
online SVN web site is also available for the latest developments.

Even though Midas is available for multiple platforms, the following description are
for Linux installation and Windows installation.

6.15.1 Linux installation

1. Extraction:

» Compressed files The compressed file contains the source and binary code.
It does expand under the directory name of midas. This extraction can be
done at the user level.

cd /home/mydir
tar -zxvf midas-1.9.x.tar.gz

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 512

The midas directory structure will be composed of several subdirectories

such as:
>1ls
COPYING doc/ examples/ include/ linux/ makefile.nt mscb/ utils/
cvs/ drivers/ gui/ java/ Makefile* mcleanup* src/ vxworks/

* RPM Current RPM is not fully up-to-date. We suggest that you use the
compressed files or the SVN repository. In the case of the rpm, the bina-
ries are placed in the /usr/local/bin , /usr/local/include, /usr/local/lib.

* SVN The source code can be extracted from the SVN repository. An
anonymous access is available under the username svn and password svn
which may be required several time. SVN provides also a quick tarball
creation within the web interface!

svn co svn+ssh://svne@savannah.psi.ch/afs/psi.ch/project/meg/svn/midas/trunk midas
svn co svn+ssh://svn@savannah.psi.ch/afs/psi.ch/project/meg/svn/mxml/trunk mxml

If you expect to run the ROME analyzer you can extract the SVN pack-
age following the same procedure.

svn co svn+ssh://svn@savannah.psi.ch/afs/psi.ch/project/meg/svn/rome/trunk rome

For the Histogram display tool ROODY the package still resides under CVS
but will be soon moved to SVN.

cvs -d anoncvs@midas.triumf.ca:/usr/local/cvsroot checkout roody

2. Installation: The installation consists in placing the image files in the
/usr/local/ directories. This operation requires superuser privilege. The open
"install" from the Makefile will automatically do this installation for you.

cd /home/mydir/midas
su -
make install

3. Configuration: Several system files needs to be modified for the full Midas
implementation.

¢ /etc/services : For remote access. Inclusion of the midas service. Add
following line:

midas service
midas 1175/tcp # Midas server

¢ /etc/xinetd.d/midas : Daemon definition. Create new file named midas

service midas

{

flags = REUSE NOLIBWRAP
socket_type = stream

wait = no

user = root

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 513

server = /usr/local/bin/mserver
log_on_success += USERID HOST PID
log_on_failure += USERID HOST

disable = no

}

¢ /etc/ld.so.conf : Dynamic Linked library list. Add directory pointing to
location of the midas.so file (add /usr/local/lib).

/usr/local/lib

The system is now build by default in static which prevent to have to setup
the .so path through either the environment LD _LIBRARY_PATH or the
1d.so.conf.

* /etc/exptab : Midas Experiment definition file (see below).

4. Experiment definition: Midas system supports multiple experiment running
contemporary on the same computer. Even though it may not be efficient, this ca-
pability makes sense when the experiments are simple detector lab setups which
shared hardware resources for data collection. In order to support this feature,
Midas requires a uniquely identified set of parameter for each experiment that is
used to define the location of the Online Database.

Every experiment under Midas has its own ODB. In order to differentiate them,
an experiment name and directory are assigned to each experiment. This allows
several experiments to run concurrently on the same host using a common Midas
installation.

Whenever a program participating in an experiment is started, the experiment
name can be specified as a command line argument or as an environment vari-
able.

A list of all possible running experiments on a given machine is kept in the file
exptab. This file exptab is expected by default to be located under /etc/exptab.
This can be overwritten by the Environment variables MIDAS_EXPTAB.

exptab file is composed of one line per experiment definition. Each line contains
three parameters, i.e: experiment name, experiment directory name and user
name. Example:

#
Midas experiment list
midas /home/midas/online midas

decay /home/slave/decay dag slave

Experiments not defined into exptab are not accessible remotely, but can still be
accessed locally using the Environment variables MIDAS_DIR if defined. This
environment superceed the exptab definition.

5. Compilation & Build: You should be able to rebuild the full package once the
Midas tree structure has been placed in your temporary directory. The compila-
tion and link will try to generate the rmidas application which requires ROOT.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 514

The application mana will also be compiled for HBOOK and ROOT. Look in
the make listing below for the HAVE_HBOOK, HAVE_ROOT.

> cd /home/mydir/midas

> make

cc -c¢ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/midas.o src/midas.c

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_ FTPLIB -DOS_LINUX -fPIC
-o linux/lib/system.o src/system.c

cc -c¢ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-0 linux/lib/mrpc.o src/mrpc.c

cc -c¢ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-o linux/lib/odb.o src/odb.c

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_ FTPLIB -DOS_LINUX -fPIC
-o linux/lib/ybos.o src/ybos.c

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-o linux/lib/ftplib.o src/ftplib.c

rm -f linux/lib/libmidas.a

ar -crv linux/lib/libmidas.a linux/lib/midas.o linux/lib/system.o linux/lib/mrpc.o
linux/lib/odb.o linux/lib/ybos.o linux/lib/ftplib.o

a - linux/lib/midas.o

- linux/lib/system.o

- linux/lib/mrpc.o

linux/lib/odb.o

- linux/lib/ybos.o

- linux/lib/ftplib.o

rm -f linux/lib/libmidas.so

1d -shared -o linux/lib/libmidas.so linux/lib/midas.o linux/lib/system.o
linux/lib/mrpc.o linux/lib/odb.o linux/lib/ybos.o linux/lib/ftplib.o -lutil
-lpthread -lc

cc -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-o linux/lib/mana.o src/mana.c

cc -Dextname -DHAVE HBOOK -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib
-DINCLUDE_FTPLIB -DOS_LINUX -fPIC -o linux/lib/hmana.o src/mana.c

Q090 0 W
1

g++ -DHAVE ROOT -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB
-DOS_LINUX -fPIC -D_REENTRANT -I/homel/midas/ root/include -o linux/lib/rmana.o
src/mana.c

g++ -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINU

-fPIC -o linux/lib/mfe.o src/mfe.c
cc -Dextname -c -g -02 -Wall -Iinclude -Idrivers -Llinux/lib
-DINCLUDE_FTPLIB -DOS_LINUX -fPIC -o linux/lib/fal.o src/fal.c

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-o linux/bin/mserver src/mserver.c -lmidas -lutil -1lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mhttpd src/mhttpd.c src/mgd.c -lmidas -lutil -lpthread -1m

g++ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-DHAVE_ROOT -D_REENTRANT -I/homel/midas/root/include

-o linux/bin/mlogger src/mlogger.c -lmidas

-L/homel/midas/root/lib -1Core -1Cint -1Hist -1Graf -1Graf3d -1Gpad -1Tree

-1Rint -1lPostscript -1Matrix -1Physics -lpthread -1lm -1dl -rdynamic -lutil -lpthread
cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/odbedit src/odbedit.c src/cmdedit.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-o linux/bin/mtape utils/mtape.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 515

-o linux/bin/mhist utils/mhist.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-o linux/bin/mstat utils/mstat.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mcnaf utils/mcnaf.c drivers/bus/camacrpc.c -lmidas -lutil -1pthread
cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mdump utils/mdump.c -lmidas -1z -lutil -1lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-o linux/bin/lazylogger src/lazylogger.c -lmidas -1z -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mchart utils/mchart.c -lmidas -lutil -lpthread

cp -f utils/stripchart.tcl linux/bin/.

