Back Midas Rome Roody Rootana
  Midas DAQ System, Page 104 of 142  Not logged in ELOG logo
ID Date Author Topic Subject
  776   11 Jul 2011 Konstantin OlchanskiBug Fixmidas shared memory changes
> > > 2) the shared memory type used by an experiment is recorded in the file .SHM_TYPE.TXT.
> > > 3) the hostname of the computer where the ODB shared memory is meant to reside is now
> > > recorded in the file .SHM_HOST.TXT.


Because the mserver did not setup correct experiment name and path, POSIX shared memory did not work at all when used with the mserver. Fixed in mserver.c rev 5135


Sorry for the inconvenience,
K.O.
  775   10 Jul 2011 Konstantin OlchanskiBug Fixmidas shared memory changes
> > 2) the shared memory type used by an experiment is recorded in the file .SHM_TYPE.TXT.
> > 3) the hostname of the computer where the ODB shared memory is meant to reside is now
> > recorded in the file .SHM_HOST.TXT.

Due to a typo in src/system.c svn rev 5125, ss_shm_delete() did not work at all. This broke "odbedit -R", "odbedit -s 5000000" (to change ODB size), etc. 
Fixed in src/system.c svn rev 5134. (It is safe to update just tis one file to fix this problem).

Sorry for the inconvenience,
K.O.
  774   05 Jul 2011 Konstantin OlchanskiBug ReportMacOS network socket timeouts non-functional
It turns out that because of differences between select() syscall implementation between UNIX (MacOS, 
maybe BSD) and Linux,  network socket timeouts do not work.

This affects timeouts during run transitions (transition calls to dead clients do not timeout), maybe other 
places.

I am looking into fixing this. The main difficulty is with UNIX select() not updating the timeout parameter 
when it is interrupted by the MIDAS watchdog alarm signal. Linux select() subtracts the elapsed time from 
the timeout value and this code from system.c works correctly: while (1) { status = select(..., &timeout); if 
(status==0) break; } (value of timeout becomes smaller each time), while on MacOS it loops forever (value 
of timeout does not change).
K.O.
  773   05 Jul 2011 Konstantin OlchanskiInfomidas shared memory changes
> 2) the shared memory type used by an experiment is recorded in the file .SHM_TYPE.TXT.

An error with creating the file .SHM_TYPE.TXT was corrected in system.c svn rev 5125 - if file did not exist, it is 
created correctly, but MIDAS reports "cannot connect to ODB". Second try works correctly because the file exists 
now.

> 3) the hostname of the computer where the ODB shared memory is meant to reside is now
> recorded in the file .SHM_HOST.TXT.

This is causing problems on mobile computers where "hostname" changes all the time (i.e. set according to 
DHCP on whatever network happens to be connected).

If you run into this problem, keep deleting .SHM_HOST.TXT or use this workaround: disable the hostname check 
by making the file .SHM_HOST.TXT empty (zero length).

K.O.
  772   27 Jun 2011 Konstantin OlchanskiInfomlogger lock for runNNN.mid.gz files
By popular request, Stefan R. implemented a locking scheme for mlogger output files.

To use this function, set the mlogger ODB /Logger/Channels/NNN/Settings/Filename
to ".run%05dsub%05d.mid.gz" (note the leading dot).

In this mode, active output files will have a filename with a leading dot
(.run00001sub00001.mid.gz) while the file is being written to. After the file is
closed, it is renamed and the leading dot is removed.

