Back Midas Rome Roody Rootana
  Midas DAQ System, Page 14 of 146  Not logged in ELOG logo
New entries since:Wed Dec 31 16:00:00 1969
    Reply  25 Jan 2005, Stefan Ritt, Bug Report, Persistency problem with h1_book() & co 
> > I can't get onto cvs@midas.psi.ch right now
> > (cvs update
> > cvs@midas.psi.ch's password: 
> > Permission denied, please try again.)

cvs@midas.psi.ch should be up and running again.
    Reply  26 Jan 2005, Stefan Ritt, Bug Report, histograms not saved in replay mode 
> is there a reason why histograms are not saved after a replay?
> 
>    /* save histos if requested */
>    if (out_info.histo_dump && clp.online) {
>                               ^^^^^^^^^^
> 
> perhaps the && should be ||?

The original reason for that is the for running online, you want some histos for
monitoring after each run. For running offline, you specify a root output file via
"-o xxx.root" which contains trees AND histos. So the histos would there be twice
if you remove the "clp.online" from above.

Having "-o xxx.root" is IMHO a cleaner way, since you might want to analyze a run
in different ways (like using different calibrations). So what you do is specify
different "-o cal00123.root", "-o final00123.root" and so on, while with the
mechanism in eor() you always get the same file name. So try using "-o xxx.root"
and see if that fits your needs.
Entry  04 Mar 2005, Stefan Ritt, Info, Real-Time 2005 Conference in Stockholm 
Dear Midas users,

may I kindly invite you present your work at the Real-Time 2005 Conference in
Stockholm, June 4-10. The conference deals with all kinds of real time
applications like DAQ, control systems etc. It is a small conference with no
paralles sessions, and with two interesting short courses. The deadline has been
prolonged until March 13, 2005. If you are interested, please register under

http://www.physto.se/RT2005/

Here is the official letter from the chairman:

=====================================================================
               14th IEEE-NPSS Real Time Conference 2005
                  Stockholm, Sweden, 4-10 June, 2005
              Conference web site: www.physto.se/RT2005/

**********************************************************************
*                                                                    *
*        ABSTRACT SUBMISSION PROLONGED! DEADLINE: March 13, 2005     *
*                                                                    *
**********************************************************************

Considering that the Real Time conference is a highly meritorious and
multidisciplinary conference with purely plenary sessions and that the
accepted papers may be submitted to a special issue of the IEEE
Transactions on Nuclear Science we would like to give more people the
opportunity to participate. Therefore we have organized the program so
that there is now more time for talks than at the RT2003 and we are
extending the abstract submission to March 13. We strongly encourage
you to participate!

Submit your abstract and a summary through the conference web site
"Abstract submission" link. Please, make sure that your colleagues know
about the conference and invite them.

I would also like to take this opportunity to announce the two short
courses we have organized for Sunday 5/6:

- "Gigabit Networking for Data Acquisition Systems - A practical
introduction"
  Artur Barczyk, CERN

- "System On Programmable Chip - A design tutorial"
  Marco Riccioli, Xilinx

Please find the abstracts and more information about the conference on
www.physto.se/RT2005/

Thank you if you have already submitted an abstract.

Richard Jacobsson
General Chairman, RT2005 Conference

Email: RT2005@cern.ch
Phone: +41-22-767 36 19
Fax:   +41-22-767 94 25
CERN Meyrin
1211 Geneva 23
Switzerland
Entry  24 Mar 2005, Stefan Ritt, Info, ODB dump format switched to XML 
Dear midas users,

I have changed the ODB dump format to XML. As you might know, the logger writes
a special begin-of-run event to the .mid file which includes an ASCII dump of
the ODB. The same at the end-of-run. To read these ODB dumps back in offline
analysis, this requires setting up a ODB just to read back these values. In
order to avoid this, we switched the format to XML instead of the old ASCII
format. That way ROME can read the ODB dump and extract individual values from
it without setting up a shared memory.

A similar thing has been made for the ODB dumps to separate .odb files, which
are controlled by "/Logger/ODB Dump" and "/Logger/ODB Dump file". If the dump
file has the extension .xml, the file is dumped in XML format as well.

All the XML functionality is implemented in the new mxml.c/h library, which has
been added to the distribution, and which can be used in other projects as well
(XML configuration of ROODY?). It has already been successfully implemented in
ROME, so ROME is no longer dependent on libxml.