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/webpaw utils/webpaw.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-o linux/bin/odbhist utils/odbhist.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/melog utils/melog.c -1lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-0 linux/bin/mlxspeaker utils/mlxspeaker.c -lmidas -lutil -lpthread

cc -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE FTPLIB -DOS_LINUX -fPIC
-o linux/bin/dio utils/dio.c -1lmidas -lutil-lpthread

g++ -g -02 -Wall -Iinclude -Idrivers -Llinux/lib -DINCLUDE_FTPLIB -DOS_LINUX -fPIC
-DHAVE_ROOT -D_REENTRANT -I/homel/midas/root/include -o linux/bin/rmidas src/rmidas.c
-lmidas -L/homel/midas/root/lib -1Core -1Cint -1Hist -1Graf -1Graf3d -1Gpad
-1Tree -1Rint -1lPostscript -1Matrix -1Physics -1Gui -1lpthread -1m -1dl -rdynamic
-lutil -lpthread

6. Demo examples: The midas file structure contains examples of code which
can be (should be) used for template. In the midas/examples/experiment you
will find a full set for frontend and analysis code. The building of this example
is performed with the Makefile of this directory. The reference to the Midas
package is done relative to your current location (../../include). In the case the
content of this directory is copied to a different location (template), you will need
to modify the local parameters within the Makefile

B o o m o m .
The following lines define direcories. Adjust if necessary
#
DRV_DIR = ../../drivers/bus
INC_DIR = ../../include
LIB DIR = ../../linux/lib
Replace by:
,,,
The following lines define direcories. Adjust if necessary
#
DRV_DIR = /home/mydir/midas/drivers/bus
INC DIR = /usr/local/include
LIB DIR = /usr/local//lib

> cd /home/mydir/midas/examples/experiment

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 516

> make

gcec -g -02 -Wall -g -I../../include -I../../drivers/bus -DOS_LINUX -Dextname -c
-0 camacnul.o ../../drivers/bus/camacnul.c

g++ -g -02 -Wall -g -I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o
frontend frontend.c

camacnul.o ../../linux/lib/mfe.o ../../linux/lib/libmidas.a -1lm -1z -1lutil
-1nsl -lpthread

g++ -D_REENTRANT -I/homel/midas/root/include -DHAVE ROOT -g -02 -Wall -g
-I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o analyzer.o

-c analyzer.c

g++ -D_REENTRANT -I/homel/midas/root/include -DHAVE ROOT -g -02 -Wall -g
-I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o adccalib.o -c adccalib.c
g++ -D_REENTRANT -I/homel/midas/root/include -DHAVE ROOT -g -02 -Wall -g
-I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o adcsum.o -c adcsum.c
g++ -D_REENTRANT -I/homel/midas/root/include -DHAVE ROOT -g -02 -Wall -g
-I../../include -I../../drivers/bus -DOS_LINUX -Dextname -o scaler.o -c scaler.c
g++ -0 analyzer ../../linux/lib/rmana.o analyzer.o adccalib.o adcsum.o scaler.o
../../linux/1lib/libmidas.a -L/homel/midas/root/lib -1lCore -1Cint -1Hist -1Graf
-1Graf3d -1Gpad -1Tree -1Rint -1lPostscript -1Matrix -1Physics -lpthread -1m -1d1l
-rdynamic -1Thread -1m -1z -lutil -1nsl -1lpthread

For testing the system, you can start the frontend as follow:

> frontend

Event buffer size : 100000

Buffer allocation : 2 x 100000

System max event size : 524288

User max event size : 10000

User max frag. size : 5242880

of events per buffer : 10

Connect to experiment ...Available experiments on local computer:

0 : midas

1 : root

Select number:0 <---- predefined experiment from exptab file
Sample Frontend connected to <local>. Press "!" to exit 17:27:47
Run status: Stopped Run number 0

Equipment Status Events Events/sec Rate[kB/s] ODB->FE FE->0DB
Trigger OK 0 0.0 0.0 0 0

Scaler OK 0 0.0 0.0 0 0

In a different terminal window

>odbedit

Available experiments on local computer:
0 : midas

1 : root

Select number: 0

[local:midas:S]/>start now

Starting run #1

17:28:58 [ODBEdit] Run #1 started
[local:midas:R]/>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 517

The run has been started as seen in the frontend terminal window. See the /ex-
amples/experiment/frontend.c for data generation code.

Sample Frontend connected to <local>. Press "!" to exit 17:29:07
Fquipment Status Evemts Events/sec Rate(kB/s] ODB-»FE FE-0DB
Trigger ox ses 503 s+ o s
Scaler OK 1 0.0 0.0 0 1

6.15.2 Windows installation

1. Extraction:

2. Installation:

3. Configuration:

4. Experiment definition:

5. Compilation:

6. Demo examples:

Components - Top - Internal features Internal features - Top - Data format

The Midas system provides several off-the-shelf programs to control, monitor, debug
the data aquisition system. Starting with the main utility (odbedit) which provide ac-
cess to the Online data base and run control.

¢ odbedit task : Online Database Editor

— ODB Structure

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15

Quick Start

518

Midas Frontend application : Midas Frontend application

mstat task : Midas ASCII status report
analyzer task : Midas data analyzer
— MIDAS Analyzer
mlogger task : Midas data logger
lazylogger task : Background data logger
mdump task : Event dump application
mevb task : Event Builder application
mspeaker, mlxspeaker tasks : Speech synthesizer
mcnaf task : CAMAC standalone application
mhttpd task : Midas Web server
melog task : Electronic entry application
mhist task : History retrieval application
mchart task : Standalone Chart display application
mtape task : Tape device manipulator
dio task : Direct IO provider
stripchart.tcl file : Tcl/Tk for chart display
rmidas task : Root/Midas Simple GUI application
hvedit task : High Voltage Slow Control GUI

Midas Remote server : Midas Remote server

6.15.3 Midas Frontend application

The purpose of the Midas Frontend application is to collect data from hardware and
transmit this information to a central place where data logging and analysis can be
performed. This task is achieved with a) a specific code written by the user describing
the sequence of action to acquire the hardware data and b) a framework code handling
the data flow control, data transmission and run control operation. From Midas version
1.9.5 a new argument (-i index) has been introduced to facilitate the multiple frontend

configuration operation required for the Event Builder Functions.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 519

* Arguments

— [-h]: help

— [-h hostname] : host name (see odbedit task)

— [-e exptname] : experiment name (see odbedit task)
— [-D] : Become a Daemon.

— [-O] : Become a Daemon but keep stdout

— [-d] : Used for debugging.

— [-iindex] : Set frontend index (used with mevb task).

» Usage

6.15.4 odbedit task

odbedit refers to the Online DataBase Editor. This is the main application to interact
with the different components of the Midas system.

See ODB Structure for more information.

* Arguments

— [-h]: help.

— [-h hostname] :Specifies host to connect to. Must be a valid IP host name.
This option supersedes the MIDAS_SERVER_HOST environment vari-
able.

— [-e exptname] :Specifies the experiment to connect to. This option super-
sedes the MIDAS_EXPT_NAME environment variable.

— [-c command] :Perform a single command. Can be used to perform oper-
ations in script files.

— [-c @commandFile] :Perform commands in sequence found in the
commandFile.

— [-s size] : size in byte (for creation). Specify the size of the ODB file to be
created when no shared file is present in the experiment directory (default
128KB).

— [-d ODB tree] :Specify the initial entry ODB path to go to.

* Usage ODBedit is the MIDAS run control program. It has a simple command
line interface with command line editing similar to the UNIX tcsh shell. Follow-
ing edit keys are implemented:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 520

[Backspace] Erase the character left from cursor

[Delete/Ctrl-D] Erase the character under cursor
[Ctrl-W/Ctrl-U] Erase the current line
[Ctrl-K] Erase the line from cursor to end

[Left arrow/Ctrl-B] Move cursor left

[Right arrow/Ctrl-F] Move cursor right
— [Home/Ctrl-A] Move cursor to beginning of line

[End/Ctrl-E] Move cursor to end of line

[Up arrow/Ctrl-P] Recall previous command
— [Down arrow/Ctrl-N] Recall next command

[Ctrl-F] Find most recent command which starts with current line

[Tab/Ctrl-I] Complete directory. The command Is /Sy <tab> yields to Is
/System.

¢ Remarks

— ODBedit treats the hierarchical online database very much like a file sys-
tem. Most commands are similar to UNIX file commands like Is, cd,
chmod, In etc. The help command displays a short description of all com-
mands.