To use this function with the lazylogger, please set ODB
"/Lazy/Foo/Settings/Filename format" to "run*.mid.gz,run*.xml" (note the leading
text "run"). Set "stay behind" to 0.

svn rev 5080 (or so, checking by Stefan R.)
K.O.
  771   27 Jun 2011 Konstantin OlchanskiInfomidas shared memory changes
A number of changes were made to the midas shared memory implementation for
Linux and MacOS:

1) SysV or POSIX shared memory compile-type choice is removed. Both shared
memory types are compiled-in and are selected at run time.
2) the shared memory type used by an experiment is recorded in the file
.SHM_TYPE.TXT. Currently implemented are "POSIXv2_SHM" (the new default for new
experiments), "POSIX_SHM", "MMAP_SHM" and "SYSV_SHM". (see system.c) (MMAP_SHM
is fully functional but is not recommended). The POSIXv2_SHM uses an improved
filename scheme (on Linux, see "ls -l /dev/shm") and permits multiple
experiments to coexist on a MacOS computer (where there is a severe limit on
shared memory filename length).
3) following a number of mishaps where "odbedit" has been run on the wrong
computer (causing havoc with ODB and .xxx.SHM files), for each experiment, the
hostname of the computer where the ODB shared memory is meant to reside is now
recorded in the file .SHM_HOST.TXT. Typically, this is the machine running
mserver, mhttpd and mlogger. If some client is accidentally started on the wrong
machine or if MIDAS_SERVER_HOST is accidentally left undefined, MIDAS will now
print a stern message reporting the hostname mismatch, tell the user to use the
mserver and refuse to run. The user has the choice of starting the client on the
correct computer (as reported in the error message), using the mserver (start
client with -H flag) or edit/delete the .SHM_HOST.TXT file (full pathname is
reported by the error message).

With this update, MIDAS on MacOS becomes fully functional (before, only one
experiment could be used at a time).

svn rev 5105
K.O.
  770   27 Jun 2011 Konstantin OlchanskiInfoupdated mhttpd history "export" function
The mhttpd history "export" function has been converted to the new midas history
interface and should now work for SQL-based history systems. In the process,
improvements by Eoin Butler (CERN AD-5/ALPHA) were merged - adding a UNIX
timestamp and a better text timestamp. Also now "export" outputs the actual
values from the history file - the scaling values from the definition of the
history plot panel are no longer applied.

Here is an example of the new file format:

Time, Timestamp, Run, Run State, SLOW
2011.06.21 15:45:21, 1308696321, 13292, 3, -89.1007

svn rev 5104
K.O.
  769   27 Jun 2011 Konstantin OlchanskiSuggestionBuild MIDAS debian packages using autoconf/automake.
> I deployed several Debian Linux boxes as the DAQ systems in our lab. But I
feel it's boring to build and install midas and its related softwares (such as
root) on each box.


Our solution at TRIUMF is to install such packages on a shared NFS filesystem
visible to all client computers. This works well for ROOT and but MIDAS we found
it nearly impossible to keep MIDAS versions in sync between different projects
and expiments, so each experiment uses it's own copy of MIDAS, usually located
in the experiment home directory ($HOME/packages/midas). Because we often need
to make local modifications to MIDAS sources (Makefile, etc), we do not
"install" MIDAS into non-user-writable /usr/local & etc.


> I use autoconf/automake


The promise (premise) of autoconf/automake is to "hide" system dependencies. The
scripts are supposed to automatically probe the build environment and construct
an appropriate Makefile.

In practice, the autotool scripts always have bugs and incorrect assumptions
about the build environment and only work well for a few standardized systems
(RHEL and Debian derivatives) where the differences are so trivial that
autotools is an overkill and a normal Makefile is adequate for the job.

In my experience, as soon as I try to build an autotool-ized package on anything
that does not look like RHEL or Debian, autotool scripts explode and have to be
debugged and kludged by hand. Anybody who has ever done that would agree with me
that one would rather hack the ugliest Makefile than any of the  autotool
generated gibberish.

And of course autotools have never handled cross-compilation in any reasonable
way. Since we do cross-compile MIDAS (for VxWorks and embedded Linux, see "make
crosscompile") a Makefile is required and it so happens that the same Makefile
also works for normal Linux and MacOS, thank you very much.



> Here are the installation:
> [*] executalbes -- /usr/lib/daq-midas/bin
> [*] library and objs -- /usr/lib/daq-midas/lib


Is this in violation of the LSB (or LFS)? I though they mandate that files
controlled by package manager should be /usr/bin/odbedit, /usr/lib64/libmidas.a,
etc (/usr/bin/midas/odbedit no permitted).