- Stefan
    Reply  29 Mar 2005, Stefan Ritt, Info, ODB dump format switched to XML 
> All the XML functionality is implemented in the new mxml.c/h library, which has
> been added to the distribution, and which can be used in other projects as well
> (XML configuration of ROODY?). It has already been successfully implemented in
> ROME, so ROME is no longer dependent on libxml.

Since mxml.c/h is used in several projects (midas, ROME, elog), I separated it's
CVS tree. So in order to compile midas from scratch, you have to check out midas
AND mxml like

cd ~
cvs -d :ext:cvs@midas.psi.ch:/usr/local/cvsroot checkout midas
cvs -d :ext:cvs@midas.psi.ch:/usr/local/cvsroot checkout mxml

cd midas
make

so the "mxml" tree is ABOVE the "midas" tree. The midas Makefile has been adjusted
accordingly. If you decide to put the mxml somwhere else, you have to change
MXML_DIR in the Makefile accordingly.

- Stefan
    Reply  31 Mar 2005, Stefan Ritt, Info, ODB dump format switched to XML 
> Looks like the midas mxml Makefile bits did not make it to CVS. Current Makefile
> revision 1.67 does not have them and building midas from cvs sources fails because it
> does not find mxml.h and mxml.c

I forgot to commit the new Makefile, thanks for reminding me. Now it should be fine.
    Reply  22 Apr 2005, Stefan Ritt, Suggestion, Correct MIDASSYS setting? 
> Current MIDAS versions nag me about setting the env.variable MIDASSYS to the
> "midas installation directory", but I do not have one, so what should I set
> MIDASSYS to? I checkout MIDAS from cvs into /home/olchansk/daq/midas, build it
> there, run it from there. I never do "make install" (I am not "root" on every
> machine; I am not the only MIDAS user on every machine). What should I set
> MIDASSYS to? K.O.

Then set it to /home/olchansk/daq/midas. The reason for MIDASSYS is the same as
for ROOTSYS. Having it allows other packages like ROME to access the Midas source
code, include files and libraries.
Entry  02 May 2005, Stefan Ritt, Info, strlcpy/strlcat moved into separate file 
I had to move strlcpy & strlcat into a separate file "strlcpy.c". A header file
"strlcpy.h" was added as well. This way one can omit the old HAVE_STRLCPY which
made life hard. The windows and linux makefiles were adjusted accordingly, but
for Max OS X there might be some fixes necessary which I could not test.
    Reply  01 Sep 2005, Stefan Ritt, Info, CAMAC register_cnaf_callback() 
> Some time ago, the "remote CAMAC" functionality in mfe.c was made conditional on
> HAVE_CAMAC. This flag is not set by default so remote camac calls silently do
> not work, unless midas is compiled in a special way. I am too lazy to compile
> midas differently depending on what hardware I use, so I split
> register_cnaf_callback() into a separate file and made it easy to call directly
> from the user front end.
> 
> I left the HAVE_CAMAC bits in mfe.c so people who use that would see no change.
> 
> Affected files:
> Makefile (add cnaf_callback.o)
> midas.h (add void register_cnaf_callback(int debug);
> mfe.c (move the rpc code to cnaf_callback.c, call register_cnaf_callback())
> cnaf_callback.c (new file)
> 
> K.O.

That's a good idea. The frontend framework should be independent of the used
hardware (CAMAC or VME or whatever). I event went further and removed the HAVE_CAMAC
completely. This means that people have to add the call to register_cnaf_callback()
explicitly into the frontend user init routine. I think this inconvenience is not a
big deal because even before that people had to add the cnaf_callback.c file
explicitely into their Makefile. So they have to be aware of that change, and then
it's not a big deal to modify the init routine as well. But this way we have mfe.c
completely independen of the DAQ hardware which is how it should be.

