Back Midas Rome Roody Rootana
  Midas DAQ System, Page 99 of 150  Not logged in ELOG logo
    Reply  29 Mar 2019, Konstantin Olchanski, Bug Report, rmlogger - bk_swap( ) 
> #5  <signal handler called>
> #6  bk_swap (event=event
> #7  0x000244f0 in root_write (log_chn=0x17ec188, pevent=0x0, evt_size=<optimized out>) at src/mlogger.cxx:3364
> #8  0x0002a8b4 in log_write (log_chn=log_chn
> #9  0x0002b480 in log_odb_dump_json (log_chn=log_chn
> #10 0x0002b5c0 in log_odb_dump (log_chn=log_chn
> #11 0x0002a82c in log_open (log_chn=0x17e9f40, run_number=34, run_number

Ok, here is our bug. It is trying to write the ODB dump through the ROOT writer. Not gonna work.

Simple fix. Set ODB "/Logger/Channels/X/Settings/ODB dump" to "n".

Keep an eye on this for a proper fix
https://bitbucket.org/tmidas/midas/issues/179/mlogger-root-output-crash-from-odb-dump

K.O.
    Reply  29 Mar 2019, Konstantin Olchanski, Bug Fix, rmlogger events - double counting 
> 
> > BTW, I do not think the ROOT writer (and rmlogger) get much use these days ...
> 
> yes, I agree with you that ROOT files are not suitable to store "first level" data, but this is a very
> useful solution when you are developing a software DAQ and you need some (quick) spectra in order
> to verify some code...
> 


I confirm that we are keeping the ROOT writer, sometimes it is useful.

Also sorry about all the bugs in that code, it pretty much gets no testing this days, other than by people who try to use it.


K.O.
Entry  15 Apr 2019, Konstantin Olchanski, Info, switch of MIDAS to C++ 
For a long time now we have keep the core of midas (odb.c, midas.c, etc) compatible with plain C and by default 
we have built the MIDAS library using the plain C compiler. Over time, we have switched most MIDAS programs 
(mhttpd, mlogger, mdump, odbedit, etc) to C++ (with happy results). (and for a long time now, all of MIDAS 
could be build as C++, even if the default build remained plain C).

The main reason for keeping the core of MIDAS as C has been to allow writing MIDAS frontends in C - for 
example, in environments with no C++ compilers or no C++ runtime (VxWorks) or where C++ had too much 
overhead (small memory machines, etc).

Today, all concerns against using C++ seem to have receded into the past. C++ compilers are now always 
available, even for small embedded systems. C++ overheads are now well understood and one can easily write 
C++ code that is as efficient as C for using limited CPU and memory resources. (While at the same time, today's 
embedded systems tend to have more CPU and RAM than "big" MIDAS DAQ machines had in the past - 1GHz 
CPU, 1GB RAM is pretty typical for embedded ARM).

As examples of small hardware where MIDAS frontends written in C++ worked just fine, consider the T2K ND280 
FGD data collector running on XILINX FPGA with a 300MHz PowerPC and 128 Mbytes of RAM (standard Linux 
kernel) and the GRIFFIN Clock distribution module control running on a Microsemi FPGA with a 300MHz ARM 
CPU (ucLinux without an MMU). More typical Cyclone-5 ARM SoCs with 1GB RAM and 1GHz CPU run standard 
Linux (CentOS7) and can build MIDAS natively (no need for cross-compiling).

With the removal of the requirement to make it possible to write MIDAS frontends in C, we can switch the MIDAS 
default build to C++ and start using C++ features in the MIDAS API (std::string, std::vector, etc).

Next to consider is "which C++ should we use?".

K.O.
    Reply  15 Apr 2019, Konstantin Olchanski, Info, switch of MIDAS to C++, which C++? 
>
> With the removal of the requirement to make it possible to write MIDAS frontends in C, we can switch the MIDAS 
> default build to C++ and start using C++ features in the MIDAS API (std::string, std::vector, etc).
> 

Consider the most basic C++ construct, std::string, and observe how many member functions are annotated "c++11", "c++17", etc:
https://en.cppreference.com/w/cpp/string/basic_string

For MIDAS this means that we cannot target "a" C++ or "the" C++, we have to chose between C++ "before C++11", C++11, C++17 
(plus the incoming c++20).

For example, the ROOT 6 package requires C++11 *and* g++ >= 4.8.