> gcc `mdaq-config --cflags` -c -o myfe.o myfe.c


Please check if your config scripts correctly handle the "-m32" and "-m64" flags
- we frequently cross-compile 32-bit MIDAS executables on 64-bit machines.


K.O.
  768   24 Jun 2011 Exaos LeeSuggestionBuild MIDAS debian packages using autoconf/automake.
Here is my story. I deployed several Debian Linux boxes as the DAQ systems in our lab. But I feel it's boring to build and install midas and its related softwares (such as root) on each box. So I need a local debian software repository and put midas and its related packages in it. First of all, I need a midas debian package. After a week's study and searching, I finally finished the job. Hope you feel it useful.

All the work is attached as "daq-midas_deb.tar.gz". The detail is followed. I also created several debian packages. But it's too large to be uploaded. I havn't my own site accessible from internet. So, if you need the debian packages, please give me an accessible ftp or other similar service, then I can upload them to you.

First, I use autoconf/automake to rewrite the building system of MIDAS. You can check it this way:
1. Untar daq-midas_deb.tar.gz somewhere, assumming ~/Temp.
2. cd ~/Temp/daq-midas
3. svn co -r 5065 svn+ssh://svn@savannah.psi.ch/repos/meg/midas/trunk midas
4. svn co -r 68 svn+ssh://svn@savannah.psi.ch/repos/meg/mxml/trunk mxml
5. cp -rvp debian/autoconf/* ./
6. ./configure --help
7. ./configure <--options>
8. make && make install

Then, I created the debian packages based on the new building files. You need to install root-system package from http://lcg-heppkg.web.cern.ch/lcg-heppkg/debian/. You can build debs this way:
1. untar daq-midas_deb.tar.gz somewhere, assuming ~/Temp.
2. cd ~/Temp/daq-midas
3. svn co -r 5065 svn+ssh://svn@savannah.psi.ch/repos/meg/midas/trunk midas
4. svn co -r 68 svn+ssh://svn@savannah.psi.ch/repos/meg/mxml/trunk mxml
5. dpkg-buildpackage -b -us -uc

I split the package into serverals parts:
  • daq-midas-doc -- The documents and references
  • daq-midas-root -- the midas runtime library and utilities built with root
  • daq-midas-noroot -- the midas runtime library and utilities built without root
  • daq-midas-dev-root -- the midas devel files (headers, objects, drivers, examples) built with root
  • daq-midas-dev-noroot -- the midas devel files (headers, objects, drivers, examples) built without root

Here are the installation:
  • executalbes -- /usr/lib/daq-midas/bin
  • library and objs -- /usr/lib/daq-midas/lib
  • headers -- /usr/lib/daq-midas/include
  • sources and drivers -- /usr/share/daq-midas/
  • docs and examples -- /usr/share/doc/daq-midas
  • mdaq-config -- /usr/bin/mdaq-config

I add an auto-generated shell script -- mdaq-config. It behaves just like "root-config". You can get midas build flags and link flags this way:
gcc `mdaq-config --cflags` -c -o myfe.o myfe.c
gcc `mdaq-config --libs` -o myfe myfe.o `mdaq-config --libdir`/mfe.o

Bugs and suggestions are welcomed.

P.S. Based on debian packages, I am planing to write another script, "mdaq.py":
  • each midas experiment will be configured in a file named "mdaq.yaml"
  • mdaq.py reads the configure file and prepare the daq environment, just like "examples/experiment/start_daq.sh"
  • mdaq.py will handle "start/stop/restart/info" about the daq codes.
The attached "mdaq.py" is the old one.
  767   21 Jun 2011 Stefan RittInfoNew MIDAS sequencer
A new sequencer for starting and stopping runs has been implemented. Although it is till kind of in a preliminary phase, it is usable, so I would like to share the syntax with you.