To make things a bit easier, I modified the midas\examples\experiment\fronted.c to
contain this call, so people should be guided by that. I also added cnaf_callback.c
to the Makefile of the example frontend.
    Reply  01 Sep 2005, Stefan Ritt, Bug Fix, fix race condition between clients on run start/stop, pause/resume 
> It turns out that the new priority sequencing of run state transitions had a
> flaw: the frontends, the analyzer and the logger all registered at priority 500
> and were invoked in essentially a random order. For example the frontend could
> get a begin-run transition before the logger and so start sending data before
> the logger opened the output file. Same for the analyzer and same for the end of
> run. Also the sequencing for pause/resume run and begin/end run was different
> when the two pairs ought to have identical sequencing.
> 
> I now commited changes to mana.c and mlogger.c changing their transition sequencing:
> 
> start and resume:
> 200 - logger (mlogger.c, no change)
> 300 - analyzer (mana.c, was 500)
> 500 - frontends (mfe.c, no change)
> 
> stop and pause:
> 500 - frontends (mfe.c, no change)
> 700 - analyzer (mana.c, was 500)
> 800 - mlogger (mlogger.c, was 500)
> 
> P.S. However, even after this change, the TRIUMF ISAC/Dragon experiment still
> see an anomaly in the analyzer, where it receives data events after the
> end-of-run transition.
> 
> K.O.

Thanks for fixing that bug. It happend because during the implementatoin of the priority
sequencing we have up the pre/post tansition, which took care of the proper sequence
between the logger, frontend and analyzer. The way you modified the sequence is
absolutely correct. It is important to have >10 numbers "around" the frontends (like
450...550) in case one has an experiment with >10 frontends which need to make a
transition in a certain sequence (like the DANCE experiment in Los Alamos).
    Reply  01 Sep 2005, Stefan Ritt, Info, new mvmestd api 
Good that you brought up the MIDAS VME API again, since this is still not complete, but
has to be completed soon.

Let me summarize the goals:

- have a single set of functions which can be used with all VME CPUs/Interfaces at our
institutes. Using this technique, one can change the interface or CPU and still keep
the same frontend source code. This was already successfully done with the MIDAS CAMAC
standard (as defined in mcstd.h)

- base any ADC/TDC driver we write on that API, so these modules can be used with any
CPU/Interface without changing the driver

- have a simple and easy to understand set of functions

- "cover" any specialities from the drivers, like memory mapping. 

Especially this point is very delicate. If one explicitely uses memory mapping in the
API, one cannot use interfaces which do not support this (like the Struck SIS3100). So
one should only use explicity vme_read/vme_write functions. Now people might argue that
going for each single access through a function is an overhead as compared to a memory
mapped operation. This might be true (even with inline functions of modern C
compilers), but it should be small on fast computers. Typically a single VME operation
take ~1us, while a function call takes much less.

Regarding the API implementation, I see now three "philosophies":

1) Handle oriented. One obtains a handle for each VME crate for each addressing mode,
then uses this handle for subsequent operation. This is the way the proposal from K.O.
is written.

2) Parameter oriented. There is no handle visible to the user code. All parameters are
passed in each call, like

mvme_read(crate, address_mode, vme_amod, source_addr, destination_addr, num_bytes);

3) ioctl() based. Same as 2), but the parameters like the address mode only get changed
via ioctl() when needed, like

vme_ioctl(request, parameter)   such as
 
   vme_ioctl(SET_CRATE, 1);
   vme_ioctl(MVME_AMOD, A24);
   mvme_read(source_addr, destination_addr, num_bytes);

This is how the current mvmestd.h is defined and how the
midas\drivers\bus\sis3100\sis3100.c is implemented.

Now the question is: should we implement 1), 2) or 3) ?

I had already lots of discussions with Pierre, and he convinced me that the ioctl() way
is not very nice. The advantage is that there is only one function to change
everything, so the complete API would be only 5 functions (init, exit, read, write,
ioctl), but of course there are many parameters to the ioctl() function. 

On the other hand I do not like the option 1). If you have five crates on a single PC
(and that's what we will have in our MEG experiment), you need 5x3 handles. If you use
many nested subroutines in your event readout, you have to pass lots of handles around.
I do not like option 2) as well, beacause each VME call contains many parmeters, which
make it hard to read.

So I would propose the following: We implement something like 3), but with explicit
routines:

  mvme_set_crate()   each funciton has a _get_ partner, like mvme_get_crate()
  mvme_set_address_mode()
  mvme_set_amod()
  mvme_set_blocktransfer()
  mvme_set_fifomode()             // speciality of the SIS3100 interface, write a
                                  // block of data to the same address
  ...

  mvme_read(vme_address, dest_addr, num_bytes);
  mvme_write(src_addr, vme_address, num_bytes);

It might look unfamiliar to have to set the address mode explicitely, but in practice
one typically has a few configuration calls in A16 mode, then the data readout in A32
mode. So omitting the address mode in the vme_read/write calls saves typing effort.