— From Midas version 1.9.5, the ODB content can be saved into XML format
if the file extension is .xml

C:\odbedit
[local:midas:S]/>save odb.xml
[local:midas:S]/>q
more odb.xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- created by ODBEdit on Wed Oct 06 22:48:26 2004 -->
<dir name="root">
<dir name="System">
<dir name="Clients">
<dir name="3880">
<key name="Name" type="STRING" size="32">ebfelOl</key>
<key name="Host" type="STRING" size="256">pierre2</key>
<key name="Hardware type" type="INT">42</key>
<key name="Server Port" type="INT">4658</key>

[local:midas:Stopped] />help

Database commands ([] are options, <> are placeholders):
alarm - reset all alarms

cd <dirs> - change current directory

chat - enter chat mode

chmod <mode> <key> - change access mode of a key

l=read | 2=write | 4=delete

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 521

cleanup - delete hanging clients
copy <src> <dest> - copy a subtree to a new location
create <type> <key> - create a key of a certain type
create <type> <key>[n] - create an array of size [n]
del/rm [-1] [-f] \<key> - delete a key and its subkeys

-1 follow links

-f force deletion without asking
exec <keys>/<cmd> - execute shell command (stored in key) on server
find <patterns> - find a key with wildcard pattern
help/? [command] - print this help [for a specific command]
hi [analyzer] [id] - tell analyzer to clear histos
In <source> <linkname> - create a link to <sources> key
load <file> - load database from .ODB file at current position
ls/dir [-lhvrp] I[<pat>] - show database entries which match pattern

-1 detailed info

-h hex format

-v only value

-r show database entries recursively

-p pause between screens
make [analyzer name] - create experim.h
mem - show memeory Usage
mkdir <subdirs - make new <subdirs>
move <key> [top/bottom/[n]] - move key to position in keylist
msg [user] <msg> - compose user message
old - display old messages
passwd - change MIDAS password
pause - pause current run
pwd - show current directory
resume - resume current run
rename <old> <new> - rename key
rewind [channell] - rewind tapes in logger
save [-c -s] <file> - save database at current position

in ASCII format

-c as a C structure

-s as a #define’d string
set <key> <value> - set the value of a key
set <key>[i] <value> - set the value of index i
set <key>[*] <value> - set the value of all indices of a key
set <key>[i..j] <value> - set the value of all indices i..j
scl [-w] - show all active clients [with watchdog info]
shutdown <client>/all - shutdown individual or all clients
sor - show open records in current subtree
start [number] [now] [-v] - start a run [with a specific number], [without question]

[-v verbose the transaction to the different clients]
stop [-V] - stop current run
[-v verbose the transaction to the different clients]
trunc <key> <index> - truncate key to [index] values
ver - show MIDAS library version
webpasswd - change WWW password for mhttpd
wait <key> - wait for key to get modified
quit/exit - exit
* Example

>odbedit -c stop
>odbedit
[hostxxx:exptxxx:Running] /> ls /equipment/trigger

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15

Quick Start

522

6.15.5 mstat task

mstat is a simple ASCII status display. It presents in a compact form the most valuable
information of the current condition of the Midas Acquisition system. The display is
composed at the most of 5 sections depending on the current status of the experiment.

The section displayed in order from top to bottom refer to:

Run information.

Equipment listing and statistics if any frontend is active.

Logger information and statistics if mlogger is active.

Lazylogger status if lazylogger is active.

Client listing.

Arguments

[-h]: help

the command.

[-h hostname] : host name (see odbedit task)

[-1] : loop. Forces mstat to remain in a display loop. Enter

[-e exptname] : experiment name (see odbedit task)

myn

to terminate

[-w time] : refresh rate in second. Specifies the delay in second before

refreshing the screen with up to date information. Default: 5 seconds. Has
to be used in conjunction with -1 switch. Enter "R" to refresh screen on

next update.

Usage

smstat -1

*-v1.8.0- MIDAS status page
Run#:8699
3 11:41:18 2000

Experiment :chaos
Start time:Mon Apr

FE Equip. Node
B1l2Y pcch02
CUM_Scaler vwchaos
CHV pcch02

KOS_Scalers vwchaos
KOS_Trigger vwchaos
KOS_File vwchaos
Target pcch02

Event Taken
67

23

68

330

434226

0

66

Logger Data dir: /scr0/spring2000

————————————————————————— Mon Apr 3 11:52:52 2000-*
State:Running Run time :00:11:34

Event Rate[/s] Data Rate[Kb/s]

0.0 0.0
0.2 0.2
0.0 0.0
0.4 0.6
652.4 408.3
0.0 0.0
0.0 0.0

Message File: midas.log

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 523

Chan. Active Type Filename Events Taken KBytes Taken
0 Yes Disk run08699.ybs 434206 4.24e+06

Lazy Label Progress File name #files Total

cni-53 100 [%] run08696 .ybs 15 44 .3 [%]

Clients: MStatus/koslx0 Logger/koslx0 Lazy_ Tape/koslx0
CHV/pcch02 MChartl/umelba ODBEdit/koslx0
CHAOS/vwchaos ecl/koslx0 Speaker/koslx0
MChart/umelba targetFE/pcch02 HV_MONITOR/umelba
SUSIYBOS/koslx0 History/kosal2 MStatusl/dasdevpc

6.15.6 analyzer task

analyzer is the main online / offline event analysis application. analyzer uses fully the
ODB capabilities as all the analyzer parameters are dynamically controllable from the
Online Database editor odbedit task.

For more detailed information see MIDAS Analyzer

* Arguments

— -c <filenamel> <filename2> Configuration file name(s). May contain a
’%05d’ to be replaced by the run number. Up to ten files can be specified
in one "-c" statement.

— -d Debug flag when starts the analyzer from a debugger. Prevents the sys-
tem to kill the analyzer when the debugger stops at a breakpoint

— -D Start analyzer as a daemon in the background (UNIX only).
— -e <experiment> MIDAS experiment to connect to. (see odbedit task)

— -f Filter mode. Write original events to output file only if the analyzer
accepts them (doesn’t return ANA_SKIP).

— -h <hostname> MIDAS host to connect to when running the analyzer on-
line (see odbedit task)

— -i <filenamel> <filename2> Input file name. May contain a *%05d’ to
be replaced by the run number. Up to ten input files can be specified in one
"-1" statement.

— -1If set, don’t load histos from last histo file when running online.

— -L HBOOK LREC size. Default is 8190.

— -n <count> Analyze only "count" events.

— -n <first> <last> Analyze only events from "first" to "last".

— -n <first> <last> <n> Analyze every n-th event from "first" to "last".

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 524

-0 <filename> Output file name. Extension may be .mid (MIDAS binary),
.asc (ASCII) or .rz (HBOOK). If the name contains a ’%05d’, one output
file is generated for each run. Use "OFLN" as output file name to creaate a
HBOOK shared memory instead of a file.

-p <param=value> Set individual parameters to a specific value. Overrides
any setting in configuration files

-P <ODB tree> Protect an ODB subtree from being overwritten with the
online data when ODB gets loaded from .mid file

-q Quiet flag. If set, don’t display run progress in offline mode.

-r <range> Range of run numbers to analyzer like "-r 120 125" to analyze
runs 120 to 125 (inclusive). The "-r" flag must be used with a *%05d’ in
the input file name.

-s <port#> Specify the ROOT server TCP/IP port number (default 9090).
-v Verbose output.

-w Produce row-wise N-tuples in outpur .1z file. By default, column-wise
N-tuples are used.

¢ Remarks

— The creation of the experim.h is done through the odbedit> make

<analyzer>. In order to include your analyzer section, the ODB
/<Analyzer>/Parameters has to be present.

e Usage

6.15.7

>analyzer

>analyzer -D -r 9092

>analyzer -i run00023.mid -o run00023.rz -w
>analyzer -i run%05d.mid -o runall.rz -r 23 75 -w

mlogger task

mlogger is the main application to collect data from the different frontends under cer-
tain conditions and store them onto physical device such as disk or tape. It also acts
as a history event collector if either the history flags are enabled in the frontend equip-
ment (see The Equipment structure or if the ODB tree /History/Links is defined (See
History system). See the ODB /Logger Tree for reference on the tree structure.

* Arguments

— [-h]: help

— [-e exptname] : experiment name (see odbedit task)

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 525

— [-D] : start program as a daemon (UNIX only).
— [-s] : Save mode (debugging: protect ODB).