Now consider the platforms we use at TRIUMF:

- Linux RHEL/SL/CentOS6 - gcc 4.4.7, no C++11.
- Linux RHEL/SL/CentOS7 - gcc 4.8.5, full C++11, no C++14, no C++17
- Ubuntu 18.04.2 LTS - gcc 7.3.0, full C++11, full C++14, "experimental" C++17.
- MacOS 10.13 - llvm 10.0.0 (clang-1000.11.45.5), full C++11, full C++14, full C++17.

(see here for GCC C++ support: https://gcc.gnu.org/projects/cxx-status.html)
(see here for LLVM clang c++ support: https://clang.llvm.org/cxx_status.html)

As is easy to see from the std::string reference how C++17 has a large number of very useful new features.

Alas, at TRIUMF we still run MIDAS on many SL6 machines where C++11 and C++17 is not normally available. I estimate another 1-2 
years before all our SL6 machines are upgraded to RHEL/SL/CentOS7 (or Ubuntu LTS).

This means we cannot use C++11 and C++17 in MIDAS yet. We are stuck with pre-C++11 for now.

Remarks:
- there will be trouble right away as both Stefan and myself do MIDAS development on MacOS where full C++17 is available and is 
tempting to use. (as they say, watch this space)
- it is possible to install a newer C++ compiler into RHEL/SL/CentOS 6 and 7 systems, but we are loath to require this (same as we 
are loath to require cmake for building MIDAS) - the "I" in MIDAS means integrated, meaning "does not require installing 100 
additional packages before one can use it".
- the MS Windows situation is unclear, but since one has to install the C++ compiler as an additional package anyway, I do not see 
any problem with requiring C++17 support, with a choice of MS compilers, GCC and LLVM. I doubt we will support anything older 
than Windows 10.

K.O.
    Reply  15 Apr 2019, Konstantin Olchanski, Info, switch of MIDAS to C++, how much C++? 
> >
> > With the removal of the requirement to make it possible to write MIDAS frontends in C, we can switch the MIDAS 
> > default build to C++ and start using C++ features in the MIDAS API (std::string, std::vector, etc).
> > 

C++ is a big animal. Obviously we want to use std::string, std::vector and similar improvements over plain C (we already use "//" for comments).

But in keeping with the Camel's nose fable (https://en.wikipedia.org/wiki/Camel%27s_nose), there are some parts of C++ we definitely do not want to use in MIDAS. Even the C++ FAQ talks 
about "evil features", see https://isocpp.org/wiki/faq/big-picture#use-evil-things-sometimes

Here is my list of things to use and to avoid. Comments on this are very welcome - as everybody's experience with C++ is different (and everybody's experience is very valuable and very 
welcome).

- std::string, std:vector, etc are in. I am already using them in the MIDAS API (midas.h)
- extern "C" is out, everything has to be C++, will remove "extern "C"" from all midas header files.
- exceptions are out, see https://stackoverflow.com/questions/1736146/why-is-exception-handling-bad
- std::thread and std::mutex are in, at least for writing new frontends, but see discussion of "cannot use c++11". (maybe replace ss_mutex_xxx() with out own std::mutex look-alike).
- heavy use of templates and heavy use of argument overloading is out - just by looking at the code, impossible to tell what function will be called
- "auto" is on probation. I need to know if "auto v=f()" is an integer or a double when I write "auto w=v/2" or "auto w=v/2.0". see 
https://softwareengineering.stackexchange.com/questions/180216/does-auto-make-c-code-harder-to-understand
- unreadable gibberish is out (lambdas, etc)
- C-style malloc()/free() is in. C++ new and delete are okey, but "delete[]" confuses me.
- C-style printf() is in. C++ cout and "<<" gunk provide no way to easily format the output for easy reading.

K.O.
    Reply  23 Apr 2019, Konstantin Olchanski, Info, switch of MIDAS to C++, how much C++? 
> Dear Konstantin and others, our recent discussion stimulated my curiosity and I wrote a small frontend for the trigger board of our 
experiment in C++.

Yay!