Since one does not use explicit handles, they have to stored internally in the driver.
I did this in the sis3100.c, and found that this overhead is negligible. The
implementation if of course not thread save, but does anybody use threads in the
experiment? I guess not.

Now I would like to hear anybody's comments. If we agree on this method, we have to
define a complete set of functions mvme_set_xxx. If we get a new interface in the
future which has new functionality (like 2eVME block transfers), we have to change the
API each time (while with the ioctl() we only would have to add one parameter). Or
maybe we can make a more generic mvme_set_vme_mode(mode), where mode could be fifomode,
2eVME mode, chained block transfer mode and so on.

Now there might be experiments which require the last bit of performance at the
frontend. They can decide to use the MIDAS API with some performance overhead, or they
can call directly the native driver API, but then be locked to the API. So everybody
has to decide himself.

I meet with Pierre end of September, and would like to finalize the API at that time.
So please give it a thought and let me know.

Best regards,

  Stefan
    Reply  01 Sep 2005, Stefan Ritt, Suggestion, new mvmestd api 
Anothe idea which comes to my mind, we could make it kind of object oriented, like

typedef struct {
  int handle;
  int crate;
  int amod;
  int fifo_mode;
  ...
} MVME_INTERFACE;

main()
{
  MVME_INERFACE *vme;

  vme = mvme_init(); // allocated and fills MVME_INTERFACE structure

  mvme_set_crate(vme, crate_no);
  mvme_set_address_mode(vme, A24);
  ...

  mvme_read(vme, vme_address, dest_addr, num_bytes);
  mvme_exit(vme);    // frees memory allocated in mvme_init()
}

------------------------------------------

This way we would only have one structure containing all required parameters, and get/set
functions for it, like the OO textbooks propose it. This would actually make it thread
save. The "vme" pointer from above still has to be passed around to subroutines, but a
single pointer is better than lots of handles.
    Reply  11 Sep 2005, Stefan Ritt, Info, new mvmestd api 
> Right, but I can only complete the parts that I thought of and for which I already have
> code. This leaves out support for DMA (read: any block transfers) and interrupts.

DMA should be simple. We have a dma_flag in the MVME_INTERFACE structure, which only needs to
be set with mvme_set_dma_mode(...). The mvme_read/write subroutine then checks this flag and
calls the appropriate routine from the native API. About interrupts I haven't thought so much.
Does TRIUMF use interrupts anywhere? Or are all midas frontends in polled mode?

> Well, all interfaces are different and no amount of software will make them look all the
> same. 
>
> > - "cover" any specialities from the drivers, like memory mapping.
> 
> Exactly. We are facing a tricky task of inventing one API for two completely different
> modes of operation- purely memory mapped access on UniverseII based hardware and message
> passing access for the SIS3100 and VMUSB (Wiener VME-USB2).

Not all the same, but some common denominator. The memory mapped architecture can probably be
hidden in an API. So if one calls mvme_read/write, the routine checks if that region is already
mapped, and maps it if necessary. Then all you need is a proper offset and a memcpy(). Checking
about mapping causes some overhead. You have to check a hash table or a linked list which takes
time. But I think (see previous message) that this overhead should be small compared with the
IO operation. 

> I am now facing this problem with the Wiener CCUSB CAMAC-USB2 interface. I can
> implement all of mcstd.h, but the interface is intended to be used by downloading it with a
> CAMAC readout program and mcstd.h knows nothing about that.

Downloading a program you probably cannot cover with a common API, you are right. The problem
with USB is that you can only make ~1000 transfers per second, even with 2.0. So if you want
more, you need the old list concept.
> > So one should only use explicity vme_read/vme_write functions.
> 
> Rightey-ho. The fly in the ointement is that all VME ADC and TDC drivers in TRIUMF are
> written assuming memory mapped access, and I will not convert them to vme_read/vme_write
> overnight (think of testing).

You don't have to. This question only comes up if you (have to) use a non-memory mapped
interface. You can then either write then two separate drivers, or one driver and two MVME APIs.

> > Now I would like to hear anybody's comments. If we agree on this method, we have to
> > define a complete set of functions mvme_set_xxx.
> 
> We currently require only single-word transfers so we can concentrate on mvme_set_xxx for
> block-transfers later.