The sequencer runs inside mhttpd, and creates a new ODB subdirectory "/Sequencer". There is a new button on the status page called "Sequencer". In can run scripts in XML format, which reside on the server (where mhttpd is running). The sequencer is stateless, that means even if mhttpd is stopped and restarted, it resumes operation from where it has been stopped. Following statements are implemented:

  • <Comment>comment</Comment>
    a comment for this XML file, for information only

  • <ODBSet path="path">value</ODBSet>
    to set a value in the ODB

  • <ODBInc path="path">delta</ODBInc>
    to increment a value in the ODB

  • <RunDescription>Description</RunDescription>
    a run description which is stored under /Experiment/Run Parameters/Run Description.

  • <Transition>Start | Stop</Transition>
    to start or stop a run

  • <Loop n="n"> ... </Loop>
    to execute a loop n times. For infinite loops, "infinit" can be specified as n

  • <Wait for="events | ODBvalue | seconds" [path="ODB path"]>x</Wait>
    wait until a number of events is acquired (testing /Equipment/Trigger/Statistics/Events sent), or until a value in the ODB exceeds x, or wait for x seconds.

  • <Script [loop_counter="1"]>Script</Script>
    to call a script on the server side. Optionally, the loop counter(s) are passed to the script

Attached is a simple script which can be used as a starting point.
  766   20 Jun 2011 Stefan RittInfoJavascript ODB interface revised
The Javascript interface to the ODB has been revised. This extends the capabilities of custom web pages requesting data from the ODB. By grouping several request together, the number of round-trips is minimized and the response time is reduced. Following functions are new or extended:

  • ODBGet(path[, format]): This functions works now also with subdirectories in the ODB. The command ODBGet('/Runinfo') returns for example:
    1
    1
    1024
    0
    0
    0
    Mon Jun 20 09:40:14 2011
    1308588014
    Mon Jun 20 09:40:46 2011
    1308588046
    

  • ODBGetRecord(path), ODBExtractRecord(key): While ODBGet can be used for subdirectories, an easier way is to use ODBGetRecord and ODBExtractRecord. The first function retrieves the subtree (record), while the second one can be used to extract individual items. Here is an example:
    result = ODBGetRecord('/Runinfo');
    run_number = ODBExtractRecord(result, 'Run number');
    start_time = ODBExtractRecord(result, 'Start time');
    

  • ODBMGet(paths[, callback, formats]): This function ("Multi-Get") can be used to obtain ODB values from different paths in one call. The ODB paths have to be supplied in an array, the result is again an array. An optional callback routine might be supplied for asynchronous operation. Optional formats might be supplied if the resulting number should be formatted in a specific way. Here is an example:
       var req = new Array();
       req[0] = "/Runinfo/Run number";
       req[1] = "/Equipment/Trigger/Statistics/Events sent";
       var result = ODBMGet(req);
       run_number = result[0];
       events_sent = result[1];
    

The new functions are implemented in mhttpd revision 5075.
  765   20 Jun 2011 Jimmy NgaiForumCannot open input file (file too large?)
Dear All,

Thanks Konstantin Olchanski for providing me a hint. The file can be opened now after I 
changed the line: 

file->gzfile = gzopen(file_name, "rb");

in function ma_open() in mana.c to the followings: 

INT fd = open(file_name, O_RDONLY | O_LARGEFILE);
if (fd <= 0)
   return NULL;

file->gzfile = gzdopen(fd, "rb");

No modifications to the Makefile is needed in this case.