> my_frontend.cpp

In MIDAS we are using .cxx, not .cpp, per ROOT coding convention https://root.cern.ch/coding-conventions

> the overall structure is still very C-like

this is object-oriented programming done in C. (actually C++ looks exactly the same if you look behind the curtain)

right now we do not hope to rewrite the slow control class driver framework in C++, but if somebody does it,
we should be happy to add it to midas.

for the mfe.c framework, I have a new C++ class based frontend framework in development (and already in use
in the ALPHA-g experiment at CERN). There is a number of lose ends to polish befire I can add it to midas.
And as usual the last 10% of the work consume 90% of the time.

> the MIDAS frontend mfe.c has still only the C version (I couldn't find any mfe.cxx). 
> This means that all the points of contact between the MIDAS frontend code and the user frontend code must be C compatible
> (no C++ features or name mangling).

this will change with the switch to C++, mfe.c will become mfe.cxx and I shall add the required definitions to mfe.h (or midas.h, TBD)

> To accomplish this I needed to slightly modify the midas.h header file like this:
> +#ifdef __cplusplus
> +extern "C" {
> +#endif
>  INT device_driver(DEVICE_DRIVER *device_driver, INT cmd, ...);

I intend for all "extern "C"" to go away, everything will use the C++ linkage (and name mangling). This will break existing frontends
and I will need to write clear instructions on converting them to the new scheme.

> I also tested the new strcomb1 function and it seems to work OK.

good.

> I have attached a source file to show how I implemented the device driver in C++

Yup, looks familiar, I have a couple of C++ frontends written like this, too.

K.O.
Entry  30 Apr 2019, Konstantin Olchanski, Info, How to convert C midas frontends to C++ 
To convert a MIDAS frontend to C++ follow this checklist:

a) add #include "mfe.h" after include of midas.h and fix all compilation errors.

NOTE: there should be no "extern C"  brackets around MIDAS include files.

NOTE: Expect to see following problems:

a1) duplicate or mismatched declarations of functions defined in mfe.h
a2) frontend_name and frontend_file_name should be "const char*" instead of "char*"
a3) duplicate "HNDLE hDB" collision with hDB from mfe.c - not sure why it worked before, either use HNDLE hDB from mfe.h or use "extern HNDLE hDB".
a4) poll_event() and interrupt_configure() have "source" as "int[]" instead of "int" (why did this work before?)
a5) use of "extern int frontend_index" instead of get_frontend_index() from mfe.h
a6) bk_create() last argument needs to be cast to (void**)
a7) "bool debug" collides with "debug" from mfe.h (why did this work before?)

b) remove no longer needed "extern C" brackets around mfe related code. Ideally there should be no "extern C" brackets anywhere.

c) in the Makefile, change CC=gcc to CC=g++ for compiling and linking everything as C++

c1) fix all compilation problems. most valid C code will compile as valid C++, but there is some known trouble:
- return value of malloc() & co needs to be cast to the correct data type: "char* s = (char*)malloc(...)"
- some C++ compilers complain about mismatch between signed and unsigned values

If you need help with converting your frontend from C to C++, I will be most happy
to assist you - post your compiler error messages to this forum or email them to me privately.

Good luck,
K.O.
    Reply  06 May 2019, Konstantin Olchanski, Bug Report, rmlogger - bk_swap( ) 
> > #5  <signal handler called>
> > #6  bk_swap (event=event
> > #7  0x000244f0 in root_write (log_chn=0x17ec188, pevent=0x0, evt_size=<optimized out>) at src/mlogger.cxx:3364
> > #8  0x0002a8b4 in log_write (log_chn=log_chn
> > #9  0x0002b480 in log_odb_dump_json (log_chn=log_chn
> > #10 0x0002b5c0 in log_odb_dump (log_chn=log_chn
> > #11 0x0002a82c in log_open (log_chn=0x17e9f40, run_number=34, run_number
> 
> Ok, here is our bug. It is trying to write the ODB dump through the ROOT writer. Not gonna work.
> 
> Simple fix. Set ODB "/Logger/Channels/X/Settings/ODB dump" to "n".
> 
> Keep an eye on this for a proper fix
> https://bitbucket.org/tmidas/midas/issues/179/mlogger-root-output-crash-from-odb-dump
> 

partial fix is "in" https://bitbucket.org/tmidas/midas/commits/b9d12098b5d81556a0c7d94b998b51abc4d13bfd

but one still must manually disable writing ODB dumps into this channel.

also double counting of events is not fixed.

this is the most I can do at this moment without setting up at test experiment with a ROOT writer.

