Back Midas Rome Roody Rootana
  Midas DAQ System, Page 142 of 142  Not logged in ELOG logo
ID Date Author Topicdown Subject
  45   15 Sep 2004 Konstantin Olchanski mlogger crash if using mserver.
> I trapped myself into that problem recently so it's the right time to fix it (;-).
> We have two options: 
> a) Make the logger work remotely, even if it's suboptimal and 
> b) Make the logger refuse to run remotely.

After some discussion between Stefan, Pierre and myself, it was decided to disallow
running mlogger remotely via the mserver.

K.O.
  41   15 Sep 2004 Konstantin Olchanski midas odb locking
After some discussion with Stefan-

> 1) ODB locking appears to be sound...
> 2) ODB locking is "unfair"

Stefan reminded me that "priority boosting" is the standard solution for this
problem. Since Linux does not appear to implement this, we may try doing it inside
midas, time permitting. "Fairness" behaviour of Win32, BSD and MacOSX may be worth
investigating.

> 3) presently, we use an infinite timeout waiting for the ODB lock.

I will add a timeout of 10 minutes, then shutdown the ODB client with an error message.

> 4) in db_{lock,unlock}_database(), [there is no] race condition against the
"lock_cnt" variable [because it is local].

I will document this.

> 5) I found a failure mode where db_close_database() erroneously deletes the
> lock semaphore. Once the semaphore is deleted, ODB locking silently fails
> (in db_lock_database() we do not check for success status of
> mutex_wait_for()) and remaining ODB clients operate without locking protection.

I will add a check and shutdown the ODB client with an error message if the lock
cannot be obtained (the mutex was deleted, the "lock" system call returns an error,
etc).

> [how to decide when the last ODB client disconnected from the shared memory and
when to delete the lock semaphore?]

We considered using a counting semaphore to count active ODB clients, if counting
semaphores do the right things on all supported systems (Linux, Win32, MacOSX).

K.O.
  42   16 Sep 2004 Stefan Ritt midas odb locking
> I will add a timeout of 10 minutes, then shutdown the ODB client with an error message.

I added a timeout handling to db_lock_database. It was already present in
ss_mutex_wait_for, so it was just a matter of passing the status up the calling stack.
ODBEdit stops if it cannot obtain a lock after 5 minutes.
  38   21 Sep 2004 Konstantin Olchanski ODB-EPICS gateway
At TRIUMF, we use several different versions of code to interface MIDAS and
EPICS (http://www.aps.anl.gov/epics). Now that we more or less understand
our needs, I propose this design for a simplified "EPICS" MIDAS frontend. I
would like to keep this new front end in the MIDAS CVS repository, possibly
replacing the existing EPICS frontend in examples/epics.

The basic idea is to provide an ODB-driven bi-directional gateway between
EPICS and ODB with this functionality: periodically read EPICS data and save
it in ODB, optionally generate MIDAS events with EPICS data; for writing
data to EPICS, use hotlinks- if the user changes "write" variables in ODB,
the changes are sent to EPICS.

1) ODB structure
   /equipment/epicsgw/
     common/...
     statistics/...
     variables/
       epics[...] <--- EPICS->ODB data (double[])
       write[...] <--- ODB->EPICS data (double[])
     settings/
       num epics  <--- number of epics variables (int)
       num write  <--- number of write variables (int)
       names epics <--- human-readable names for EPICS variables (string[])
       names write <--- human-readable names for EPICS variables (string[])
       chans epics <--- EPICS channels for epics-read data (string[])
       chans write <--- EPICS channels for epics-write data (string[])
       period      <--- EPICS read period in milliseconds (int[])
       enable epics <-- enable (y/n) epics-read (bool[])
       enable write <-- enable (y/n) epics-write (bool[])
       enable events <- enable event generation (bool)

2) EPICS to ODB data path: periodically read each enabled "epics" variable
and write the data values to ODB. Other front ends can hotlink the "epics"
variables to receive updated epics data.