Best Regards,
Jimmy


> Dear All,
> 
> I got a "Cannot open input file" error when I tried to analyze a .mid.gz file with 
> size over 5 GB on a 32-bit Linux. The error traced back to gzopen() in mana.c 
> where it returned NULL when opening the file. I understand that 32-bit Linux may 
> not be able to handle files with size over 2 GB. I tried to add -
> D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 to CFLAGS in the Makefile of MIDAS and 
> the analyzer, but I still got the same error. Is there any workarounds that enable 
> me to analyze large files on 32-bit systems?
> 
> p.s. The data file was also produced on a 32-bit Linux.
> 
> Thanks & Best Regards,
> 
> Jimmy
  764   17 Jun 2011 Konstantin OlchanskiForumladd00.triumf.ca https ssl certificate update
The HTTPS SSL certificate on ladd00.triumf.ca has been updated. Same as the old
certificate, the new one is self-signed and your web browser may complain about
that and ask you to "save a security exception".

When you save the new certificate, you can verify that you are connected to the
real ladd00.triumf.ca by comparing the "SHA1 fingerprint" reported by your web
browser to the one given below (as reported by "svn update"):

Certificate information:
 - Hostname: ladd00.triumf.ca
 - Valid: from Jun 17 23:36:35 2011 GMT until Jun 16 23:36:35 2012 GMT
 - Issuer: DAQ, TRIUMF, Vancouver, BC, CA
 - Fingerprint: 2a:be:9f:9f:70:d4:dc:72:9f:63:bf:4f:fe:c0:2c:8f:a8:29:f2:f1

K.O.
  763   17 Jun 2011 Jimmy NgaiForumCannot open input file (file too large?)
Dear All,

I got a "Cannot open input file" error when I tried to analyze a .mid.gz file with 
size over 5 GB on a 32-bit Linux. The error traced back to gzopen() in mana.c 
where it returned NULL when opening the file. I understand that 32-bit Linux may 
not be able to handle files with size over 2 GB. I tried to add -
D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 to CFLAGS in the Makefile of MIDAS and 
the analyzer, but I still got the same error. Is there any workarounds that enable 
me to analyze large files on 32-bit systems?

p.s. The data file was also produced on a 32-bit Linux.

Thanks & Best Regards,

Jimmy
  762   24 May 2011 Jianglai LiuForumsimple example frontend for V1720
Thanks all for the kind help. This did point me to the right direction. I was now able to make v1720.c as well as my MIDAS frontend (thanks to
Jimmy's example) talking to V1720, and read out the waveform bank.

However the readout values did not seem quite right. I fed in a PMT-like pulse of about 0.1 V and 50 ns wide, with an external trigger just in time.
However, the readout by both v1720.c stand-alone code, and my midas frontend seemed to be flat noise.

I tried to play with the post trigger value, as well as the DAC setting of V1720. None seemed to help.

BTW I tested my V1720 board functionality by using the CAEN windows software (CAENScope and WaveDump). They worked just fine.

Any suggestions? Attached is my modified v1720.c code.


Pierre-Andre Amaudruz wrote:

Jianglai Liu wrote:
Hi,

Who has a good example of a frontend program using CAEN V1718 VME-USB bridge and
V1720 FADC? I am trying to set up the DAQ for such a simple system.

I put together a frontend which talks to the VME. However it gets stuck at
"Calibrating" in initialize_equipment().

I'd appreciate some help!

Thanks,
Jianglai


Under the drivers/vme you can find code for the v1720.c (VME access) and ov1720.c
(A2818/A3818 PCIe optical link access). For testing the hardware, we use this code compiled and linked
with MAIN_ENABLE to confirm its functionality. You may want to do the same for your USB. Once this
is under control, the Midas frontend implementation using the same driver shouldn't give you trouble.
  761   18 May 2011 Jimmy NgaiForumsimple example frontend for V1720

Jianglai Liu wrote:
Hi,

Who has a good example of a frontend program using CAEN V1718 VME-USB bridge and
V1720 FADC? I am trying to set up the DAQ for such a simple system.

I put together a frontend which talks to the VME. However it gets stuck at
"Calibrating" in initialize_equipment().

I'd appreciate some help!

Thanks,
Jianglai


Hi Jianglai,

I don't have an exmaple of using V1718 with V1720, but I have been using V1718 with V792N for a long time.

You may find in the attachment an example frontend program and my drivers for V1718 and V792N written in MVMESTD format. They have to be linked with the CAENVMELib library and other essential MIDAS stuffs.

