Back Midas Rome Roody Rootana
  Midas DAQ System, Page 118 of 137  Not logged in ELOG logo
New entries since:Wed Dec 31 16:00:00 1969
ID Date Author Topicup Subject
  2398   08 May 2022 Stefan RittInfoRO_STOPPED with triggered events
We had issues in one of our experiment that people used RO_STOPPED in the 
equipment list together with triggered events (EQ_USER). If events are sent when 
a run is stopped, this leads to many unexpected results, so I added a check in 
the mfe.cxx code which prevents RO_STOPPED (or RO_ALWAYS which includes 
RO_STOPPED) together with EQ_TRIGGERED, EQ_INTERRUPT, EQ_MULTITHREAD and EQ_USER 
type of events.

I got now complaints that some old front-end are not running any more since they 
do use RO_ALWAYS together with triggered events. Can the author of these frontend 
please tell me the rationale why this is needed, then I can maybe add a better 
fix for that.

Stefan
  Draft   08 May 2022 Konstantin OlchanskiInfoRO_STOPPED with triggered events
> If events are sent when a run is stopped, this leads to many unexpected results

I think we need to understand what these unexpected results are.

Naively thinking, of would expect midas to not care 
  2400   08 May 2022 Konstantin OlchanskiInfoRO_STOPPED with triggered events
> some old front-end are not running any more since they do use RO_ALWAYS together with 
triggered events.

I confirm, if you have mfe.c frontends that have RO_ALWAYS, after you update MIDAS, 
some of these frontends will fail to start.
https://bitbucket.org/tmidas/midas/commits/1961af0d657e4f76ab9db17f9b70c0c492172b6d

tmfe c++ frontends do not have this restriction but by default only read data when run 
is active (per-equipment fEqConfReadOnlyWhenRunning default is true).

K.O.
  2401   13 May 2022 Konstantin OlchanskiInfoanalysis of corner cases in event buffer write cache
introduction:

to remember, bm_send_event() writes an event to the write cache, bm_flush_cache() 
writes the contents of the write cache into the shared memory event buffer, buffer 
free space is consumed. in the usual case, mlogger is reading events from the shared 
memory event buffer, buffer free space is released. there is also a read cache, not 
part of this discussion.

the purpose of the write cache is to reduce contention for the shared memory 
semaphore. in the case of large number of small events, semaphore is locked per 
cache-flush, instead of per-event. correct tuning of write cache and event size can 
reduce lock rate from >100 kHz to around 100 Hz or lower.

analysis:

for correct operation of bm_send_event() under all conditions we need to consider 
all corner cases:

1) no write cache: (cache size set to 0)

- event_size > buffer_size -> reject the event (obviously)
- event_size > 0.5 * buffer_size -> only 1 event fits into the buffer, next write 
will stall until mlogger reads the previous event (sequential operation, bad)
- event_size < 0.3 * buffer_size -> at least 2 events fit into the buffer (good)

decision: limit event size to 0.5 to 0.3 * buffer_size (current limit is 0.5 * 
buffer_size, I think).

consequence: buffer size limit is 2 Gbytes (32-bit byte offsets, code is only 31-
bit-clean), max event size is between 1 Gbytes and 0.6 Gbytes.

2) writing to write cache:

- event_size > cache_size -> flush cache, write event to directly to buffer
- event_size > 0.5 * cache_size -> inefficient use of cache: write to cache, next 
event does not fit, flush to buffer, repeat. no gain in semaphore locking (bad), one 
additional memcpy() (event to cache and cache to buffer) (bad)
- event_size < 0.3 * cache_size -> multiple events fit into cache, but probably no 
gain in semaphore locking

decision: events that are bigger than 0.3 to 0.1 * cache_size should not go through 
the cache. (flush cache, write directly to buffer).

3) flush write cache to buffer:

- cache_size > buffer_size -> cannot flush in 1 operation, must have a loop and 
flush the cache in pieces
- cache_size between 0.5 and 1.0 * buffer_size -> can flush in 1 operation, but must 
wait for mlogger to fully empty the buffer (sequential operation, bad)
- cache size < 0.3 * buffer_size -> can flush in 1 operation, at least 2 "flushes" 
fit inside the buffer (good)

decision: limit write cache size to 0.3 * buffer_size. (current limit is 
0.25*buffer_size).

consequences:

- write cache size limit is 0.3..0.25 * 2GB = 0.6..0.5 Gbytes
- cached event size limit is 0.3..0.1 * 0.5 GBytes = 150..50 Mbytes
- minimum number of cached events: 3 to 10
- semaphore locks reduced: 3 to 10 locks become 1 lock (all events cached),
4 to 11 locks become 2 locks (big event causes cache flush).