I need block transfers end of this month, so we should it include it in our current discussion.
The problem is that I use our (own) DRS2 waveform digitizing board, where each board produces
70kB of data per event. In non-DMA mode, the transfer would take forever.

> > maybe we can make a more generic mvme_set_vme_mode(mode), where mode could be fifomode,
> > 2eVME mode, chained block transfer mode and so on.
> 
> This is a can of worms and I would rather postpone discussion of block transfers. To give
> you a taste: UniverseII does not have a "fifo mode"- it *always* increments the vme address
>  (silly). A fifo mode can be emulated using chained transfers (read 256 bytes from
> addresses A through A+256, then read 256 more from address A, etc.), but the present VMIC
> VME library does not support chained transfers. On VxWorks, we do not even have a driver
> for the DMA engine, so not block transfers there at all.

If a native API does not support block transfer, the MVME driver should just ignore the DMA
setting. A ADC driver might then run slower, but still run. 

> I will now think about and post an updated proposal for mvmestd.h

Please also consider elog:221, I guess this is a cleaner and more flexible way of implementing
any MXXX standard.

- Stefan
Entry  03 Oct 2005, Stefan Ritt, Info, Revised MVMESTD API 
Dear MIDAS users and developers,

The "Midas VME Standard API" has been revised. We tried to incorporate all
comments and ideas we got so far. The mvme_ioctl() function was abandoned in
favor of several mvme_get/set_xxx functions. Furthermore, two additional
functions for read and write have been implemented to simplify writing/reading
single values to VME. The current API looks like this:

int mvme_open(MVME_INTERFACE **vme, int index);
int mvme_close(MVME_INTERFACE *vme);
int mvme_sysreset(MVME_INTERFACE *vme);
int mvme_read(MVME_INTERFACE *vme, void *dst, mvme_addr_t vme_addr,
              mvme_size_t n_bytes);
DWORD mvme_read_value(MVME_INTERFACE *vme, mvme_addr_t vme_addr);
int mvme_write(MVME_INTERFACE *vme, mvme_addr_t vme_addr, void *src,
               mvme_size_t n_bytes);
int mvme_write_value(MVME_INTERFACE *vme, mvme_addr_t vme_addr, DWORD value);
int mvme_set_am(MVME_INTERFACE *vme, int am);
int mvme_get_am(MVME_INTERFACE *vme, int *am);
int mvme_set_dmode(MVME_INTERFACE *vme, int dmode);
int mvme_get_dmode(MVME_INTERFACE *vme, int *dmode);
int mvme_set_blt(MVME_INTERFACE *vme, int mode);
int mvme_get_blt(MVME_INTERFACE *vme, int *mode);

The MVME_INTERFACE structure holds all internal data, similar to the FILE
structure in stdio.h. If several VME interfaces (of the same type) are present
in a PC, the function mvme_open can be called once for each crate, specifying
the index. The block transfer modes passed to mvme_set_blt control the usage of
DMA, MBLT64 and so on. Not all interfaces might support all modes, in which case
mvme_set_blt should return MVME_UNSUPPORTED. Then it's up to the user code to
ignore this error or choose a different mode.

So far we have implemented drivers for the SIS3100, SBS617/SBS618 and VMIC
interfaces using this standard. It should be noted that the VMIC uses solely
memory mapped VME I/O, which is completely hidden in the VMIC MVMESTD driver.

We would like to encourage people to switch to the revised MVMESTD API wherever
possible. If new drivers for ADCs and TDCs for example are written using this
standard, groups with different VME interfaces can use them without modification.

Although the standard works now for three different interfaces, it might be that
new interfaces need slight additions. They should be identified as soon as
possible, in order to adapt the MVMESTD quickly and freeze the API soon.