K.O.
    Reply  11 May 2019, Konstantin Olchanski, Info, switch of MIDAS to C++, which C++? 
> [which c++]
> 
> - Linux RHEL/SL/CentOS6 - gcc 4.4.7, no C++11.
> - Linux RHEL/SL/CentOS7 - gcc 4.8.5, full C++11, no C++14, no C++17
>

The construct I now always use:

class X {
int a = 0; // do not leave data members uninitialized, see "Non-static data member initializers", N2756 and N2628
}

is only available starting from gcc 4.7, see https://gcc.gnu.org/projects/cxx-status.html

Another nail into the coffin of "pre c++11" c++ and el < el7.

Hmm...

K.O.
    Reply  22 May 2019, Konstantin Olchanski, Release, midas-2019-03-g 
> the midas release 2019-03 is ready for general use.

first ever bug fix release on a git release branch.

fixed a crash if frontend built against this midas is connected to mserver from old (pre-db_watch) midas (size mismatch of MSG_ODB 
message).

to use this update:

# recommended:
git pull
git checkout feature/midas-2019-03
git pull
make ...

# or checkout "detached HEAD"
git pull
git checkout midas-2019-03-g
make ...

odbedit "ver" should report:

GIT revision:       Wed May 22 07:35:11 2019 -0700 - midas-2019-03-g on branch feature/midas-2019-03

K.O.

P.S. Thanks for finding this bug go to Greg Hackman on TIGRESS and EMMA experiments at TRIUMF.

K.O.
    Reply  22 May 2019, Konstantin Olchanski, Info, switch of MIDAS to C++ 
> switch MIDAS to C++

switch to C++ will proceed as follows:

- create a new branch off develop (feature/switch_to_cxx)
- remove all extern "C", ifdef c++, etc
- switch Makefile from gcc to g++
- test
- merge into develop
- before merge, tag the last "C" midas
- cut a new release branch (tentatively feature/midas-2019-06)

the last recommended "pre-C++" midas will remain the midas-2019-03 release (where we can retroactively apply bug fixes, as I just did a few minutes ago).

K.O.
    Reply  28 May 2019, Konstantin Olchanski, Info, MIDAS switching to Cmake 
> Great news!

Some additional information.

1) cmake3 is available on all currently supported systems:

- SL6 (el6), CentOS7 (el7): yum install cmake3 (from EPEL) (invoke as "cmake3")
- Ubuntu 18.04 LTS: apt-get install cmake (invoke as "cmake").
- MacOS: install "mac ports", then "port install cmake"
- Windows - we hope to revive windows10 support this summer

> - To use Cmake, do
> 
> midas$ mkdir build
> midas$ cd build
> midas/build$ cmake ..
> midas/build$ make
>
> - After successful compilation, all programs and libraries are in the "build" directory
> 

The old "linux", "darwin", etc subdirectories go away. Makefiles for frontends and analyzers become simplified
and can refer to MIDAS in a standard way:

header files: -I$(MIDASSYS)/include
libraries and object files: -L$(MIDASSYS)/build/lib -lmidas
executables: PATH += $(MIDASSYS)/build/bin

>
> ... cross compilation ...
>

We will review the situation with cross-compilation once the dust settles a little bit on changes
with cmake and with the switch to C++.

Since cross-compilation environments are rarely standardized, I do not expect cmake to be of much help and most
likely we will have a simplified Makefile for cross-building feature-reduced versions of MIDAS - probably only
the pieces needed for running remotely-connected frontends (see "ifdef LOCAL_ROUTINES").

K.O.
Entry  03 Jun 2019, Konstantin Olchanski, Forum, midas wiki updated to mediawiki 1.27.5 
the midas wiki was updated to the latest LTS point release 1.27.5.

Also, an installation error was fixed that prevented confirmation of new accounts (git checkout 
REL1_28 instead of REL1_27, resulting in a version mismatch).

Support for MediaWiki LTS release 1.27 ends this Summer.

Next LTS release series is 1.31, see https://en.wikipedia.org/wiki/MediaWiki_version_history

This version requires php version 7 or newer which comes standard with ubuntu LTS 18.04 
and el8 (RHEL8), but not with el6 (SL6) and el7 (CentOS-7).

I guess we shall start planning this upgrade and the move of the wiki to a new host machine.