4) complications:

- there is a periodic 1/second bm_flush_cache() that flushes the cache early and 
reduces it's efficiency (but needed to avoid having data stuck in cache for long 
time)
- if multiple frontends use large write cache (~ 0.3..0.5 * buffer_size), again, 
sequential operation can happen (bad)
- write cache is per-frontend, not per-equipment. if different equipments request 
different cache sizes, mfe.c and tmfe c++ frontends complain about this, but the 
user has to sort it out.

K.O.
  2402   16 May 2022 Konstantin OlchanskiInfoRO_STOPPED with triggered events
> > some old front-end are not running any more since they do use RO_ALWAYS together with 
> triggered events.
> 
> I confirm, if you have mfe.c frontends that have RO_ALWAYS, after you update MIDAS, 
> some of these frontends will fail to start.
> https://bitbucket.org/tmidas/midas/commits/1961af0d657e4f76ab9db17f9b70c0c492172b6d
> 
> tmfe c++ frontends do not have this restriction but by default only read data when run 
> is active (per-equipment fEqConfReadOnlyWhenRunning default is true).

As of commit 
https://bitbucket.org/tmidas/midas/commits/28d9c96bd6d4f65346ebcd6a04492ea764c90823 mfe.c 
frontends will no longer fail to start. an error will still be issued "Equipment \"%s\" 
contains RO_STOPPED or RO_ALWAYS. This can lead to undesired side-effect and should be 
removed."

BTW 1:

Some of our old frontends use EQ_MULTITHREAD to implement multithreaded periodic equipments. 
They do not generate any events when there is no run (some of them do not generate any 
events at all). Now they will start printing this error message, for no reason. (no we will 
not be rewriting them justy to get rid of this message. life is too short).

BTW 2:

the c++ tmfe frontend does not have any protections against these "undersired side-effects".

What are these undesired side effects and should we add protection against them?

K.O.
  2403   16 May 2022 Konstantin OlchanskiInfoanalysis of corner cases in event buffer write cache
> for correct operation of bm_send_event() under all conditions we need to ...

to continue computation from last message:

default SYSTEM buffer size: 32 MiBytes
default max event size: 4 MiBytes

hard max buffer size: 2 Gbytes (code is only 31-bit-clean)
hard max event size: 2 Gbytes (code is only 31-bit-clean)

max event size currently: 32 Mbytes (same as buffer size)
max event size per (1) in previous post: 32*0.5..0.3 = 16..9 MiBytes

number of default-max-size events buffered: 32/4 = 8.
number of per (1) max-size events buffered: 2 or 3
number of current max-size events buffered: 0 (bad, frontend is serialized with mlogger)

default write cache size: 100 kbytes

max write cache size currently: buffer size / 4 = 32/4 = 8 MiBytes
max write cache size per (3) in previous post: buffer_size / 3 = 10 Mbytes
hard max write cache size per (3): 2 Gbytes/3 = 600 Mbytes

max size of cached events:

current: 100 kbytes (size as cache size)
per (2) in previous post: 0.1..0.3 * cache size = 10..30 kbytes
per (2), 1 Mbyte cahe: 0.1..0.3 * cache size = 100..300 kbytes
hard max size: 0.1..0.3 * hard_max_cache_size = 0.1..0.3 * 600 = 60..180 Mbytes.

max data rate before event buffer semaphore locking rate exceeds 100 Hz:

1 kbyte events, no write cache: 100 kbytes/sec
1 kbyte events, 100 kbyte cache: 100 events cached, cache flush rate 100 Hz -> 100*1kbyte*100Hz -> 10 Mbytes/sec
1 kbyte events, 1 Mbyte cache: 1000 events cached, cache flush rate 100 Hz -> 100 Mbytes/sec (1gige ethernet)
N kbyte events, 1 Mbyte cache: same thing (data rate is limited by cache flush rate 100 Hz)
100 kbyte events, 1 Mbyte cache, not cached per (2): 100kbyte*100Hz = 10 Mbytes/sec
300 kbyte events, 1 Mbyte cache, not cached per (2): 300kbyte*100Hz = 30 Mbytes/sec
N00 kbyte events: N0 Mbytes/sec (500->50, etc)
1 kbyte events, 10 Mbyte cache: 10000 events cached, cache flush rate 100 Hz -> 1000 Mbytes/sec (10gige ethernet)
N kbyte events, 10 Mbyte cache: same thing (data rate is limited by cache flush rate 100 Hz)
1000 kbyte events, 10 Mbyte cache, not cached per (2): 1000kbyte*100Hz = 100 Mbytes/sec
3000 kbyte events, 10 Mbyte cache, not cached per (2): 3000kbyte*100Hz = 300 Mbytes/sec
N000 kbyte events: N00 Mbytes/sec (4000->400, 5000->500, etc)
default max event size: 4 Mibytes*100Hz = 400 Mbytes/sec (exceeds 1gige ethernet)
hard max event size (divided by 10 to buffer 10 events): 200 Mbytes*100Hz -> 20 Gbytes/sec

max event rate before event buffer semaphore locking rate exceeds 100 Hz:

1 kbyte events, no write cache: 100 Hz (obviously)
1 kbyte events, 100 kbyte cache: 100 events cached, cache flush rate 100 Hz -> 10 kHz
1 kbyte events, 1 Mbyte cache: 1000 events cached, cache flush rate 100 Hz -> 100 kHz
N kbyte events, 1 Mbyte cache: 1000/N events cached, cache flush rate 100 Hz -> 100/N kHz
1 kbyte events, 10 Mbyte cache: 10000 events cached, cache flush rate 100 Hz -> 1000 kHz
N kbyte events, 10 Mbyte cache: 10000/N events cached, cache flush rate 100 Hz -> 1000/N kHz
100 kbyte events, not cached per (2): 100 Hz (obviously)
300 kbyte events, not cached per (2): 100 Hz (obviously)
default max event size: 100 Hz (obviously)

K.O.
  2404   16 May 2022 Konstantin OlchanskiInfoanalysis of corner cases in event buffer write cache
> > for correct operation of bm_send_event() under all conditions we need to ...
> to continue computation from last message:

if I got my numbers right, for present-day hardware (1gige/10gige data rates, 100 Hz max locking rate), we should 
increase the default buffer write cache size from 100 kbytes to 10 Mbytes.

this cache size will permit processing of the full mix of small/big events
at the full mix of event rates without exceeding the 100 Hz semaphore locking rate.

with the 10 Mbyte write cache, default event buffer size should be 30-40 Mbytes (current size is 33 Mbytes, so does 
not need to change).

this computation is for 1 writer (1 reader, mlogger). it is a typical case for our experiments.

multiple writers can run into contention for event buffer space.

consider 10 writers want to flush their 10 Mbyte write cache all at the same time:

if buffer size is the default 33 Mbytes, the first 3 writers will have successful write cache flush,
but the other 7 will stall, there is no space in the buffer, we have to wait for mlogger to free
some (mlogger writing X Mbytes/sec will take Y milliseconds to liberate 10 Mbytes of space for the 4th writer
to successfully flush, writers 5..10 are still stalled).

but in a system with 10 writers writing at 10 Mbytes/sec (1 Hz default cache flush rate) is 100 Mbytes/sec
will likely have SYSTEM buffer size at least 200-300 Mbytes (to buffer 1-2 seconds of data against
any delays in writing to disk/network storage).

so there should be no problem in practice.

K.O.
  2406   17 May 2022 Stefan RittInfoRO_STOPPED with triggered events
> > > some old front-end are not running any more since they do use RO_ALWAYS together with 
> > triggered events.
> > 
> > I confirm, if you have mfe.c frontends that have RO_ALWAYS, after you update MIDAS, 
> > some of these frontends will fail to start.
> > https://bitbucket.org/tmidas/midas/commits/1961af0d657e4f76ab9db17f9b70c0c492172b6d
> > 
> > tmfe c++ frontends do not have this restriction but by default only read data when run 
> > is active (per-equipment fEqConfReadOnlyWhenRunning default is true).
> 
> As of commit 
> https://bitbucket.org/tmidas/midas/commits/28d9c96bd6d4f65346ebcd6a04492ea764c90823 mfe.c 
> frontends will no longer fail to start. an error will still be issued "Equipment \"%s\" 
> contains RO_STOPPED or RO_ALWAYS. This can lead to undesired side-effect and should be 
> removed."
> 
> BTW 1:
> 
> Some of our old frontends use EQ_MULTITHREAD to implement multithreaded periodic equipments. 
> They do not generate any events when there is no run (some of them do not generate any 
> events at all). Now they will start printing this error message, for no reason. (no we will 
> not be rewriting them justy to get rid of this message. life is too short).
> 
> BTW 2:
> 
> the c++ tmfe frontend does not have any protections against these "undersired side-effects".
> 
> What are these undesired side effects and should we add protection against them?
> 
> K.O.