Interrupts are not (yet) implemented in the MVMESTD, because most experiments
use polling anyhow. If there is a need for interrupts by someone, he should come
up quickly with this and make a proposal for implementation.
Entry  07 Oct 2005, Stefan Ritt, Info, MIDAS moved from CVS to Subversion 
Dear Midas users,

I have moved midas from CVS to Subversion today. There were many reasons for doing so, which I don't want to explain in detail here. To use the new repository, there a several things to note:

  • Anonymous checkout can be done now with
    svn co svn+ssh://svn@savannah.psi.ch/afs/psi.ch/project/meg/svn/midas/trunk midas
    svn co svn+ssh://svn@savannah.psi.ch/afs/psi.ch/project/meg/svn/mxml/trunk mxml

    Use password svn (you might have to enter it several times). The mxml package is now outside from midas, so you have to check it out separately.
  • Non-anonymous access (for commits!) is only possible if you have an account at PSI. While it is possible via
    svn co svn+ssh://<your_name>@savannah.psi.ch/afs/psi.ch/project/meg/svn/midas/trunk midas
    it is more convenient if you access the repository via AFS, since then you only have to obtain a valid AFS token once a day and do not have to supply passwords on each SVN access
  • Before you do a checkout, delete (or rename) your old CVS working directory
  • Subversion does not use file revisions, but a global revision number for the whole repository, which is now at 2752. To get some idea about subversion, read this very good book
  • The Web access to the repository is at http://savannah.psi.ch/viewcvs/trunk/?root=midas
  • The ViewCVS web interface allows on-the-fly generation of TAR balls from the current repository. Just click on the link Download tarball
  • The old CVS repository has been switched to read-only and will be completely closed in a few weeks
  • The machine midas.psi.ch will in the near future not be available any more for any repository
  • All the $Log: tags in the midas files have been replaced by $Id: tags, since the former ones are not supported by SVN (for good reasons actually). To view the change log, do a svn log <filename>.

For the windows users, I have some additional notes:

  • Do not use the Cygwin subversion package, but the binaries from here if you plan to access the SVN repository through AFS at PSI (or other places where AFS is available). If you map the AFS repository for example to "Y:", then the binaries access this under file:///Y:/svn/meg/... whicl the cygwin ones access this under file:///cygwin/y/svn/meg/... While this is ok in principle, it gives a conflict with the TortoiseSVN which expects the first path. So if you want to use command line utilities together with TortoiseSVN, the Cygwin package won't work.
  • Use the TortoiseSVN package. It's really great! It has a very nice "diff" viewer/merger, it's integrated into the Windows explorer, has a spell checker for composing comments for commits, etc.
  • For the SVN binaries under Windows, you have to set the environment variable LANG=en_US, otherwise svn will talk in German to you on a standard PSI Windows PC.

If there are any problems in accessing the new repository, please let me know.

Note: This elog entry has been updated since the original one did have a wrong username in the SVN URL.
Entry  10 Oct 2005, Stefan Ritt, Info, Bus drivers moved in repository 
The previous midas/drivers/bus dirctory contains both midas slow control bus drivers plus vme & fastbus & camac drivers. I separated them now in different directories:

midas/drivers/bus
midas/drivers/camac
midas/drivers/vme
midas/drivers/fastbus

which is a more appropriate structure. Doing this in subversion was really simple and showed me that the moveover to subversion was worth it.
Entry  02 Nov 2005, Stefan Ritt, Suggestion, Where to put drivers? 
Hi,

I would like to raise the question where to put the midas drivers.

We have both the example experiment and the MSCB Makefile which both expect to find the midas drivers under $MIDASSYS/drivers/camac or $MIDASSYS/drivers/usb. The documentation does not explicitely mention to define MIDASSYS as /usr/local, but some people do it. That however requires to put all drivers then under /usr/local/drivers, which is not the case in the current Makefile for midas. Do you think that we should add this? Or should we better ask (->documentation) people to define MIDASSYS to wherever they install the midas package (usually /usr/home/<name>/midas or so)?

Looking forward to hear your opinion,

Stefan
    Reply  06 Nov 2005, Stefan Ritt, Suggestion, Where to put drivers? 

Stefan Ritt wrote:
We have both the example experiment and the MSCB Makefile which both expect to find the midas drivers under $MIDASSYS/drivers/camac or $MIDASSYS/drivers/usb. The documentation does not explicitely mention to define MIDASSYS as /usr/local, but some people do it. That however requires to put all drivers then under /usr/local/drivers, which is not the case in the current Makefile for midas. Do you think that we should add this? Or should we better ask (->documentation) people to define MIDASSYS to wherever they install the midas package (usually /usr/home/<name>/midas or so)?