— [-v] : Verbose (not to be used in conjunction with -D).

e Usage

>mlogger -D

* Remarks

— The mlogger application requires to have an existing /Equipment/ tree in
the ODB!

— As soon as the mlogger starts to run, the history mechanism is enabled.

— The data channels as well as the history logging is rescanned automatically
at each "begin of run" transition. In other word, additional channel can be
defined while running but effect will take place only at the following begin
of run transition.

— The default setting defines a data "Midas" format with a file name of the
type "run\%05d.mid". Make sure this is the requested setting for your
experiment.

— Once the mlogger is running, you should be able to monitor its state.
through the mstat task or through the mhttpd task web browser.

— From version 1.9.5

+ mlogger will not run if started remotely (argument -h hostname has
been removed).

% The file size limitation (<2GB) has been removed for older OS ver-
sion.

+ mySQL data entry support.

6.15.8 lazylogger task

lazylogger is an application which decouples the data aquisition from the data log-
ging mechanism. The need of such application has been dictated by the slow response
time of some of the media logging devices (Tape devices). Delay due to tape mount-
ing, retension, reposition implies that the data acquisition has to hold until operation
completion. By using mlogger to log data to disk in a first stage and then using lazy-
logger to copy or move the stored files to the "slow device" we can keep the acquisition
running without interruption.

* Multiple lazyloggers can be running comtemporary on the same computer, each
one taking care of a particular channel.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 526

» Each lazylogger channels will have a dedicated ODB tree containg its own in-
formation.

* All the lazylogger channel will be under the ODB /Lazy/<channel_name>/...

* Each channel tree is composed of three sub-tree Settings, Statistics, List.
Self-explanatory the Settings and Statistics contains the running operation of the chan-
nel. While the List- will have a dynamic list of run number which has been sucessfully

manipulated by the Lazylogger channel. This list won’t exist until the first successful
operation of the channel is completed.

* Arguments

[-h]: help.

[-h hostname] : host name.

— [-e exptname] : experiment name.

[-D] : start program as a daemon.

[-c channel] : logging channel. Specify the lazylogger to activate.

— [-z] : zap statistics. Clear the statistics tree of all the defined lazylogger
channels.

* ODB parameters (Settings/)

Settings DIR
Maintain free space (%) INT 1 4 3m 0 RWD
Stay behind INT 1 4 3m 0 RWD
Alarm Class STRING 1 32 3m 0 RWD
Running condition STRING 1 128 3m 0 RWD
Data dir STRING 1 256 3m 0 RWD
Data format STRING 1 8 3m 0 RWD
Filename format STRING 1 128 3m 0 RWD
Backup type STRING 1 8 3m 0 RWD
Execute after rewind STRING 1 64 3m 0 RWD
Path STRING 1 128 3m 0 RWD
Capacity (Bytes) FLOAT 1 4 3m 0 RWD
List label STRING 1 128 3m 0 RWD
Execute before writing file STRING 1 64 1l1h O RWD
Execute after writing file STRING 1 64 1l1h O RWD
Modulo.Position STRING 1 8 1i1h O RWD
Tape Data Append BOOL 1 4 11lh O RWD

— [Maintain free space] As the Data Logger (mlogger) runs independently
from the Lazylogger, the disk contains all the recorded data files. Under
this condition, Lazylogger can be instructed to "purge" the data logging
device (disk) after successful backup of the data onto the "slow device".
The Maintain free space(%) parameter controls (if none zero) the percent-
age of disk space required to be maintain free.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

0
-3

ALWAYS
/home/midas/online
MIDAS

run%05d.mid

Tape

5e+09

lazy_ prewrite.csh
rundb_addrun.pl
2.1

Y

6.15 Quick Start 527

% The condition for removing a data file is defined as:
The data file corresponding to the given run number following
the format declared under "Settings/Filename format" IS
PRESENT on the "Settings/Data Dir" path. AND The given run
number appears anywhere under the "List/" directory of ALL
the Lazy channel having the same "Settings/Filename format' as
this channel. AND The given run number appears anywhere
under the "List/" directory of that channel

— [Stay behind] This parameter defines how many consecutive data files
should be kept between the current run and the last lazylogger run.

+ Example with "Stay behind =-3" :

1. Current acquisition run number 253 -> run00253.mid is being logged
by mlogger.

2. Files available on the disk corresponding to run #248, #249, #250,
#251, #252.

3. Lazylogger will start backing up run #250 as soon as the new run 254
starts. -3 "Stay behind = -3" corresponds to 3 file untouched on the
disk (#251, #252, #253). The negative sign instructs the lazylogger to
always scan the entire "Data Dir" from the oldest to the most recent
file sitting on the disk at the "Data Dir" path- for backup. If the "Stay
behind" is positive, lazylogger will backup starting from- x behind the
current acquisition run number. Run order will be ignored.

— [Alarm Class] Specify the Alarm class to be used in case of triggered
alarm.

— [Running condition] Specify the type of condition for which the lazylog-
ger should be actived. By default lazylogger is ALWAYS running. In the
case of high data rate acquisition it could be necessary to activate the lazy-
logger only when the run is either paused, stopped or when some external
condition is satisfied such as "Low beam intensity". In this latter case, con-
dition based on a single field of the ODB can be given to establish when
the application should be active.

+ Example :
odbedit> set "Running condition" WHILE_ACQ NOT_RUNNING
odbedit> set "Running condition" "/alias/max rate \< 200"

— [Data dir] Specify the Data directory path of the data files. By default if
the "/Logger/Data Dir" is present, the pointed value is taken otherwise the
current directory where lazylogger has been started is used.

— [Data format] Specify the Data format of the data files. Currently sup-
ported formats are: MIDAS and YBOS.

— [Filename format] Specify the file format of the data files. Same format
as given for the data logger.

— [Backup type] Specify the "slow device" backup type. Default Tape. Can
be Disk or Ftp.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 528

[Execute after rewind] Specify a script to run after completion of a lazy-
logger backup set (see below "Capacity (Bytes)").

[Path] Specify the "slow device" path. Three possible types of Path:

+ For Tape : /dev/nst0- (UNIX like).

% For Disk : /datal/myexpt

% For Ftp : host,port,user,password,directory
[Capacity (Bytes)] Specify the maximum "slow device" capacity in bytes.
When this capacity is reached,the lazylogger will close the backup device
and clear the "List Label" field to prevent further backup (see below). It
will aslo rewind the stream device if possible.

[List label] Specify a label for a set of backed up files to the "slow device".
This label is used only internaly by the lazylogger for creating under the
"/List" a new array composed of the backed up runs until the "Capacity"
value has been reached. As the backup set is complete, lazylogger will
clear this field and therefore prevent any further backup until a none empty
label list is entered again. In the other hand the list label will remain under
the "/List" key to display all run being backed up until the corresponding
files have been removed from the disk.

[Exec preW file] Permits to run a script before the begining of the lazy
job. The arguments passed to the scripts are: input file name , output file
name, current block number.

[Exec postW file] Permits to run a script after the completion of the lazy
job. The arguments passed to the scripts are: list label, current job num-
ber, source path, file name, file size in MB, current block number.

[Modulo.Position] This field is for multiple instances of the lazylogger
where each instance works on a sub-set of run number. By specifying
the Modulo.Position you’re telling the current lazy instance how many
instances are simultaneously running (3.) and the position of which this
instance is assigned to (.1). As an example for 3 lazyloggers running con-
temporaneously the field assignment should be :

Channel Field Runt

Lazy_ 1 3.0 21, 24, 27,
Lazy_2 3.1 22, 25, 28,
Lazy_3 3.2 23, 26, 29,

[Tape Data Append] Enable the spooling of the Tape device to the End_-
of_Device (EOD) before starting the lazy job. This command is valid only
for "Backup Type" Tape. If this flag is not enabled the lazy job starts at the
current tape position.

[Statistics/] ODB tree specifying general information about the status of
the current lazylogger channel state.