The undesired side-effects are the following: The logger tries to collect all events at the end of 
the run by emptying the SYSTEM buffer. If events keep coming after the run is stopped, this loop in 
the logger might be an endless loop, crashing the whole experiment in the end. 

Another issue (and actually the reason for this change) is the funciton receive_trigger_event() in 
mfe.cxx which will get confused if events are still coming in after a run has been stopped and 
actually enters an infinite loop.

Combining EQ_MULTITHREAD with EQ_PERIODIC or EQ_SLOW is a wrong parameter combination as written in 
the documentation. If one wants to have multi-threaded slow control events, one has to use the 
DF_MULTITHREAD flag in the DEVICE_DRIVER structure.

Having triggered events being sent to the system after a run has been stopped I would consider 
simply wrong. Why should we ever use a run start/stop if events are always flowing? Adding 
protections in all places for this case is certainly much more work than just changing one flag for 
frontends which produce this error message now for a wrong parameter combination.
  2407   17 May 2022 Razvan Stefan GorneaInfoMIDAS switched to C++
Hi, I have three naive questions about this:
 - have you posted somewhere this guide about converting C frontends to C++?
 - it was mentioned previously that there will be a 'tag the last "C" midas', which version is it?
 - it means that even a simple example like odb_test.c cannot be compile anymore? Even when using g++?

Something like

g++ -I $HOME/daq/packages/midas/include/ -L $HOME/daq/packages/midas/lib/ odb_test.c -l midas

is expected to fail or is just me glitching? Is it because of thread library differences?

Thanks!


> The last bits of code to switch MIDAS to C++ have been committed, see tag midas-2019-05-cxx.
> 
> Since the cmake conversion is still in progress, for now, I recommend using the old "make" build for trying this update.
> 
> From the switch to C++, the biggest change is the requirement that frontend programs be build and linked
> using the C++ compiler. Since mfe.o and the rest of MIDAS are built with C++, building frontends
> with C is no longer possible.
> 
> To help with this, I will post a short guide for converting C frontends to C++.
> 
> K.O.
  Draft   17 May 2022 Ben SmithInfoMIDAS switched to C++
>  - have you posted somewhere this guide about converting C frontends to C++?

See the instructions at:
https://daq00.triumf.ca/MidasWiki/index.php/Changelog#2019-06

>  - it was mentioned previously that there will be a 'tag the last "C" midas', which version is it?

>  - it means that even a simple example like odb_test.c cannot be compile anymore? Even when using g++?
> g++ -I $HOME/daq/packages/midas/include/ -L $HOME/daq/packages/midas/lib/ odb_test.c -l midas

Correct. Midas is built with C++, so names get mangled 
  2409   17 May 2022 Konstantin OlchanskiInfoMIDAS switched to C++
> Hi, I have three naive questions about this:

all good questions, ask more of them.

>  - have you posted somewhere this guide about converting C frontends to C++?

yes, in this elog here I posted a guide for converting C mfe.c frontends to C++ and
a guide for converting mfe.c frontend to C++ TMFE frontend. please use the "find" function,
if you cannot find them, let me know, I will look for it for you.

>  - it was mentioned previously that there will be a 'tag the last "C" midas', which version is it?

correct. please run "git tag", tags before "midas-2019-05-cxx"is "C", after is "C++".

>  - it means that even a simple example like odb_test.c cannot be compile anymore? Even when using g++?
> g++ -I $HOME/daq/packages/midas/include/ -L $HOME/daq/packages/midas/lib/ odb_test.c -l midas
> is expected to fail or is just me glitching? Is it because of thread library differences?

yes, it is expected to fail, you have spaces after "-I", "-L" and "-l", incorrect g++ command syntax. after
correcting this, it may or may not work depending on what you have inside odb_test.c. I would be happy
to help you debug this, but please start a separate thread instead of necroposting into the C++ announcements.

K.O.
  2410   17 May 2022 Ben SmithInfoMIDAS switched to C++
>  - have you posted somewhere this guide about converting C frontends to C++?

There's documentation in the wiki at:
https://daq00.triumf.ca/MidasWiki/index.php/Changelog#2019-06

It includes a step-by-step guide of how to upgrade, what changes need to be made to frontends, and common issues that people had.
  2417   05 Aug 2022 Stefan RittInfoInformation for midas updates though git
Several submodules of midas have been re-organized, so if you want to pull the 
newest version, you need a 

git pull --recurse-submodules
git submodule update --init --recursive

before you can build again. To do this automatically the next time, you can do

git config submodule.recurse true

which needs git 2.14 or later. I hope this works for everybody. If there is a 
better way to do that (I'm not a big expert on git) please reply here.