3) ODB to EPICS data path: monitor the hotlink to ".../variables/write". If
data changes, send the changes to EPICS. At startup, write all "write"
variables to EPICS.

4) event generation: TBD.

5) error handling: TBD.

K.O.
  39   21 Sep 2004 Stefan Ritt ODB-EPICS gateway
The easiest way to achieve this is to write a new class driver, probably derived
from the multi.c class driver. One has just to rename all "output" with "write"
(or better "ODB2EPICS") and all "input" with "EPICS2ODB". The multi class driver
handles already a factor/offset for each channel (which could be 1/0 of course),
a threshold to update the ODB/EPICS only when a value changes significantly, to
retrieve labes from the bus driver (EPICS labes -> ODB settings), automatic
event generation and error handling. So it would be a good starting point.

What one gets from the class driver in the ODB is:

  /equipment/<name>/
     variables/
        Input[]     <--- read from the bus driver (float)
        Output[]    <--- witten to the bus driver (float)
     settings/
        Names Input[]        <--- human readable names
        Names Output[]       <--- human readable names
        Update Threshold[]
        Input Offset[]
        Input Factor[]
        Output Offset[]
        Output Factor[]
        Devices/
           Input/
              DD/   <--- parameters for Device Driver
                 ... Epics addresses, flags etc.
              BD/   <--- parameters for Bus Driver
           Output/
        
So if one uses the standard mfe.c code together with the multi.c class driver
and epics_ca.c device driver all what is left is the following:

- replace cd_gen.c by multi.c in the examples/epics directory
- break down the already existing flags into enable epics/write/events
- maybe add th EPICS read period

The last two things should be done in the epics_ca.c device driver, so one can
use the multi.c class driver without any change. Event generation and error
handling then comes for free.
  Draft   27 Jun 2019 Hassan  
  Draft   20 Feb 2020 Marius Koeppel  
We also agree and found the problem now. Since we build everything (MIDAS Event Header, Bank Header, Banks etc.) in the FPGA we had some struggle with the MIDAS data format (http://lmu.web.psi.ch/docu/manuals/bulk_manuals/software/midas195/html/AppendixA.html). We thought that only the MIDAS Event needs to be aligned to 64 bit but as it turned out also the bank data (Stefan updated the wiki page already) needs to be aligned. Since we are using the BANK32 it was a bit unclear for us since the bank header is not 64 bit aligned. But we managed this now by adding empty data and the system is running now.

Our setup looks like this:

- mfe.cxx multithread equipment
- mfe readout thread grabs pointer from dma ring buffer 
- since the dma buffer is volatile we do copy_n for transforming the data to MIDAS 
- the data is already in the MIDAS format so done from our side :)
- mfe readout thread increments the ring buffer
- mfe main thread grabs events from ring buffer, sends them to the mserver

From the firmware side we have an Arria 10 development board and 

But now I am curious, which DMA controller you use? The Altera or Xilinx PCIe block with the vendor supplied DMA driver? Or you do DMA on an ARM SoC FPGA? (no PCI/PCIe, 
different DMA controller, different DMA driver).

I am curious because we will be implementing pretty much what you do on ARM SoC FPGAs pretty soon, so good to know
if there is trouble to expect.

But I will probably use the tmfe.h c++ frontend and a "pure c++" ring buffer instead of mfe.cxx and the midas "rb" ring buffer.

(I did not look at your code at all, there could be a bug right there, this ring buffer stuff is tricky. With luck there is no bug
in your dma driver. The dma drivers for our vme bridges did do have bugs).

K.O.
  Draft   04 Jun 2020 Lukas Gerritzen stime() deprecated in glibc 2.31
In glibc 2.31, the stime function was deprecated:

* The obsolete function stime is no longer available to newly linked
  binaries, and its declaration has been removed from <time.h>.
  Programs that set the system time should use clock_settime instead.

https://sourceware.org/legacy-ml/libc-announce/2020/msg00001.html

This creates a problem in src/system.cxx:3197:4
ELOG V3.1.4-2e1708b5