[List/] ODB tree, will contain arrays of run number associated with the
array name backup-set label. Any run number appearing in any of the
arrays is considered to have been backed up.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 529

» Usage lazylogger requires to be setup prior data file can be moved. This setup
consists of 4 steps:

— [Step 1] Invoking the lazylogger once for setting up the appropriate ODB
tree and exit.

>lazylogger -c Tape

— [Step 2] Edit the newly created ODB tree. Correct the setting field to match
your requirement.

> odbedit -e midas
[local:midas:Stopped] />cd /Lazy/tape/
[local:midas:Stopped] tape>ls
[local:midas:Stopped] tape>ls -1lr

Key name Type #Val Size Last Opn Mode Value
tape DIR
Settings DIR
Maintain free space (%) INT 1 4 3m 0 RWD O
Stay behind INT 1 4 3m 0 RWD -3
Alarm Class STRING 1 32 3m 0 RWD
Running condition STRING 1 128 3m 0 RWD ALWAYS
Data dir STRING 1 256 3m 0 RWD /home/midas/online
Data format STRING 1 8 3m 0 RWD MIDAS
Filename format STRING 1 128 3m 0 RWD run%05d.mid
Backup type STRING 1 8 3m 0 RWD Tape
Execute after rewind STRING 1 64 3m 0 RWD
Path STRING 1 128 3m 0 RWD
Capacity (Bytes) FLOAT 1 4 3m 0 RWD 5e+09
List label STRING 1 128 3m 0 RWD
Statistics DIR
Backup file STRING 1 128 3m 0 RWD none
File size [Bytes] FLOAT 1 4 3m 0 RWD O
KBytes copied FLOAT 1 4 3m 0 RWD O
Total Bytes copied FLOAT 1 4 3m 0 RWD O
Copy progress [%] FLOAT 1 4 3m 0 RWD O
Copy Rate [bytes per s] FLOAT 1 4 3m 0 RWD O
Backup status [%] FLOAT 1 4 3m 0 RWD O
Number of Files INT 1 4 3m 0 RWD O
Current Lazy run INT 1 4 3m 0 RWD O

[local:midas:Stopped] tape>cd Settings/
[local:midas:Stopped] Settings>set "Data dir" /data
[local:midas:Stopped] Settings>set "Capacity (Bytes)" 15e9

— [Step 3] Start lazylogger in the background
>lazylogger -c Tape -D

— [Step 4] At this point the lazylogger is running and waiting for the "list
label" to be defined before starting the copy procedure. mstat task will
display information regarding the status of the lazylogger.

> odbedit -e midas
[local:midas:Stopped] />cd /Lazy/tape/Settings
[local:midas:Stopped] Settings>set "List label" cni-043

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 530

* Remarks

— For every major operation of the lazylogger a message is sent to the Mes-
sage buffer and will be appended to the default Midas log file (midas.log).
These messages are the only mean of finding out What/When/Where/How
the lazylogger has operated on a data file. See below a fragment of the
midas::log for the chaos experiment. In this case the Maintain free space()
field was enabled which produces the cleanup of the data files and the entry
in the List tree after copy.

Fri Mar 24 14:40:08 2000 [Lazy Tape] 8351 (rm:16050ms) /scr0/spring2000/run08351.ybs file
Fri Mar 24 14:40:08 2000 [Lazy Tape] Tape run#8351 entry REMOVED

Fri Mar 24 14:59:55 2000 [Logger] stopping run after having received 1200000 events

Fri Mar 24 14:59:56 2000 [CHAOS] Run 8366 stopped

Fri Mar 24 14:59:56 2000 [Logger] Run #8366 stopped

Fri Mar 24 14:59:57 2000 [SUSIYBOS] saving info in run log

Fri Mar 24 15:00:07 2000 [Logger] starting new run

Fri Mar 24 15:00:07 2000 [CHAOS] Run 8367 started

Fri Mar 24 15:00:07 2000 [Logger] Run #8367 started

Fri Mar 24 15:06:59 2000 [Lazy Tape] cni-043[15] (cp:410.6s) /dev/nst0/run08365.ybs 864.02
Fri Mar 24 15:07:35 2000 [Lazy Tape] 8352 (rm:25854ms) /scr0/spring2000/run08352.ybs file
Fri Mar 24 15:07:35 2000 [Lazy Tapel] Tape run#8352 entry REMOVED

Fri Mar 24 15:27:09 2000 [Lazy Tape] 8353 (rm:23693ms) /scr0/spring2000/run08353.ybs file
Fri Mar 24 15:27:09 2000 [Lazy Tape] Tape run#8353 entry REMOVED

Fri Mar 24 15:33:22 2000 [Logger] stopping run after having received 1200000 events

Fri Mar 24 15:33:22 2000 [CHAOS] Run 8367 stopped

Fri Mar 24 15:33:23 2000 [Logger] Run #8367 stopped

Fri Mar 24 15:33:24 2000 [SUSIYBOS] saving info in run log

Fri Mar 24 15:33:33 2000 [Logger] starting new run

Fri Mar 24 15:33:34 2000 [CHAOS] Run 8368 started

Fri Mar 24 15:33:34 2000 [Logger] Run #8368 started

Fri Mar 24 15:40:18 2000 [Lazy Tapel cni-043[16] (cp:395.4s) /dev/nst0/run08366.ybs 857.67
Fri Mar 24 15:50:15 2000 [Lazy Tape]l 8354 (rm:28867ms) /scr0/spring2000/run08354.ybs file
Fri Mar 24 15:50:15 2000 [Lazy Tape] Tape run#8354 entry REMOVED

— Once lazylogger has started a job on a data file, trying to terminate the
application will result in producing a log message informing the actual per-
centage of the backup completed so far. This message will repeat it self
until completion of the backup and only then the lazylogger application
will terminate.

— If an interruption of the lazylogger is forced (kill...) The state of the backup
device is undertermined. Recovery is not possible and the full backup set
has to be redone. In order to do this, you need:

— To rewind the backup device.
— Delete the /Lazy/<channel_name>/List/<list label> array.

— Restart the lazylogger with the -z switch which will "zap" the statistics
entries.

— In order to facilitate the recovery procedure, lazylogger produces an ODB
ASCII file of the lazy channel tree after completion of successful operation.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 531

This file (Tape_recover.odb) stored in Data_Dir can be used for ODB as
well as lazylogger recovery.

6.15.9 mdump task

This application allows to "peep" into the data flow in order to display a snap-shot of
the event. Its use is particularly powerful during experiment setup. In addition mdump
has the capability to operate on data save-set files stored on disk or tape. The main
mdump restriction is the fact that it works only for events formatted in banks (i.e.:
MIDAS, YBOS bank).

* Arguments for Online

— [-h] : help for online use.

— [-h hostname] : Host name.

— [-e exptname] : Experiment name.

— [-b bank name] : Display event containg only specified bank name.

— [-c compose] : Retrieve and compose file with either Add run# or Not
(def:N).

— [-f format] : Data representation (x/d/ascii) def:hex.

— [-g type] : Sampling mode either Some or All (def:S). >>> in case of -c
it is recommented to used -g all.

— [-iid] : Event Id.
— [-j 1: Display bank header only.

— [-kid] : Event mask. >>> -i and -k are valid for YBOS ONLY if EVID
bank is present in the event

— [-] number | : Number of consecutive event to display (def:1).

— [-m mode] : Display mode either Bank or Raw (def:B)

— [-p path] : Path for file composition (see -c)

— [-s] : Data transfer rate diagnositic.

— [-w time] : Insert wait in [sec] between each display.

— [-x filename] : Input channel. data file name of data device. (def:online)
— [-y] : Display consistency check only.

— [-z buffer name] : Midas buffer name to attach to (def:SYSTEM)

* Additional Arguments for Offline

— [-x-h] : help for offline use.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 532

— [-t type] : Bank format (Midas/Ybos). >>> if -x is a /dev/xxx, -t has to
be specified.

— [-r #] : skip record(YBOS) or event(MIDAS) to #.

— [-w what] : Header, Record, Length, Event, Jbank_list (def:E) >>>
Header & Record are not supported for MIDAS as it has no physical record
structure.

» Usage mdump can operate on either data stream (online) or on save-set data file.
Specific help is available for each mode.