Stefan
  2418   06 Aug 2022 Stefan RittInfoImprovement of odbxx API
While the odbxx API has been successfully used since the last months, a potential 
problem with large ODBs surfaced. If you have lots of data in the ODB and load it 
into an object like

midas::odb o("/Equipment");

this might take quite long, since each ODB value is fetched separately, which is 
very quick on a local machine but can take long over a client-server connection. 
For large experiments this can take up to minutes (!).

To get rid of this problem, the underlying object model has been modified. When an 
object is instantiated like above, then the whole ODB tree is fetched in an XML 
buffer in a single transfer, which even for large ODBs usually takes much less 
than a second. Then the XML buffer is decomposed on the client side and converted 
into the proper midas::odb objects. In one case this gave an improvement from 35 
seconds to 0.5 seconds which is significant. To enable the new method, the object 
can be created with a flag like

midas::odb o("/Equipment", true);

which then switches to the new method. One has to take care not to fool oneself 
(like I did) by printing the object like

midas::odb o("/Equipment", true);
std::cout << o << std::endl;

because each read access to any sub-object of o causes a separate read request to 
the server which again can take long. Therefore, one has to switch off the auto 
refresh via

midas::odb o("/Equipment", true);
o.set_auto_refresh_read(false);
std::cout << o << std::endl;

Accessing any sub-object of o then does not cause a client-server request, which 
is not necessary if all objects just have been pulled from the server before. If 
one keeps the object however for a long time in memory, one has to be aware that 
it only contains "old" values from the time if instantiation. If one needs more 
current ODB values, the auto read refresh has to be turned on again.

Stefan
  2419   08 Aug 2022 Stefan RittInfoImprovement of odbxx API
After some thought, I changed the API again and removed the flag in the constructor,
so the system now automatically choses the best algorithm depending if the client
is connected to a local or a remote API. So in all cases you use again the old syntax:

midas::odb o("/Equipment");



Stefan
  2420   08 Aug 2022 Konstantin OlchanskiInfomidas on ubuntu LTS 22.04
reporting that as of commit 78f707c0686d22f8329c7a1f1c46d7dccf35ceff, midas builds 
without errors or warnings on Ubuntu LTS 22.04, 20.04, CentOS-7 and MacOS 12.4. 
(except for some warnings from mscb and msc). K.O.
  2421   08 Aug 2022 Konstantin OlchanskiInfoInformation for midas updates though git
> git pull --recurse-submodules
> git submodule update --init --recursive
> git config submodule.recurse true

does not work for me, macos 12.4 git 2.32.1.

after I set "submodule.recurse true", I still have to type "git submodule update --
init --recursive", without --recursive, mscb/mxml is empty and the build bombs.

P.S. the underlying issue is that the mxml submodule is now included twice 
(midas/mxml and midas/mscb/mxml) and there is nothing to enforce that both copies are 
the same. (No idea what happens if the two mxml's are different).
  2422   08 Aug 2022 Konstantin OlchanskiInfoodb disallow key names that start or end with spaces
while testing the new odb editor, we ran into a number of problems with key names 
that start or end with spaces. we cannot think of any valid use case for such key 
names (subdirectories and variables) and we think they could only have been 
created by mistake. ODB now disallows such names. K.O.
  2423   08 Aug 2022 Stefan RittInfoInformation for midas updates though git
> after I set "submodule.recurse true", I still have to type "git submodule update --
> init --recursive", without --recursive, mscb/mxml is empty and the build bombs.

Indeed, doesn't work for me either. If some git guru has some more insight, please post 
here!

 
> P.S. the underlying issue is that the mxml submodule is now included twice 
> (midas/mxml and midas/mscb/mxml) and there is nothing to enforce that both copies are 
> the same. (No idea what happens if the two mxml's are different).

The version of each mxml is defined by last commit of the parent repository, which contains 
the hash of the submodule version. If we have to update mxml for some reason, we have to 
commit also mscb with the new version, and then midas with the same version of mxml. If one 
checks out midas then with 

git clone https://bitbucket.org/tmidas/midas --recursive

one gets the same versions for mxml.
  2439   14 Oct 2022 Ben SmithInfoAllow onchange to refer to arbitrary js function
> I would like to use a function defined in the <script> block of my custom page as an onchange callback.
>
> Is this a possibility?

Yes, this is already possible. An example was shown in the "modb" section of the custom page documentation, but not in the "Changing properties of controls dynamically" section. I've updated the wiki with an example.

https://daq00.triumf.ca/MidasWiki/index.php/Custom_Page#Changing_properties_of_controls_dynamically
ELOG V3.1.4-2e1708b5