Back Midas Rome Roody Rootana
  Midas DAQ System  Not logged in ELOG logo
Entry  20 Jun 2012, Konstantin Olchanski, Info, midas vme benchmarks lxdaq09cpu.giflxdaq09net.gifladd02cpu.gifladd02net.gif
    Reply  20 Jun 2012, Konstantin Olchanski, Info, midas vme benchmarks 
       Reply  24 Jun 2012, Konstantin Olchanski, Info, midas vme benchmarks Scalers_(1).gif
          Reply  25 Jun 2012, Stefan Ritt, Info, midas vme benchmarks 
             Reply  25 Jun 2012, Konstantin Olchanski, Info, midas vme benchmarks 
          Reply  26 Jun 2012, Konstantin Olchanski, Info, midas vme benchmarks canvas.pdf
             Reply  26 Jun 2012, Konstantin Olchanski, Info, midas vme benchmarks Scalers.gifladd02-cpu.pngladd02-net.pngcanvas-1000-100Hz.pdf
    Reply  21 Jun 2012, Stefan Ritt, Info, midas vme benchmarks Screen_Shot_2012-06-21_at_10.14.09_.png
       Reply  21 Jun 2012, Konstantin Olchanski, Info, midas vme benchmarks 
          Reply  22 Jun 2012, Stefan Ritt, Info, midas vme benchmarks 
             Reply  24 Jun 2012, Konstantin Olchanski, Info, midas vme benchmarks 
Message ID: 813     Entry time: 24 Jun 2012     In reply to: 806     Reply to this: 814   816
Author: Konstantin Olchanski 
Topic: Info 
Subject: midas vme benchmarks 
> > I am recording here the results from a test VME system using two VF48 waveform digitizers

(I now have 4 VF48 waveform digitizers, so the event rates are half of those reported before. Date rate
is up to 51 M/s - event size has doubled, per-event overhead is the same, so the effective data rate goes 
up).

This message demonstrates the effects of tuning the MIDAS system for high rate data taking.

Attached is the history plot of the event rate counters which show the real-time performance of the MIDAS 
system with better detail compared to the average event rate reported on the MIDAS status page. For an 
ideal real-time system, the event rate should be a constant, without any drop-outs.

Seen on the plot:

run 75: the periodic dropouts in the event rate correspond to the lazylogger writing data into HADOOP 
HDFS. Clearly the host computer cannot keep up with both data taking and data archiving at the same 
time. (see the output of "top" "with HDFS" and "without HDFS" below)

run 76: SYSTEM buffer size increased from 100Mbytes to 300Mbytes. Maybe there is an improvement.

run 77-78: "event_buffer_size" inside the multithreaded (EQ_MULTITHREAD) VME frontend increased from 
100Mbytes to 300Mbytes. (6 seconds of data at 50M/s). Much better, yes?

Conclusion: for improved real-time performance, there should be sufficient buffering between the VME 
frontend readout thread and the mlogger data compression thread.

For benchmark hardware, at 50M/s, 4 seconds of buffer space (100M in the SYSTEM buffer and 100M in 
the frontend) is not enough. 12 seconds of buffer space (300+300) is much better. (Or buy a faster 
backend computer).


P.S. HDFS data rate as measured by lazylogger is around 20M/s for CDH3 HADOOP and around 30M/s for 
CDH4 HADOOP.

P.S. Observe the ever present unexplained event rate fluctuations between 130-140 event/sec.


K.O.


---- "top" output during normal data taking, notice mlogger data compression consumes 99% CPU at 51 
M/s data rate.

top - 08:55:22 up 72 days, 17:00,  5 users,  load average: 2.47, 2.32, 2.27
Tasks: 206 total,   2 running, 204 sleeping,   0 stopped,   0 zombie
Cpu(s): 52.2%us,  6.1%sy,  0.0%ni, 34.4%id,  0.8%wa,  0.1%hi,  6.2%si,  0.0%st
Mem:   3925556k total,  3064928k used,   860628k free,     3788k buffers
Swap: 32766900k total,   200704k used, 32566196k free,  2061048k cached

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND                                                
 5826 trinat    20   0  437m 291m 287m R 97.6  7.6 636:39.63 mlogger                                                 
27617 trinat    20   0  310m 288m 288m S 24.6  7.5   6:59.28 mserver                                                 
 1806 ganglia   20   0  415m  62m 1488 S  0.9  1.6 668:43.55 gmond       


--- "top" output during lazylogger/HDFS activity. Observe high CPU use by lazylogger and fuse_dfs (the 
HADOOP HDFS client). Observe that CPU use adds up to 167% out of 200% available.

top - 08:57:16 up 72 days, 17:01,  5 users,  load average: 2.65, 2.35, 2.29
Tasks: 206 total,   2 running, 204 sleeping,   0 stopped,   0 zombie
Cpu(s): 57.6%us, 23.1%sy,  0.0%ni,  8.1%id,  0.0%wa,  0.4%hi, 10.7%si,  0.0%st
Mem:   3925556k total,  3642136k used,   283420k free,     4316k buffers
Swap: 32766900k total,   200692k used, 32566208k free,  2597752k cached

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND                                                
 5826 trinat    20   0  437m 291m 287m R 68.7  7.6 638:24.07 mlogger                                                 
23450 root      20   0 1849m 200m 4472 S 64.4  5.2  75:35.64 fuse_dfs                                                
27617 trinat    20   0  310m 288m 288m S 18.5  7.5   7:22.06 mserver                                                 
26723 trinat    20   0 38720  11m 1172 S 17.9  0.3  22:37.38 lazylogger                                              
 7268 trinat    20   0 1007m  35m 4004 D  1.3  0.9 187:14.52 nautilus                                                
 1097 root      20   0     0    0    0 S  0.8  0.0 101:45.55 md3_raid1   
Attachment 1: Scalers_(1).gif  12 kB  | Hide | Hide all
Scalers_(1).gif
ELOG V3.1.4-2e1708b5