> mdump -h
> mdump -x -h

Tue> mdump -x run37496.mid | more

———————————————————————— Event# 0 -------------"----—-"-~-"-~-~-~—~—~—~-~—~—~-~—-
———————————————————————— Event# 1 ------------------m oo
Evid:0001- Mask:0100- Serial:1- Time:0x393c299a- Dsize:72/0x48
#banks:2 - Bank list:-SCLRRATE-

Bank:SCLR Length: 24 (I*1)/6(I*4)/6(Type) Type:Integer*4
1-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Bank:RATE Length: 24 (I*1)/6(I*4)/6(Type) Type:Real*4 (FMT machine dependent)
1-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

777777777777777777777777 Event# 2 ---------mmmm e

Evid:0001- Mask:0004- Serial:1- Time:0x393c299a- Dsize:56/0x38

#banks:2 - Bank list:-MMESMMOD-

Bank:MMES Length: 24 (I*1)/6(I*4)/6(Type) Type:Real*4 (FMT machine dependent)
1-> 0x3de35788 0x3d0b0e29 0x00000000 0x00000000 0x3£800000 0x00000000

Bank:MMOD Length: 4 (I*1)/1(I*4)/1(Type) Type:Integer*4

1-> 0x00000001
777777777777777777777777 Event# 3 ----------emememe e e e
Evid:0001- Mask:0008- Serial:1- Time:0x393c299a- Dsize:48/0x30
#banks:1 - Bank list:-BMES-

Bank:BMES Length: 28 (I*1)/7(I*4)/7(Type) Type:Real*4 (FMT machine dependent)

1-> 0x443d7333 0x444cf333 0x44454000 0x4448e000 0x43bca667 0x43ce0000 0x43£98000

777777777777777777777777 Event# 4 ----------------------moo o
Evid:0001- Mask:0010- Serial:1- Time:0x393c299a- Dsize:168/0xa8
#banks:1 - Bank list:-CMES-

Bank:CMES Length:
1-> 0x3f2f9fe2
9-> 0x3e60ffda

17-> 0x00000000
25-> 0x3f800000
33-> 0x3£800000

148 (I*1) /37 (I*4) /37 (Type)

0x3£f£77£d6
0x00000000
0x00000000
0x3£800000
0x3£800000

—————— Event# 5
Evid:0001- Mask:0020- Serial:1- Time:0x393c299a- Dsize:32/0x20

#banks:1 - Bank list:-METR-

Bank:METR Length: 12 (I*1)/3(I*4)/3(Type) Type:Real*4

0x3f173fe6
0x00000000
0x00000000
0x3£800000
0x3£800000

0x3daeffe2
0x00000000
0x00000000
0x00000000
0x3£800000

Type:Real*4

0x410£83e8
0x00000000
0x00000000
0x3£800000
0x00000000

0x40ac07e3
0x00000000
0x00000000
0x00000000

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

(FMT machine dependent)

0x3f6ebfds
0x00000000
0x00000000
0x3£800000

(FMT machine dependent)

0x3c47ffde
0x3£800000
0x00000000
0x3£800000

6.15 Quick Start 533

1-> 0x00000000 0x39005d87 0x00000000

* Example

> mdump -j

6.15.10 mevb task

mevb is an event builder application taking several frontends Midas data source and
assembles a new overall Midas event.

In the case where overall data collection is handled by multiple physically separated
frontends, it could be necessary to assemble these data fragments into a dedicated event.
The synchonization of the fragment collection is left to the user which is done usu-
ally through specific hardware mechanism. Once the fragments are composed in each
frontend, they are sent to the "Event Builder" (eb) where the serial number (pheader-
>serial_number) of each fragment is compared one event at a time for serial match. In
case of match, a new event will be composed with its own event ID and serial number
followed by all the expected fragments. The composed event is then sent to the next
stage which is usually the data logger (mlogger).

The mhttpd task will present the status of the event builder as an extra equipment with
its corresponding statistical information.
* Arguments

h]: help

[-
— [-h hostname] : host name
[-

e exptname | : experiment name
[-b] : Buffer name
[-v]: Show wheel
[-d] : debug messages

— [-D] : start program as a daemon
» Usage

Thu> mevb -e midas
Program mevb/EBuilder version 2 started

¢ See Event Builder Functions for more details

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 534

6.15.11 mspeaker, mlxspeaker tasks

mspeaker, mlxspeaker are utilities which listen to the Midas messages system and
pipe these messages to a speech synthesizer application. mspeaker is for the Windows
based system and interface to the FirstByte/ProVoice package. The mlxs-
peaker is for Linux based system and interface to the Festival. In case of use of
either package, the speech synthesis system has to be installed prior to the activation of
the mspeaker, mlxspeaker.

* Arguments
— [-h]: help
— [-h hostname] : host name
— [-e exptname] : experiment name
— [-t mt_talk_cmd] : Specify the talk alert command (ux only).
— [-umt_user_cmd] : Specify the user alert command (ux only).

— [-s shut up time]: Specify the min time interval between alert [s] The -t &
-u switch require a command equivalent to: ’-t play —volume=0.3 file.wav’

— [-D] : start program as a daemon

» Usage

> mlxspeaker -D

6.15.12 mcnaf task

mcnaf is an interactive CAMAC tool which allows "direct" access to the CAMAC
hardware. This application is operational under either of the two following conditions:

1. mcnaf has been built against a particular CAMAC driver (see CAMAC drivers).

2. A user frontend code using a valid CAMAC driver is currently active. In this
case the frontend acts as a RPC CAMAC server and will handle the CAMAC
request. This last option is only available if the frontend code (mfe.c) from the
Building Options has included the HAVE_CAMAC pre-compiler flag.

* Arguments

— [-h]: help

— [-h hostname] : host name

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 535

— [-e exptname] : experiment name
— [-f frontend name] : Frontend name to connect to.

— [-s RPC server name] : CAMAC RPC server name for remote connection.

* Building application The midas/utils/makefile.mcnaf will build a collection
of menaf applications which are hardware dependent, see Example below:

— [miocnaf] cnaf application using the declared CAMAC hardware DRIVER
(kes2927 in this case). To be used with dio CAMAC application starter (see
dio task).

— |[mwecnaf] cnaf application using the WI-E-N-ER PCI/CAMAC interface
(see CAMAC drivers). Please contact: midas@triumf .ca for further
information.

— [mecnaf] cnaf application using the CAMAC RPC capability of any Midas
frontend program having CAMAC access.

— [mdrvcnaf] cnaf application using the Linux CAMAC driver for ei-
ther kcs2927, kes2926, dsp004. This application would require to have
the proper Linux module loaded in the system first. Please contact
mailto:midas@triumf . ca for further information.

Thu> cd /midas/utils

Thu> make -f makefile.mcnaf DRIVER=kcs2927

gcc -03 -I../include -DOS_LINUX -c -o mcnaf.o mcnaf.c

gcc -03 -I../include -DOS_LINUX -c -o kecs2927.o ../drivers/bus/kcs2927.c

gec -03 -I../include -DOS_LINUX -o miocnaf mcnaf.o kes2927.o ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o wecc32.o ../drivers/bus/wecc32.c

gcc -03 -I../include -DOS_LINUX -o mwecnaf mcnaf.o wecc32.o ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o camacrpc.o ../drivers/bus/camacrpc.c

gcc -03 -I../include -DOS_LINUX -o mcnaf mcnaf.o camacrpc.o ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o camaclx.o ../drivers/bus/camaclx.c

gec -03 -I../include -DOS_LINUX -o mdrvcnaf mcnaf.o camaclx.o ../linux/lib/libmidas.a -lutil
rm *.o

* Running application

— Direct CAMAC access: This requires the computer to have the proper CA-
MAC interface installed and the BASE ADDRESS matching the value
defined in the corresponding CAMAC driver. For kcs2926.c, kcs2927.c,
dsp004.c, hyt1331.c, the base address (CAMAC_BASE) is set to 0x280.

>dio miocnaf

— RPC CAMAC through frontend: This requires to have a frontend running
which will be able to serve the CAMAC RPC request. Any Midas frontend
has that capability built-in but it has to have the proper CAMAC driver
included in it.