Pierre-André Amaudruz wrote:

The purpose of the MIDASSYS introduction was to permit the placement of the package in the user area as well as publishing the Midas entry point. Doing so, we lessen the necessity to "install" Midas in the standard OS directory such as /opt or /usr/local. Static linking, use of rpath, new "make minimal_install" go in that direction.
Regarding the drivers, organizing the directories per hardware type (camac, vme, fastbus, usb, etc) seems better to me. Originally, we mostly dealt with CAMAC and therefore the diverse Makefile had a default reference to /drivers/bus/(camacrpc). Now that we removed cnaf/rpc from the automatic mfe build, it indicates that CAMAC is no longer the prime hardware. Then we should leave open to the user the selection of the hardware and document the necessity for him/her to adjust the build appropriately ( $MIDASSYS/drivers/<HW_type> ). The different Makefile examples should be adjusted to the proper driver location they're dealing with.
Pierre-André


I agree with what you say. So I will include the drivers in the ("full") install to be copied under /usr/local/drivers, just for the people using midas in an "installed" way, but we keep the possibility to use a minimal_install to skip the driver installation.
Entry  23 Nov 2005, Stefan Ritt, Bug Fix, Endian swapping in mana.c 
It was reported that following code in mana.c :
  /* swap event header if in wrong format */
  if (pevent->serial_number > 0x1000000) {
     WORD_SWAP(&pevent->event_id);
     WORD_SWAP(&pevent->trigger_mask);
     DWORD_SWAP(&pevent->serial_number);
     DWORD_SWAP(&pevent->time_stamp);
     DWORD_SWAP(&pevent->data_size);
  }

does not work correctly for events having a true serial number above 16777216 (=0x10000000). After some considerations, I concluded that there is no good way to determine automatically the endian format of midas events, without adding another field in the header, which would break the compatibility with all recorded data up to date. I therefore changed the above code to
  /* swap event header if in wrong format */
#ifdef SWAP_EVENTS
  WORD_SWAP(&pevent->event_id);
  WORD_SWAP(&pevent->trigger_mask);
  DWORD_SWAP(&pevent->serial_number);
  DWORD_SWAP(&pevent->time_stamp);
  DWORD_SWAP(&pevent->data_size);
#endif

So if one wants to analyze events with the midas analyzer on a PC system for example where the events come from a VxWorks system with the opposite endian encoding, one has to set the flag -DSWAP_EVENTS when compiling the analyzer for that type of analysis.
    Reply  23 Dec 2005, Stefan Ritt, Info, midas max event size? 
> My TPC events are fairly large: 18 FEC cards * 128 channels per card * 2 Kbytes
> per channel = about 4 Mbytes. In my
> frontend, when I request this event size, MIDAS complaints (in mfe.c) that it is
> bigger than MAX_EVENT_SIZE, which
> is set to 0.5 Mbytes in midas.h. What is the best way to deal with this? Should
> we increase MAX_EVENT_SIZE to
> something bigger? Remove the MAX_EVENT_SIZE limitation altogether?

If you teach me how to remove the MAX_EVENT_SIZE, that would be perfect!

Unfortunately the limit comes from the shared memory on the back end (the so-called
"SYSTEM" shared memory). Due to the structure of the buffer manager, the shared
memory has to hold at least two events simultaneously. And once the shared memeory
is created, it's size cannot be changed without restarting all the clients. That's
the origin of the MAX_EVENT_SIZE. In former days, the total allowed shared memory on
a typical linux machine was 2MB. That's why I set MAX_EVENT_SIZE to 0.5 MB, so midas
takes 2*0.5MB=1MB plus 0.2MB for the ODB, leaving 0.8MB for other applications.
Nowadays, the shared memory might be bigger (actually it's a parameter during kernel
compilation), so one could consider increasing the default MAX_EVENT_SIZE. If you
make a survey of the shared memory sizes in some of the current distributions, we
can choose a safe value.

> For now, I increased the value MAX_EVENT_SIZE & co to (10*1024*1024) and it
> seems to work (I also had to bump the
> sanity check in bm_open_buffer() from 10E6 to 100E6). With 1/4 of the FEC cards,
> the event size is 1 Mbyte at ~6
> ev/sec the machine is almost idle, with the biggest CPU user being the event
> builder at 10% CPU utilization.

I made sure that there is no other limitation as the one given by MAX_EVENT_SIZE, so
it should work fine. Thanks for telling me the wrong sanity check, that should be
changed in the repository.
ELOG V3.1.4-2e1708b5