K.O.
    Reply  03 Jun 2019, Konstantin Olchanski, Info, MIDAS switching to Cmake 
> 1) cmake3 is available on all currently supported systems:
> 
> - SL6 (el6), CentOS7 (el7): yum install cmake3 (from EPEL) (invoke as "cmake3")
> - Ubuntu 18.04 LTS: apt-get install cmake (invoke as "cmake").
> - MacOS: install "mac ports", then "port install cmake"
> - Windows - we hope to revive windows10 support this summer

- el8 (RHEL8): cmake 3.11.something is part of the base system (latest cmake), (invoke as "cmake", the best I can tell).

K.O.
    Reply  05 Jun 2019, Konstantin Olchanski, Info, MIDAS switched to C++ 
The last bits of code to switch MIDAS to C++ have been committed, see tag midas-2019-05-cxx.

Since the cmake conversion is still in progress, for now, I recommend using the old "make" build for trying this update.

From the switch to C++, the biggest change is the requirement that frontend programs be build and linked
using the C++ compiler. Since mfe.o and the rest of MIDAS are built with C++, building frontends
with C is no longer possible.

To help with this, I will post a short guide for converting C frontends to C++.

K.O.
    Reply  05 Jun 2019, Konstantin Olchanski, Info, MIDAS switching to Cmake 
Status update on the cmake conversion:

- we have cmake builds working on all supported systems (el6, el7, ubuntu 18.04 LTS, macos 10.13, 10.14)
- I am happy with the result - for example, include file dependancies work much better now
- we are still fixing a few problems where the cmake build is different from the old make build (mfe.o, mlogger/rmlogger, etc)
- until all of these problems are straightened out, we cannot finalize the instructions for writing experiment makefiles (do we have to use -lmfe or 
we can keep the old mfe.o)

After everything is finalized, I hope to post a short guide for converting experiment makefiles to the new system.

The next release of MIDAS (midas-2019-06 series) will be the first C++ midas and cmake will be the primary build system.

K.O.
    Reply  05 Jun 2019, Konstantin Olchanski, Info, How to convert C midas frontends to C++ 
> To convert a MIDAS frontend to C++ follow this checklist:

Pierre A.-A. reminded me that include files for CAEN libraries have  to
use "extern C" brackets:

some 3rd party libraries (CAEN, etc) are written in C (or require C linkage),
if their include files are not C++ compatible (do not have "extern C" brackets
for all exported symbols), the experiment frontend code must say something like this:

extern "C" {
#include "3rd-party-c-library.h"
}

Note: "#ifdef cplusplus" is not needed because we already know we are C++, not C.

K.O.
    Reply  06 Jun 2019, Konstantin Olchanski, Release, midas-2019-03-h 
> > the midas release 2019-03 is ready for general use.

A bug fix update for midas-2019-03:

- fix broken expand_env() in mhttpd
- fix "Invalid name passed to db_create_key: should not be an empty string" in midas.log when loading the MIDAS status page if one of the alarms has empty 
class name.

odbedit "ver" should report: Thu Jun 6 18:02:14 2019 -0700 - midas-2019-03-h on branch feature/midas-2019-03

K.O.
    Reply  07 Jun 2019, Konstantin Olchanski, Forum, midas wiki updated to mediawiki 1.27.7 
the midas wiki was updated to the latest LTS point release 1.27.7, the latest (last?) security update.

mediawiki series 1.27 is now officially EOL, see
https://lists.wikimedia.org/pipermail/mediawiki-announce/2019-June/000231.html

they recommend that all users upgrade to the current LTS series 1.31.

for us it means moving the wiki from the present el6 (SL6) computer to
a more up-to-date platform (el8 or ubuntu LTS 18.04).

K.O.
    Reply  10 Jun 2019, Konstantin Olchanski, Release, mxml-2019-03-a, midas-2019-03-h 
> > > the midas release 2019-03 is ready for general use.
> A bug fix update for midas-2019-03:
> odbedit "ver" should report: Thu Jun 6 18:02:14 2019 -0700 - midas-2019-03-h on branch feature/midas-2019-03

For building this release of MIDAS, please use mxml branch feature/midas-2019-03, tag mxml-2019-03-a:

cd .../mxml
git fetch
git checkout feature/midas-2019-03

Going forward, I will try to remember to tag the mxml version that corresponds to specific midas versions.

K.O.
ELOG V3.1.4-2e1708b5