>mcnaf -e <expt> -h <host> -f <fe name>

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 536

6.15.13 melog task

Electronic Log utility. Submit full Elog entry to the specified Elog port.

* Arguments

— [-h]: help

[-h hostname] : host name

[-] exptname or logbook]

[-u username password]
— [-f <attachment>] : up to 10 files.

— -a <attribute>=<value> : up to 20 attributes. The attribute "Author=..."
must at least be present for submission of Elog.

— -m <textfile> | text> Arguments with blanks must be enclosed in quotes.
The elog message can either be submitted on the command line or in a file
with the -m flag. Multiple attributes and attachments can be supplied.

» Usage By default the attributes are "Author", "Type", "System" and "Subject".
The "Author" attribute has to be present in the elog command in order to success-
fully submit the message. If multiple attributes are required append before "text"
field the full specification of the attribute. In case of multiple attachements, only
one "-f" is required followed by up to 10 file names.

>melog -h myhost -p 8081 -1 myexpt -a author=pierre "Just a elog message"
>melog -h myhost -p 8081 -1 myexpt -a author=pierre -f file2attach.txt \
"Just this message with an attachement"
>melog -h myhost -p 8081 -1 myexpt -a author=pierre -m file containing the message.txt
>melog -h myhost -p 8081 -1 myexpt -a Author=pierre -a Type=routine -a system=general \
-a Subject="my test" "A full Elog message"

¢ Remarks

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 537

6.15.14 mhist task

History data retriever.

* Arguments

— [-h]: help

— [-e Event ID] : specify event ID

— [-v Variable Name] : specify variable name for given Event ID

— [-1 Index] : index of variables which are arrays

— [-1 Index1:Index2] index range of variables which are arrays (max 50)
— [-t Interval] : minimum interval in sec. between two displayed records
— [-h Hours] : display between some hours ago and now

— [-d Days] : display between some days ago and now

— [-f File] : specify history file explicitly

— [-s Start date] : specify start date DDMMY Y[.HHMM]SS]]

— [-p End date] : specify end date DDMMY Y[.HHMM]SS]]

— [-1] : list available events and variables

— [-b] : display time stamp in decimal format

— [-z] : History directory (def: cwd).

» Usage
* Example

--- All variables of event ID 9 during last hour with at least 5 minutes interval.
> mhist

Available events:

ID 9: Target

ID 5: CHV

ID 6: Bl2Y

ID 20: System

Select event ID: 9

Available variables:
0: Time

Cryostat vacuum

: Heat Pipe pressure
Target pressure
Target temperature
Shield temperature
Diode temperature

Ul WwN

Select variable (0..6,-1 for all): -1

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 538

How many hours: 1

Interval [sec]: 300

Date Time Cryostat vacuum Heat Pipe pressure Target pressure Target temperature
Jun 19 10:26:23 2000 104444 4.614 23.16 -0.498 22.931 82.163 40
Jun 19 10:31:24 2000 104956 4.602 23.16 -0.498 22.892 82.108 40
Jun 19 10:36:24 2000 105509 4.597 23.099 -0.498 22.892 82.126 40
Jun 19 10:41:33 2000 110021 4.592 23.16 -0.498 22.856 82.08 40
Jun 19 10:46:40 2000 110534 4.597 23.147 -0.498 22.892 82.117 40
Jun 19 10:51:44 2000 111046 4.622 23.172 -0.498 22.907 82.117 40
Jun 19 10:56:47 2000 111558 4.617 23.086 -0.498 22.892 82.117 40
Jun 19 11:01:56 2000 112009 4.624 23.208 -0.498 22.892 82.117 40
Jun 19 11:07:00 2000 112521 4.629 23.172 -0.498 22.896 82.099 40
Jun 19 11:12:05 2000 113034 4.639 23.074 -0.498 22.896 82.117 40
Jun 19 11:17:09 2000 113546 4.644 23.172 -0.498 22.892 82.126 40
Jun 19 11:22:15 2000 114059 4.661 23.16 -0.498 22.888 82.099 40

* Single variable "[-WC1+_Anode" of event 5 every hour over the full April
24/2000.

mhist -e 5 -v "I-WCl+_Anode" -t 3600 -s 240400 -p 250400

Apr 24 00:00:09 2000 160
Apr 24 01:00:12 2000 160
Apr 24 02:00:13 2000 160
Apr 24 03:00:14 2000 160
Apr 24 04:00:21 2000 180
Apr 24 05:00:26 2000 0

Apr 24 06:00:31 2000 160
Apr 24 07:00:37 2000 160
Apr 24 08:00:40 2000 160
Apr 24 09:00:49 2000 160
Apr 24 10:00:52 2000 160
Apr 24 11:01:01 2000 160
Apr 24 12:01:03 2000 160
Apr 24 13:01:03 2000 0

Apr 24 14:01:04 2000 0

Apr 24 15:01:05 2000 -20
Apr 24 16:01:11 2000 0

Apr 24 17:01:14 2000 0

Apr 24 18:01:19 2000 -20

Apr 24 19:01:19 2000
Apr 24 20:01:21 2000
Apr 24 21:01:23 2000
Apr 24 22:01:32 2000
Apr 24 23:01:39 2000

o O O o o

* Remarks : History data can be retrieved and displayed through the Midas web
page (see mhttpd task).

* Example

Midas Web History display.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 539

| ona | Aisans] | st
[Panel- ALL Trggerrate FA hp

EEFEEEEENEEE=E
hp 5

2

ol —

=3 [= a*""ff“"as\z‘—u-ﬂ*'l
i e il e ———
= F':':?II_ T Tl

=
-

e
R

Figure 38: Midas Web History display.

6.15.15 mchart task

mchart is a periodic data retriever of a specific path in the ODB which can be used in
conjunction with a stripchart graphic program.

¢ In the first of two step procedure, a specific path in the ODB can be scanned

for composing a configuration file by extracting all numerical data references
file.conf .

* In the second step the mchart will produce at fix time interval a refreshed data
file containing the values of the numerical data specified in the configuration file.
This file is then available for a stripchart program to be used for chart recording
type of graph.

Two possible stripchart available are:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 540

* gstripchart The configuration file generated by mchart is compatible with the
GNU stripchart which permits sofisticated data equation manipulation. On the
other hand, the data display is not very fency and provides just a basic chart
recorder.

* stripchart.tcl file This tcl/tk application written by Gertjan Hofman provides a
far better graphical chart recorder display tool, it also permits history save-set
display, but the equation scheme is not implemented.

* Arguments

— [-h]: help

— [-h hostname] : host name.

— [-e exptname] : experiment name.

— [-D] : start program as a daemon.

— [-u time] : data update periodicity (def:5s).

— [-ffile] : file name (+.conf: if using existing file).

— [-q ODBpath] : ODB tree path for extraction of the variables.
— [-c]: ONLY creates the configuration file for later use.

— [-blower_value] : sets general lower limit for all variables.
— [-t upper_value] : sets general upper limit for all variables.
— [-g]: spawn the graphical stripchart if available.

— [-gg] : force the use of gstripchart for graphic.

— [-gh] : force the use of stripchart (tcl/tk) for graphic.

» Usage : The configuration contains one entry for each variable found under the
ODBpath requested. The format is described in the gstripchart documentation.

Once the configuration file has been created, it is possible to apply any valid operation
(equation) to the parameters of the file following the gstripchart syntax.

non

In the case of the use of the stripchart from G.Hofman, only the "filename", "pattern”,

non

"maximum", "minimum" fields are used.