Regards,
Jimmy
  760   10 May 2011 Pierre-Andre AmaudruzForumsimple example frontend for V1720

Jianglai Liu wrote:
Hi,

Who has a good example of a frontend program using CAEN V1718 VME-USB bridge and
V1720 FADC? I am trying to set up the DAQ for such a simple system.

I put together a frontend which talks to the VME. However it gets stuck at
"Calibrating" in initialize_equipment().

I'd appreciate some help!

Thanks,
Jianglai


Under the drivers/vme you can find code for the v1720.c (VME access) and ov1720.c
(A2818/A3818 PCIe optical link access). For testing the hardware, we use this code compiled and linked
with MAIN_ENABLE to confirm its functionality. You may want to do the same for your USB. Once this
is under control, the Midas frontend implementation using the same driver shouldn't give you trouble.
  759   10 May 2011 Stefan RittForumsimple example frontend for V1720

Jianglai Liu wrote:
Hi,

Who has a good example of a frontend program using CAEN V1718 VME-USB bridge and
V1720 FADC? I am trying to set up the DAQ for such a simple system.

I put together a frontend which talks to the VME. However it gets stuck at
"Calibrating" in initialize_equipment().

I'd appreciate some help!

Thanks,
Jianglai


During "Calibrating", the framework calls your poll_event() routine. You code there accesses for the first time the VME crate and probably gets stuck.
  758   10 May 2011 Jianglai LiuForumsimple example frontend for V1720
Hi,

Who has a good example of a frontend program using CAEN V1718 VME-USB bridge and
V1720 FADC? I am trying to set up the DAQ for such a simple system.

I put together a frontend which talks to the VME. However it gets stuck at
"Calibrating" in initialize_equipment().

I'd appreciate some help!

Thanks,
Jianglai
  757   15 Apr 2011 Konstantin OlchanskiForumHow large does "bank32" support?
> Reading an FADC buffer often needs large buffer size, especially while several
> FADCs work together. I want to know how large a bank32 can support.

Limitations in order:

- bank32 size is limited to a 32 bit integer size (about 4000 Gbytes)
- bank size is limited by event size
- event size in a midas mfe.c based frontend is limited to the value of
max_event_size set by the user
- maximum event size that can go through the MIDAS event buffer system is limited
to ODB value /Experiment/MAX_EVENT_SIZE (MAX_EVENT_SIZE in midas.h does not do
anything now)
- maximum event size is limited to *half* the size of the SYSTEM shared memory
event buffer (or any other buffers that the event has to go through)
- default size of the SYSTEM buffer is 8 Mbytes set by ODB /Experiment/Buffer
sizes/SYSTEM. This limits maximum event size to about 4 Mbytes.
- size of SYSTEM buffer can be increased to arbitrary size, but in practice no
bigger than the amount of computer physical memory minus space needed for running
the frontend program and the mlogger, which also allocate buffer space to hold 1
event of maximum size.

So for a computer with 8 Gbytes of RAM, you can make the SYSTEM buffer size 4
GBytes, set ODB MAX_EVENT_SIZE to 1 Gbyte, and in theory, you should be able to
write 1 Gbyte events from your frontend to disk.

In practice, I think the biggest events I have seen go through a MIDAS system are
non-compressed waveforms in the T2K/ND280 FGD and TPC detectors, about 4 Mbytes of
data per event.

Other considerations (rules of thumb):

1) the SYSTEM event buffer should be big enough to hold 10-100 events.
2) the SYSTEM event buffer should be big enough to hold about 5-10 seconds of data
- i.e. if your event size is 1 Mbyte and data rate is 1 Hz, 10 seconds of data
will be 1Mbyte*1Hz*10sec = 10 Mbytes.

This is because the SYSTEM buffer decouples the real-time activity of the frontend
program from non-real-time activity of writing data to storage devices.

K.O.
ELOG V3.1.4-2e1708b5