When using mchart with -D Argument, it is necessary to have the MCHART_DIR
defined in order to allow the daemon to find the location of the configuration and data
files (see Environment variables).

chaos:~/chart> more trigger.conf

#Equipment : >/equipment /kos_trigger/statistics
menu: on

slider: on

type: gtk

minor ticks: 12

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 541

major_ticks: 6
chart-interval: 1.000
chart-filter: 0.500
slider-interval: 0.200
slider-filter: 0.200
begin: Events_sent
filename: /home/chaos/chart/trigger
fields: 2
pattern: Events_sent
equation: \$2
color: \$blue
maximum: 1083540.00
minimum: 270885.00
id_char: 1
end: Events_sent
begin: Events_per_ sec.
filename: /home/chaos/chart/trigger
fields: 2
pattern: Events_per_sec.
equation: $2
color: \$red
maximum: 1305.56
minimum: 326.39
id_char: 1
end: Events_per_ sec.
begin: kBytes_per sec.
filename: /home/chaos/chart/trigger
fields: 2
pattern: kBytes_per_sec.
equation: $2
color: \$brown
maximum: 898.46
minimum: 224 .61
id_char: 1
end: kBytes per_ sec.

A second file (data file) will be updated a fixed interval by the {mchart} utility.

chaos:~/chart> more trigger
Events_sent 6.620470e+05
Events_per_sec. 6.463608e+02
kBytes_per sec. 4.424778e+02

* Example

* Creation with ODBpath being one array and one element of 2 sitting under vari-
ables/:

chaos:~/chart> mchart -f chvv -gq /equipment/chv/variables/chvv -c
chaos:~/chart> 1ls -1 chvv*

-Yw-r--r-- 1 chaos users 474 Apr 18 14:37 chvv
-Yw-r--r-- 1 chaos users 4656 Apr 18 14:37 chvv.conf

* Creation with ODBpath of all the sub-keys sittings in variables:

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 542

mchart -e myexpt -h myhost -f chv -g /equipment/chv/variables -c

Creation and running in debug:

chaos:~/chart> mchart -f chv -g /equipment/chv/variables -d
CHVV : size:68

#name:17 #Values:17

CHVI : size:68

* Running a pre-existing conf file (chv.conf) debug:

chaos:~/chart> mchart -f chv.conf -d
CHVV : size:68

#name:17 #Values:17

CHVI : size:68

#name:17 #Values:17

* Running a pre-existing configuration file and spawning gstripchart:

chaos:~/chart> mchart -f chv.conf -gg
spawning graph with gstripchart -g 500x200-200-800 -f /home/chaos/chart/chv.conf

* Running a pre-existing configuration file and spawning stripchart, this will work
only if Tcl/Tk and bltwish packages are installed and the stripchart.tcl has been
installed through the Midas Makefile.

chaos:~/chart> mchart -f chv.conf -gh
spawning graph with stripchart /home/chaos/chart/chv.conf

6.15.16 mtape task
Tape manipulation utility.

* Arguments

[-h]: help

[-h hostname] : host name

[-e exptname] : experiment name

— [-D] : start program as a daemon

» Usage
* Example

>mtape

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 543

6.15.17 dio task

Direct I/0 task provider (LINUX).

If no particular Linux driver is installed for the CAMAC access, the dio- program will
allow you to access the I/0 ports to which the CAMAC interface card is connected to.
* Arguments
— [application name] : Program name requiring I/O permission.
» Usage

>dio miocnaf
>dio frontend

¢ Remark

* This "hacking" utility restricts the access to a range of I/O ports from 0x200 to
0x3FF.

* As this mode if I/O access by-passes the driver (if any), concurrent access to the
same I/O port may produce unexpected result and in the worst case it will freeze
the computer. It is therefore important to ensure to run one and only one dio
application to a given port in order to prevent potential hangup problem.

Interrupt handling, DMA capabilities of the interface will not be accessible under
this mode of operation.

6.15.18 stripchart.tcl file

Graphical stripchart data display. Operates on mchart task data or on Midas history
save-set files. (see also History system).
* Arguments
— [-mhist] : start stripchart for Midas history data.

» Usage : stripchart <-options> <config-file> -mhist: (look at history file
-default) -dmhist: debug mhist -debug: debug stripchart -config_file: see
mchart_task

> stripchart.tcl -debug
> stripchart.tcl

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 544
* Example
> stripchart.tcl -h
gstripchart display with parameters and data pop-up.
] -10] x|
JEiIe Help
[gerpchart el EY
- Faram i:urren'JTDp I
Ll PC_diff 140, 281 =10l]
He Diff_ ~B76 0B

F'C_diff| He_Diff_] Atmosphere J PC_Pump

Param]Value
ldentifier PC_diff
Calar fhlue
Filename junk
Fattern PC_diff
Equation b
Expected range 7003 ..
Displayed range 703 ..
Current value 140,

= Active

Atmosphere Faals 191K

FC_Pump 216, 436

ress |

& oK ‘

Help

X Cancel ‘ ‘ ?

Figure 39: gstripchart display with parameters and data pop-up.

stripchart.tcl mhist mode: main window with pull-downs.

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 545

S CrAtad navy 1

phwat_pratad yellow “Ms Today's MHIST hode of Operation:

miines2_crate? srange = 5 mins Open o Wstory e | mhist . Display of history fles
minesS_crate? ned S Mt Same (e, Hea svent | ngate - Real ime display used
EineE] 5 Cratez cyan * 1 noer Set Baghory-file path with mchart,

phasls cralel Dakclirean 10 loars

phaab_cratel Dhse = 7d haars

winest_cralel grean
WHAE S prata) polianrod

Figure 40: stripchart.tcl mhist mode: main window with pull-downs.

stripchart.tcl Online data, running in conjunction with mchart

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 546

L_l i _|_| LI

o
=53
%Ii e
nEn ':?El-u i 13 rn?".u munm s Fhive T e e ey -:'.-q
Zoorh using mouse dragging. e |
r N =
¥ 2 prme e Sl SR
B l\ prorear | (U0 F
Ry .:
o [Mt - ™ SR .
:I'_:q.-. ALY _,.Lr L) "'I' o L u--- R T T
St :m 1' ! s [..“., —inasr e |
| | ' . . ' . : S ||] s
! bt wauin e = -
TR T

Wit BIBM AN BEW @D AW b em i e o che T]
Rescale button Dietail-all selection from main window:

= Display & graphs per page

-Page selection on top of window.

Figure 41: stripchart.tcl Online data, running in conjunction with mchart

6.15.19 rmidas task

Root/Midas remote GUI application for root histograms and possible run control under
the ROOT. environment.
e Arguments

— [-h]: help
— [-h hostname] : host name

— [-e exptname] : experiment name
* Usage to be written.

* Example

>rmidas midasserver.domain

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 547

rmidas display sample. Using the example/experiment/ demo setup.

! Midﬂs connected o midas
Eile

Histo | status |

FHIS01 ADSHM

ol Entries 3050
ADCSURM
11 ED

CaDeon Mean 1385
CADCOT RMS 5469
CADCOE

CaDC03 50

40

30

20

10

L|IIII|II IIIJ|IIII.|IIII|IIII|IIII|IIII|IILI

1000 2000 3000 4000 5000 G000 7000 SOO0 S000 10000

Dulll

Update] Clear|

Figure 42: rmidas display sample. Using the example/experiment/ demo setup.

6.15.20 hvedit task

High Voltage editor, graphical interface to the Slow Control System. Originally for
Windows machines, but recently ported on Linux under Qt by Andreas Suter.

* Arguments

— [-h]: help

— [-h hostname] : host name

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

6.15 Quick Start 548

— [-e exptname] : experiment name

— [-D] : start program as a daemon
» Usage : To control the high voltage system, the program HVEdit can be used
under Windows 95/NT. It can be used to set channels, save and load values from
disk and print them. The program can be started several times even on different
computers. Since they are all linked to the same ODB arrays, the demand and

measured values are consistent among them at any time. HVEdit is started from
the command line:

* Example

>hvedit

6.15.21 Midas Remote server

mserver provides remote access to any midas client. This task usually runs in the
background and doesn’t need to be modified. In the case where debugging is required,
the mserver can be started with the -d flag which will write an entry for each transaction
appearing onto the mserver. This log entry contains the time stamp and RPC call
request.

* Arguments
— [-h]: help
— [-s]: Single process server

— [-t] : Multi thread server

— [-m] : Milti process server (default)

— [-d] : Write debug info to /tmp/mserver.log

— [-D]: Become a Daemon

e Usage

Generated on Thu Mar 8 23:04:47 2007 for Midas by Doxygen

